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1. Introduction

Let Ln+1
1 be an (n + 1)-dimensional Lorentz manifold, i.e., an indefinite Riemannian

manifold of index 1. A hypersurface Mn of Ln+1
1 is said to be spacelike if the induced metric

on Mn from that of Ln+1
1 is positive definite.

The problem of characterizing spacelike hypersurfaces immersed in a Lorentz space
form is an important and fruitful topic in the theory of isometric immersions, which is
originated from the seminal paper by Calabi in [1] and Cheng-Yau in [2]. As a generalization
of their studies, it motivated a great deal of work of several authors to research the problem
of hypersurface with constant mean curvature (CMC), such as [3–5], or constant scalar
curvature (CSC), such as [6–11]. Meanwhile, some rigidity classifications and pinching
results were obtained, by using Omori-Yau’s maximum principle for the Laplace operator
in [12], or the generalized Omori-Yau’s maximum principle for the self-adjoint differential
operator introduced by Cheng-Yau in [13], respectively.

The above problems have been studied in the more general spaces, such as in locally
symmetric Lorentz manifolds (whose curvature tensors are parallel), which is supposed
to obey some appropriate curvature constraints. We recall that, for constants c1 and c2,
Choi et al. [14,15] introduced the class of (n + 1)-dimensional Lorentz spaces Ln+1

1 with the
following two additional conditions (here, R(u, v) denotes the sectional curvature of Ln+1

1 ):

R(u, v) =
c1

n
(1)

for any unit spacelike vector u and timelike vector v and

R(u, v) ≥ c2 (2)

for any unit spacelike vectors u and v.
It should be noted that the locally symmetric Lorentz manifolds satisfying (1) and (2)

are generalization of the Lorentz space forms and some non-trivial examples are given

Mathematics 2021, 9, 2914. https://doi.org/10.3390/math9222914 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7523-7884
https://doi.org/10.3390/math9222914
https://doi.org/10.3390/math9222914
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9222914
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9222914?type=check_update&version=1


Mathematics 2021, 9, 2914 2 of 15

in [14–16]. In this setting, many authors work in this type of ambient manifolds and a series
of similar results for totally umbilical and pinching results are obtained (see [17–19]), but
they could not give the rigidity classification results due to the fact that there are no nice
symmetry properties for the ambient manifold.

Motivated by the works described above, our aims, in this paper, are to establish
the umbilicity and pinching results by considering hypersurfaces immersed in a Lorentz
Ricci symmetric manifold satisfying (1) and (2). Here, we call it Lorentz Ricci symmetric
manifold if it is a Lorentz space whose Ricci tensors are parallel. Moreover, when the Ricci
symmetric manifold is an Einstein manifold, we further give such hypersurfaces some
rigidity classifications. In the following, we give a large class of examples of Lorentz
Ricci symmetric manifolds satisfying (1) and (2) which are not locally symmetric or space
forms. In this sense, it is worth characterizing the spacelike hypersurfaces in such class of
ambient manifolds.

2. Models

Example 1. Let (Rk
1, g0) be a Lorentz–Minkowski space and (Nn+1−k, gN) be a Riemannian

manifold. We consider the semi-Riemannian direct product manifold

Rk
1 × Nn+1−k

with the metric g = g0 + gN . Then, we claim that this direct product manifold is a Ricci symmetric
manifold satisfying (1) and (2) if and only if Nn+1−k is a Ricci symmetric manifold with sectional
curvature bounded from below. Moreover, Rk

1 × Nn+1−k is not a locally symmetric manifold if and
only if Nn+1−k is not locally symmetric.

Proof. In fact, we know Rk
1 × Nn+1−k is a Ricci symmetric manifold if and only if Nn+1−k

is a Ricci symmetric manifold.
For any unit vector fields u, v on Rk

1, as in [20], we also denote by u, v the vector
fields (u, 0), (v, 0) on Rk

1 × Nn+1−k. Likewise, for any unit vector fields η, ζ on Nn+1−k,
we also denote vector fields (0, η) and (0, ζ) on Rk

1 × Nn+1−k by η, ζ. Obviously, u, v are
either spacelike or timelike and η, ζ must be spacelike. Then, the sectional curvatures of
Rk

1 × Nn+1−k are given by

R(u, v) = R(u, η) = 0, R(η, ζ) = RN(η, ζ), (3)

where RN(η, ζ) is the sectional curvature of Nn+1−k; u, v and η, ζ are linear independent
respectively. Therefore, from (3), we conclude that (1) always holds and (2) holds if and
only if RN(η, ζ) ≥ c2 and 0 ≥ c2, that is to say, the sectional curvature of Nn+1−k is bounded
from below.

On the other hand, by (Remark 0.26, [21]), Rk
1 × Nn+1−k is locally symmetric if and

only if both Rk
1 and Nn+1−k are locally symmetric manifolds, which confirms our claim.

Example 2. Let (Fk
1(

c1
n ), gF) (k 6= 1) be a Lorentz space form with the constant sectional curvature

c1
n and (Nn+1−k, gN) be a Riemannian manifold. We consider the semi-Riemannian warped
product manifold

Fk
1(

c1

n
)× f Nn+1−k

with the metric g = gF + f 2gN , where f > 0 is a smooth function defined on Fk
1(

c1
n ). Then, the

warped product manifold is an Einstein manifold (with the constant c1) satisfying (1) and (2) if and
only if:

(i) The Hessian H f of the function f satisfies

H f

f
=

c1

n
gF, (4)
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(ii) Nn+1−k is an Einstein manifold with its Ricci tensor satisfying

RicN = (n− k)
( c1

n
f 2 + gF(∇ f ,∇ f )

)
gN , (5)

and the sectional curvature satisfying

RN(η, ζ) ≥ c2 f 2 + gF(∇ f ,∇ f ) (6)

for any linear independent vector fields η, ζ;
(iii)

c1

n
≥ c2. (7)

Proof. Firstly, we give two basic facts. Following the notations in Example 1, the sectional
curvatures of Fk

1(
c1
n )× f Nn+1−k, k 6= 1, are given by (see [22], Proposition 4.2)

R(u, v) =
c1

n
, R(u, η) =

H f (u, u)
f gF(u, u)

, R(η, ζ) =
RN(η, ζ)− gF(∇ f ,∇ f )

f 2 , (8)

where u, v on Fk
1(

c1
n ) and η, ζ on Nn+1−k are linear independent, respectively.

Moreover, based on ([23], Corollary 3), Fk
1(

c1
n )× f Nn+1−k is an Einstein manifold with

Einstein constant c1 if and only if:

(a) The Ricci tensor of Fk
1(

c1
n ) satisfies

RicF = c1gF −
n + 1− k

f
H f ,

(b) Nn+1−k is an Einstein manifold with

RicN = µgN ,

where µ is a constant given by

µ = − f ∆ f + (n− k)gF(∇ f ,∇ f ) + c1 f 2. (9)

Now, we assert that (a) together with (b) are equivalent to (4) and (5). Since RicF =
(k−1)c1

n gF, we know that (a) is equivalent to (4). Owing to (a), we get ∆ f := tr(H f ) = kc1
n f ,

and hence (b) is equivalent to (5). So, we can say that Fk
1(

c1
n ) × f Nn+1−k is an Einstein

manifold with the constant c1 if and only if (4) and (5) hold.
Then, we prove its sufficiency and necessity. Due to the obviousness of the sufficiency

(⇐), i.e., if (i), (ii) and (iii) hold, Fk
1(

c1
n )× f Nn+1−k is an Einstein manifold with the constant

c1 and satisfies (1) and (2), we next prove the necessity (⇒).
The two basic facts above show that, if Fk

1(
c1
n )× f Nn+1−k is an Einstein manifold with

the constant c1, then (4) and (5) hold and, using (4), we further know (8) reduces to

R(u, v) = R(u, η) =
c1

n
, (10)

which means (1) is automatic.
On the other hand, since Fk

1(
c1
n )× f Nn+1−k satisfies (2), we obtain, from (8) and (10),

that
RN(η, ζ)− gF(∇ f ,∇ f )

f 2 ≥ c2 and
c1

n
≥ c2,

that is, (6) and (7).
To sum up, Fk

1(
c1
n )× f Nn+1−k is an Einstein manifold with the constant c1 and satis-

fies (1) and (2) if and only if (i), (ii) and (iii) hold.
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Let us suppose that k = 1; then, Example 2 becomes the so-called generalized
Robertson-Walker spacetime. Then, we have the following Example 3.

Example 3. We consider the generalized Robertson–Walker spacetime

I × f Nn

endowed with metric g = −dt2 + f 2(t)gN , where I ⊂ R is an open interval and f : I → R is
a smooth function. Then, the generalized Robertson–Walker spacetime is an Einstein manifold
satisfying (1) and (2) if and only if

(i) Nn is an Einstein manifold with the constant ρN and its sectional curvature

RN(ξ, η) > c2 f 2 + f ′2, (c2 6
c1

n
)

for any linear independent vectors ξ and η;
(ii) f satisfies one of the following items:

• f = a1t + a2, ρN = −(n− 1)a2
1 when c1 = 0;

• f = a1 exp(
√

c1
n t) + a2 exp(−

√
c1
n t), ρN = (n−1)c1

n 4a1a2 when c1 > 0;

• f = a1 sin(
√
− c1

n t) + a2 cos(
√
− c1

n t), ρN = (n−1)c1
n (a2

1 + a2
2) when c1 < 0

for any constants a1 and a2.

Proof. Firstly, by [24,25], I × f Nn is an Einstein manifold with the constant ρ if and only if
Nn has constant Ricci curvature ρN and f satisfies the differential equations

f ′′

f
=

ρ

n
and

ρ(n− 1)
n

=
ρN + (n− 1) f ′2

f 2 . (11)

On the other hand, following the notations above, the sectional curvatures of the
generalized Robertson–Walker spacetime are given by (see [22], Lemma 5.2)

R(u, η) =
f ′′

f
, R(ξ, η) =

RN(ξ, η)− f ′2

f 2 (12)

for any timelike vectors u on I and any spacelike vectors ξ, η on Nn. So, the conditions (1)
and (2) hold if and only if

f ′′

f
=

c1

n
> c2 and

RN(ξ, η)− f ′2

f 2 > c2. (13)

Solving the first equation of (13), we obtain the expression of the function f and,
substituting f into the second equation of (11), we obtain the value of the constant ρN ; thus,
together with (11) and (13), we finally confirm our proof.

For more complicated examples, we can construct other warped product manifolds or
twisted product manifolds.

3. Main Theorems

In this section, we only present our characterization results of spacelike hypersurfaces
with constant scalar curvature in Ln+1

1 , then presenting their proofs in Sections 5 and 6.
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Before giving our main theorems, we need some basic facts and notations. Let us
denote as RAB the components of the Ricci tensor of Ln+1

1 under a suitable local orthonormal
frame {eA}n+1

A=1; using (1), the scalar curvature R of Ln+1
1 is given by

R =
n+1

∑
A=1

RAA =
n

∑
i,j=1

Rijij + 2
n

∑
i=1

Rn+1in+1i =
n

∑
i,j=1

Rijij + 2c1. (14)

Since the scalar curvature of a Ricci symmetric manifold is constant, we know from (14)
that ∑n

i,j=1 Rijij is also a constant.

Let us consider the spacelike hypersurface Mn of Ln+1
1 ; we may choose en+1 as the

normal vector, then the second fundamental form B = ∑i,j hijωi ⊗ωj ⊗ en+1 with its square
length S = |B|2 = ∑i,j h2

ij and the mean curvature H = 1
n ∑i hii. Thus, the Gauss equation

of Mn is given by
Rijkl = Rijkl − (hikhjl − hilhjk). (15)

The components Rij of the Ricci curvature tensor and the normalized scalar curvature
R of Mn are given, respectively, by

Rij = ∑
k

Rikjk − nHhij + ∑
k

hikhkj,

n(n− 1)R = ∑
i,k

Rikik − n2H2 + S. (16)

If we assume the normalized scalar curvature R of Mn in Ln+1
1 is a constant and define

P := R− 1
n(n− 1) ∑

i,j
Rijij + c,

then P is a constant and (16) becomes

n(n− 1)P = n(n− 1)c− n2H2 + S. (17)

In particular, if Ln+1
1 is a Lorentz space form with constant sectional curvature c, then

∑i,j Rijij = n(n− 1)c and P = R; then, (17) is just the Gauss Equation (16).
Let Φ be a symmetric tensor on Mn defined by Φij = hij − Hδij with |Φ|2 = ∑i,j Φ2

ij. It
follows, from (17), that

|Φ|2 = S− nH2 = n(n− 1)(H2 + P− c). (18)

A well-known fact is that |Φ|2 = 0 if and only if Mn is totally umbilical.
Now, with c := 2c2 − c1

n , we are in the position to state our main results.

Theorem 1. Let Mn(n ≥ 3) be a complete spacelike hypersurface with constant normalized scalar
curvature R in a Ricci symmetric manifold Ln+1

1 satisfying (1) and (2). Let us suppose that H is
bounded on Mn and c > 0.

(i) If (n−2)c
n ≤ P ≤ c, then Mn is totally umbilical and Mn is totally geodesic if and only if

P = c;
(ii) If 0 < P < (n−2)c

n , then either sup |Φ|2 = 0 and Mn is totally umbilical, or

sup |Φ|2 ≥ τ(P, n, c) :=
(n− 1)P2

(n− 2)
( n−2

n c− P
) .

The equality sup |Φ|2 = τ(P, n, c) holds and this supremum attains at some point on Mn, if
and only if Mn is isoparametric with two distinct constant principle curvatures, one of which
is simple.
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In particular, if Ln+1
1 is a (geodesically) complete simply-connected Einstein manifold, then

such a totally umbilical (or, totally geodesic) hypersurface in (i) is a sphere Sn(R) (or, Sn(c)) and
such an isoparametric hypersurface in (ii) is a hyperbolic cylinder H1(a)× Sn−1(b)→ Sn+1

1 (c),
with a, b defined by (57).

Theorem 2. Let Mn(n ≥ 3) be a complete spacelike hypersurface with constant normalized scalar
curvature R in a Ricci symmetric manifold Ln+1

1 satisfying (1) and (2). Let us suppose that H is
bounded on Mn, c > 0, and ∣∣tr(Φ3)

∣∣ ≤ n− 2k√
nk(n− k)

|Φ|3 (19)

for the integer 2 ≤ k < n
2 . D(n, k, c) is a positive constant defined by (32):

(i) If D(n, k, c) < P ≤ c, then sup |Φ|2 = 0 and Mn is totally umbilical;
(ii) If 0 < P ≤ D(n, k, c), then either sup |Φ|2 = 0 and Mn is totally umbilical, or

α(P, n, k, c) ≤ sup |Φ|2 ≤ β(P, n, k, c),

where α(P, n, k, c) and β(P, n, k, c) are two constants defined by (35). The equality sup |Φ|2 =
α(P, n, k, c) holds and this supremum attains at some point on Mn, or the equality |Φ|2 =
β(P, n, k, c) holds, if and only if Mn is isoparametric and has exactly two distinct constant
principal curvatures, with multiplicities k and n− k.

In particular, if Ln+1
1 is a (geodesically) complete simply-connected Einstein manifold, then

such a totally umbilical hypersurface in (i) is a sphere Sn(R) and such an isoparametric hypersurface
in (ii) is a hyperbolic cylinder Hk(a) × Sn−k(b) → Sn+1

1 (c), with a, b defined by (47), when
sup |Φ|2 = α(P, n, k, c), or a hyperbolic cylinder Hk(a)× Sn−k(b)→ Sn+1

1 (c), with a, b defined
by (48), when |Φ|2 = β(P, n, k, c).

Theorem 3. Let M2m(m ≥ 2) be a complete spacelike hypersurface with constant normalized
scalar curvature R in a Ricci symmetric manifold L2m+1

1 satisfying (1) and (2). Let us suppose
that H is bounded on M2m, 0 < P ≤ c, c > 0 and tr(Φ3) = 0; then, M2m is totally umbilical
and it is totally geodesic if and only if P = c. In particular, if Ln+1

1 is a (geodesically) complete
simply-connected Einstein manifold, then such totally umbilical hypersurface is a sphere S2m(R)
and such totally geodesic hypersurface is a sphere S2m(c).

Remark 1. The Okumura-type inequality (19) in Theorem 2 was introduced by Meléndez in [26];
it is weaker than to assume the spacelike hypersurface has two distinct principal curvatures with
multiplicities k and n− k.

Remark 2. Concerning the integer k in (19), it is originally assumed that 1 ≤ k ≤ n
2 . By the

classical Okumura’s lemma ([27], Lemma 2.1), the inequality (19) is automatically true when
k = 1. So, Theorem 1 is just the case of (19) that holds for k = 1 because of D(n, 1, c) = (n−2)c

n ,
while Theorem 3, corresponding to the case of (19), is true for k = n

2 because of the assumption
tr(Φ3) = 0. Keeping these in mind, we only assume, in Theorem 2, that (19) holds for 2 ≤ k < n

2 .

Remark 3. Theorems 1–3 greatly generalize the previous case that the ambient manifold is a space
form, an Einstein manifold or a locally symmetric manifold. At the same time, they are also the
generalization of the case in which the hypersurface has two distinct principal curvatures. See the
literature [6,7,9–11,17–19] and references.
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4. Lemmas

Taking an appropriate orthonormal frame {ei}n
i=1 on Mn such that hij = λiδij, then we

cite directly from [19] the following Simons type formula:

1
2

∆S =|∇B|2 + ∑
i

λi(nH)ii + ∑
i,j
(λi − λj)

2Rijij + S2 − nH ∑
i

λ3
i

−∑
i

Rn+1in+1i(nHλi − S) + ∑
i,k

(
λiRn+1iik;k + λiRn+1kik;i

)
,

(20)

where Rn+1ijk;l is the covariant derivative of Rn+1ijk on Ln+1
1 .

Now, following Cheng-Yau [13], we recall the self-adjoint operator acting on any
C2-function f by � f = ∑i,j(nHδij − hij) fij. Taking f = nH on Mn, we have

�(nH) =
1
2

∆S− n2|∇H|2 −∑
i

λi(nH)ii.

Consequently, combining with (20), we obtain

�(nH) =|∇B|2 − n2|∇H|2 + ∑
i,j
(λi − λj)

2Rijij + S2 − nH ∑
i

λ3
i

−∑
i

Rn+1in+1i(nHλi − S) + ∑
i,k

(
λiRn+1iik;k + λiRn+1kik;i

)
.

(21)

By the same idea as [10] or [7], we directly have Lemma 1.

Lemma 1. Let Mn(n ≥ 3) be a spacelike hypersurface with constant normalized scalar curvature
in a Ricci symmetric manifold Ln+1

1 which satisfies (1) and (2). Let us suppose that P ≤ c; then

|∇B|2 ≥ n2|∇H|2. (22)

Now, we give some key lemmas in order to prove our main results.

Lemma 2. Let Mn(n ≥ 3) be a spacelike hypersurface with constant normalized scalar curvature
in a Ricci symmetric manifold Ln+1

1 satisfying (1) and (2). Let us assume that the inequality (19)
holds for the integer 1 ≤ k ≤ n

2 ; then, we have

�(nH) ≥ |∇B|2 − n2|∇H|2 + 1
n− 1

|Φ|2QP,n,k,c(|Φ|),

where

QP,n,k,c(x) = (n− 2)x2 −
√

n− 1
k(n− k)

(n− 2k)x
√

x2 + n(n− 1)(c− P) + n(n− 1)P. (23)

Proof. Using curvature conditions (1) and (2), we obtain

∑
i,j
(λi − λj)

2Rijij ≥∑
i,j
(λi − λj)

2c2 = 2nc2(S− nH2), (24)

−∑
i

Rn+1in+1i(nHλi − S) = ∑
i
(nHλi − S)

c1

n
= −c1(S− nH2). (25)
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Since Ln+1
1 is a Ricci symmetric manifold, then the components of the Ricci tensor

satisfy RAB;C ≡ 0. Based on differential Bianchi identity, we have

∑
i,k

λiRn+1iik;k = −∑
i,k

λi
(

Rikik;n+1 + Rkn+1ik;i
)

= −∑
i

λi
(

Rii;n+1 − Rn+1i;i
)
= 0

(26)

and
∑
i,k

λiRn+1kik;i = ∑
i

λiRn+1i;i = 0, (27)

where Rijkl;m are the covariant derivatives of Rijkl on Ln+1
1 .

On the other hand, by inequality (19), we have

S2 − nH ∑
i

λ3
i = S2 − nH

(
tr(Φ3) + 3H|Φ|2 + nH3

)
≥ |Φ|4 − nH2|Φ|2 − n|H|

∣∣tr(Φ3)
∣∣

≥ |Φ|2
(
|Φ|2 − n(n− 2k)√

nk(n− k)
|H||Φ| − nH2

)
.

(28)

Thus, combining (21), (24)–(28), we obtain

�(nH) ≥ |∇B|2 − n2|∇H|2 + |Φ|2
(
|Φ|2 − n(n− 2k)√

nk(n− k)
|H||Φ|+ n(c− H2)

)
. (29)

In addition, from (18), we have

H2 =
1

n(n− 1)
|Φ|2 + c− P. (30)

Substituting (30) into (29), Lemma 2 follows.

Lemma 3. For any integer k with 2 ≤ k < n
2 and the constant D(n, k, c) defined by (32), the

function QP,n,k,c(x) of x has the following properties:

(i) If P > D(n, k, c), then QP,n,k,c(x) > 0 for any x ≥ 0;
(ii) If 0 < P ≤ D(n, k, c), then:

• QP,n,k,c(x) > 0, for x2 < α(P, n, k, c) or x2 > β(P, n, k, c);
• QP,n,k,c(x) ≤ 0, for α(P, n, k, c) ≤ x2 ≤ β(P, n, k, c).

where the constants α(P, n, k, c) and β(P, n, k, c) are defined by (35).

Proof. For any x ≥ 0, let us observe, from (23), that QP,n,k,c(x) = 0 is equivalent to√
n− 1

k(n− k)
(n− 2k)x

√
x2 + n(n− 1)(c− P) = (n− 2)x2 + n(n− 1)P. (31)

Note that P > 0 and 2 ≤ k < n
2 , so (31) is equivalent to the following quadratic

equation:
h(y) := Ay2 + By + C = 0 with y = x2,

where

A =
n(k− 1)(n− k− 1)

k(n− k)
> 0, C = n(n− 1)2P2 > 0,

B =
(n− 1)2(n− 2k)2

k(n− k)
(P− c) + 2(n− 1)(n− 2)P.
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Likewise, we also have that QP,n,k,c(x) > 0 (resp., QP,n,k,c(x) < 0) if and only if
h(y) > 0 (resp., h(y) < 0). Note that A, C > 0 and y ≥ 0; then:

• If B ≥ 0, or B < 0 and B2 − 4AC < 0, i.e., B > −2
√

AC, then QP,n,k,c(x) has no
positive root and QP,n,k,c(x) > 0 for any x ≥ 0;

• If B < 0 and B2 − 4AC = 0, i.e., B = −2
√

AC, then QP,n,k,c(x) has one positive root
and QP,n,k,c(x) ≥ 0 for any x ≥ 0;

• If B < 0 and B2 − 4AC > 0, i.e., B < −2
√

AC, then QP,n,k,c(x) has two distinct
positive roots; QP,n,k,c(x) > 0 when x lies outside the two roots and QP,n,k,c(x) < 0
when x lies between the two roots.

Now, we explicitly calculate the solution, denoted by x0, of QP,n,k,c(x) = 0. By a direct
calculation, B ≥ −2

√
AC

(
resp., B < −2

√
AC
)

if and only if

P ≥ D(n, k, c)
(
resp., P < D(n, k, c)

)
,

where

D(n, k, c) =
(n− 1)(n− 2k)2c

n(n2 − 2kn− n + 2k2) + 2n
√

k(k− 1)(n− k)(n− k− 1)
. (32)

It is not hard to verify that D(n, k, c) is a strictly decreasing function of k for 1 ≤ k ≤ n
2 ;

hence,

0 = D(n,
n
2

, c) ≤ D(n, k, c) ≤ D(n, 1, c) =
n− 2

n
c,

i.e., D(n, k, c) is a positive constant and D(n, k, c) < c for 2 ≤ k < n
2 .

For the case of P < D(n, k, c), i.e., B < −2
√

AC, the two positive roots of QP,n,k,c(x) = 0
are given by

x2
0 =
−B±

√
B2 − 4AC

2A
. (33)

It is straightforward to check that B2 − 4AC = (n− 1)2(n− 2k)2∆, where ∆ is

∆ = (n− 1)2
((

nP− (n− 2k)c
)2 − 4nk(k− 1)Pc

n− 1

)
. (34)

So, substituting A, B and C into (33), the squared of the two roots, denoted by
α(P, n, k, c) and β(P, n, k, c), of the solution QP,n,k,c(x) = 0 are given, respectively, by

α(P, n, k, c) =
(n− 1)

(
(n− 1)(n− 2k)2(P− c) + 2k(n− k)(n− 2)P− (n− 2k)

√
∆
)

2n(k− 1)(n− k− 1)
,

β(P, n, k, c) =
(n− 1)

(
(n− 1)(n− 2k)2(P− c) + 2k(n− k)(n− 2)P + (n− 2k)

√
∆
)

2n(k− 1)(n− k− 1)
.

(35)

For the cases of P = D(n, k, c), i.e., B = −2
√

AC, then ∆ = 0 and α(P, n, k, c) =
β(P, n, k, c), that is to say, QP,n,k,c(x) has one positive root. To sum up, Lemma 3 follows.

Lemma 4. Let Mn(n ≥ 3) be a complete spacelike hypersurface with constant normalized scalar
curvature in a Ricci symmetric manifold Ln+1

1 satisfying (1) and (2). Let us suppose that P ≤ c
and H is bounded on Mn; then, there exists a sequence of points {q`}`∈N ⊂ Mn such that

lim
`→∞

nH(q`) = sup
M

nH, lim
`→∞
|∇nH(q`)| = 0 and lim sup

`→∞
�(nH)(q`) ≤ 0.

Proof. We observe that, if H vanishes identically on Mn, then the result is valid. So, let us
suppose that H is not identically zero. This way, we can choose the orientation of Mn such
that sup H > 0.



Mathematics 2021, 9, 2914 10 of 15

Let us choose a local orthonormal frame field {ei}n
i=1 such that hij = λiδij. Since P ≤ c,

it follows, from (17), that λ2
i ≤ S ≤ n2H2, which shows that

0 ≤ n|H| − |λi|. (36)

Taking together (36) with (2) and (15) leads to Rijij ≥ c2 − λiλj ≥ c2 − n2H2, i.e., the
sectional curvatures of Mn are bounded from below because H is bounded. Thus, we may
apply Omori’s maximum principle [28] to the function nH and obtain a sequence of points
{q`} ⊂ Mn such that

lim
`→∞

nH(q`) = sup nH, lim
`→∞

∣∣∇nH(q`)
∣∣ = 0 and lim sup

`→∞
nHii(q`) ≤ 0. (37)

Since sup H > 0, taking subsequences if necessary, we can arrive to a sequence
{q`} ⊂ Mn which satisfies (37) and such that H(q`) ≥ 0. Then, from (36), we obtain

0 ≤ nH(q`)− |λi(q`)| ≤ nH(q`) + |λi(q`)| ≤ 2nH(q`). (38)

Note that H is bounded; hence, {nH(q`)− λi(q`)} is a non-negative and bounded
sequence. Evaluating �(nH) at q`, taking the limit and using (37) and (38), we have

lim sup
`→∞

(
�(nH)(q`)

)
≤∑

i
lim sup
`→∞

(
(nH − λi)(q`)nHii(q`)

)
≤ 0.

This completes the proof of Lemma 4.

5. Proof of Theorem 2

Proof of Theorem 2. Since the constant P ≤ c for any 2 ≤ k < n
2 , by the inequality (19)

and Lemmas 1 and 2, we have

�(nH) ≥ 1
n− 1

|Φ|2QP,n,k,c(|Φ|). (39)

Using Lemma 4, there exists a sequence of points {q`}; evaluating (39) at this sequence,
we obtain

0 ≥ lim sup
`→∞

�(nH(q`)) ≥
1

n− 1
sup |Φ|2QP,n,k,c(sup |Φ|). (40)

Now, by considering the range of the constant P, we prove Theorem 2 in two cases.

(i) Let us suppose that D(n, k, c) < P ≤ c; then, from Lemma 3, QP,n,k,c(sup |Φ|) > 0.
Hence, by (40), we obtain sup |Φ|2 = 0 and Mn is totally umbilical.

In particular, if Ln+1
1 is an Einstein manifold, then (30) indicates that H is also a

constant; hence, (39) becomes

0 = �(nH) ≥ 1
n− 1

|Φ|2QP,n,k,c(|Φ|) ≥ 0. (41)

Therefore, the inequalities in (41) hold for equalities, that is to say, all the inequalities
that we have obtained are, in fact, equalities, as well as the curvature condition (2). As a
result, (1) and (2) indicate that the Ricci curvature of Ln+1

1 is

Ric(ej) = ∑
i

R(ej, ei) + R(ej, en+1) = (n− 1)c2 +
c1

n
,

Ric(en+1) = ∑
i

R(en+1, ei) = c1.

Therefore, we have c2 = c1
n , because of Ln+1

1 being an Einstein manifold, and, by the
hypothesis of geodesic completeness and connectivity, the ambient space Ln+1

1 must be the
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de Sitter space Sn+1
1 (c). Thus, by (15) and (30), we know this totally umbilical hypersurface

must be a sphere Sn(R).

(ii) When 0 < P ≤ D(n, k, c), it follows, from Lemma 3 and (40), that either sup |Φ|2 = 0
and Mn is totally umbilical, or QP,n,k,c(sup |Φ|) ≤ 0 with

α(P, n, k, c) ≤ sup |Φ|2 ≤ β(P, n, k, c).

• If the equality sup |Φ|2 = α(P, n, k, c) holds, then |Φ|2 ≤ α(P, n, k, c). Using Lemma 3,
we have QP,n,k,c(|Φ|) ≥ 0. Inserting this into (39) yields �(nH) ≥ 0 on Mn.

Moreover, since P ≤ D(n, k, c) < c, then (17) gives n2H2 > S, which means H 6= 0,
by choosing an appropriate orientation such that H > 0 on Mn, so we have nH − λi > 0;
hence, the operator � is elliptic.

By means of (30), the assumption that sup |Φ|2 attains at some points on Mn assures
that sup H2 also attains at some points on Mn. Thus, based on the strong maximum
principle, H is a constant. Moreover, (41) becomes trivially an equality, which means all
the inequalities we have obtained become equalities; hence, (22) must be also an equality
or, equivalently, |∇B|2 = n2|∇H|2 = 0, that is, Mn is an isoparametric hypersurface. In
addition, (41) assures that the equality in (28) holds, which implies, by (19) and J. Melén-
dez ([26], Lemma 2.2), that the hypersurface has exactly two distinct constant principal
curvatures, with multiplicities k and n− k.

• If the equality |Φ|2 = β(P, n, k, c) holds, then QP,n,k,c(|Φ|) = 0 and (41) becomes
trivially an equality, by a similar way as above; Mn is an isoparametric hypersurface
of two distinct constant principal curvatures with multiplicities k and n− k.

In the following, we classify the isoparametric hypersurface mentioned above which
satisfies sup |Φ|2 = α(P, n, k, c) or |Φ|2 = β(P, n, k, c) under the assumption of Ln+1

1 being a
geodesically complete simply-connected Einstein manifold. Since we have proved that (41)
becomes trivially an equality in this setting, similar to (i), we know Ln+1

1 = Sn+1
1 (c). By a

classical congruence theorem (in [29]), we conclude that Mn must be isometric to a standard
product Hk(a)× Sn−k(b) ↪→ Sn+1

1 (c), where 2 ≤ k < n
2 or n

2 < k ≤ n− 2, a < 0, b > 0 and
1
a +

1
b = 1

c . Let us denote its principal curvatures by

λ1 = · · · = λk =
√

c− a and λk+1 = · · · = λn =
√

c− b. (42)

Let λ =
√

c− a and µ =
√

c− b; then, together with c = λµ, by (15),

H =
(n− k)µ2 + kc

nµ
, |Φ|2 =

k(n− k)
n

( c
µ
− µ

)2
(43)

and

P = c− 2k(n− k)
n(n− 1)

c− k(k− 1)c2

n(n− 1)µ2 −
(n− k)(n− k− 1)

n(n− 1)
µ2. (44)

Since 0 < µ2 < c because of (42); hence, solving the Equation (44), we obtain

0 < P < D(n, k, c), when 2 ≤ k <
n
2

;

−∞ < P < c, when
n
2
< k ≤ n− 2,

where D(n, k, c) is given by (32). Together with the range of P in Theorem 2, we finally
obtain 2 ≤ k < n

2 and Mn is a product Hk(a)× Sn−k(b) with 2 ≤ k < n
2 .

Now, we give the values of the constants a, b. For any integer 2 ≤ k < n
2 , solving the

Equation (44), we have

µ2 =
n(n− 1)(c− P)− 2k(n− k)c +

√
∆

2(n− k)(n− k− 1)
, (45)
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or,

µ2 =
n(n− 1)(c− P)− 2k(n− k)c−

√
∆

2(n− k)(n− k− 1)
, (46)

where ∆ is given by (34).
Substituting (45) and (46) into the second equation of (43) and comparing with (35),

we obtain, respectively,

|Φ|2 = α(P, n, k, c), or |Φ|2 = β(P, n, k, c).

Thus, sup |Φ|2 = α(P, n, k, c) or |Φ|2 = β(P, n, k, c) holds if and only if (45) or (46)
holds. Solving (45) and together with c = λµ and µ2 = c− b, we obtain

b =
(n− 1)

(
(n− 2k)c+nP

)
−
√

∆
2(n− k)(n− k− 1)

,

a =
(n− 1)

(
nP− (n− 2k)c

)
+
√

∆
2k(k− 1)

.

(47)

Similarly, it follows, from (46), that

b =
(n− 1)

(
(n− 2k)c+nP

)
+
√

∆
2(n− k)(n− k− 1)

,

a =
(n− 1)

(
nP− (n− 2k)c

)
−
√

∆
2k(k− 1)

.

(48)

Therefore, we obtain that Mn is isometric to Hk(a)× Sn−k(b), 2 ≤ k < n
2 , when the

equality sup |Φ|2 = α(P, n, k, c) holds with a, b defined by (47), or the equality |Φ|2 =
β(P, n, k, c) holds with a, b defined by (48). We complete the proof of Theorem 2.

6. Proofs of Theorems 1 and 3

Proof of Theorem 1. By the classical algebraic inequality due to M. Okumura in ([27],
Lemma 2.1), (19) holds automatically for k = 1. Then, Lemmas 1 and 2 imply that

�(nH) ≥ 1
n− 1

|Φ|2QP,n,1,c(|Φ|), (49)

where

QP,n,1,c(x) = (n− 2)x2 − (n− 2)x
√

x2 + n(n− 1)(c− P) + n(n− 1)P.

It is easy to see that QP,n,1,c(x) is decreasing for any x ≥ 0, and QP,n,1,c(0) = n(n−
1)P > 0.

(i) Let us suppose that (n−2)c
n ≤ P ≤ c; then, we claim that QP,n,1,c(x) > 0 for every

x ≥ 0. Indeed, if there exists a point x0 such that QP,n,1,c(x0) = 0, a straightforward
computation gives

x2
0 =

(n− 1)P2

(n− 2)
( n−2

n c− P
) , (50)

which indicates that P < (n−2)c
n , a contradiction. By the continuity of the function

QP,n,1,c(x), the claim is true.

Using Lemma 4, there exists a sequence of points {q`} ⊂ Mn; evaluating (49) at the
sequence {q`}, we obtain

0 ≥ lim sup
`→∞

�(nH)(q`) ≥
1

n− 1
sup |Φ|2QP,n,1,c(sup |Φ|). (51)
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So, we immediately conclude that sup |Φ|2 = 0 and Mn is totally umbilical. Moreover,
we further obtain that H is constant because of (30); further, (49) must be

0 = �(nH) ≥ 1
n− 1

|Φ|2QP,n,1,c(|Φ|) ≥ 0. (52)

That is to say that (52) becomes trivially an equality. So, when Ln+1
1 is a geodesically

complete simply-connected Einstein manifold, with the same discussion as the proof of
Theorem 2, Ln+1

1 must be the de Sitter space Sn+1
1 (c). By (15) and (30), we know such totally

umbilical hypersurface must be the sphere Sn(R).

(ii) Let us suppose that 0 < P < (n−2)c
n ; then, QP,n,1,c(x) = 0 has one positive root given

by (50). From (51), we obtain that either sup |Φ|2 = 0 and Mn is totally umbilical, or

sup |Φ|2 ≤ τ(P, n, c) :=
(n− 1)P2

(n− 2)
( n−2

n c− P
) .

Let us consider the case in which the equality sup |Φ|2 = τ(P, n, c) holds; then,
|Φ|2 ≤ τ(P, n, c) and QP,n,1,c(|Φ|) ≥ 0 on Mn. Since sup |Φ|2 attains at some points on
Mn, so does sup H because of (30). Besides, P < c guarantees that � is elliptic and, by the
strong maximum principle, H is a constant. Thus, (52) becomes trivially an equality and
Mn is an isoparametric hypersurface. In addition, the inequality in (28) holds for equality.
By Lemma 2.1 in [27], we conclude that Mn is an isoparametric hypersurface with two
distinct constant principal curvatures, one of which is simple.

In particular, if Ln+1
1 is an Einstein manifold with geodesic completeness and simpli-

fied connectivity, then we further give such isoparametric hypersurface a rigidity classi-
fication. Under the assumption 0 < P < (n−2)c

n and based on [29], Mn must be isometric
to Hk(a) × Sn−k(b) ↪→ Sn+1

1 (c), where k ∈ {1, n − 1}, a < 0, b > 0 and 1
a + 1

b = 1
c ; its

principal curvatures are given by

λ =
√

c− a and µ =
√

c− b (53)

with multiplicities k and n− k, respectively. So, together with c = λµ, H, |Φ|2 and P are
given, respectively, by

H =
(n− k)µ2 + kc

nµ
, |Φ|2 =

n− 1
n

( c
µ
− µ

)2
(54)

and

P =
(n− 2)c

n
− 1

n(n− 1)

(
k(k− 1)c2

µ2 + (n− k)(n− k− 1)µ2
)

. (55)

Here, the last two equations hold because of the equality k(n− k) = n− 1 with k ∈ {1, n− 1}.
Since 0 < µ2 < c, from (55), we have

P =


n−2

n

(
c− µ2

)
∈
(
0, n−2

n c
)
, when k = 1,

n−2
n

(
c− c2

µ2

)
∈
(
−∞, 0

)
, when k = n− 1.

(56)

Hence, we conclude that k = 1 because of 0 < P < n−2
n c and Mn is a hyperbolic

cylinder H1(a)× Sn−1(b). It is easy to check |Φ|2 = τ(P, n, c) when substituting (56) into
the second equation of (54).

Together with (53), (56) and 1
a +

1
b = 1

c , we finally obtain

b =
nP

n− 2
, a =

ncP
nP− (n− 2)c

, (57)
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and complete the proof of Theorem 1.

Proof of Theorem 3. Since tr(Φ3) = 0, i.e., (19) holds for k = n
2 , then Lemma 2, together

with Lemma 1, implies that

�(nH) ≥ 1
n− 1

|Φ|2
(
(n− 2)|Φ|2 + n(n− 1)P

)
.

Using Lemma 4 and following the proof of Theorem 2, Mn is a totally umbilical
hypersurface and, by (18), it is totally geodesic if and only if P = c. In particular, if Ln+1

1 is
a geodesically complete simply-connected Einstein manifold, applying the same process as
in the proof of Theorem 1 or Theorem 2, we obtain that such totally umbilical hypersurface
must be a sphere Sn(R) and it is a totally geodesic sphere Sn(c) if and only if P = c. This
completes the proof of Theorem 3.

7. Conclusions

In this paper, we investigate the spacelike hypersurface immersed in Lorentz mani-
folds. One often solves this problem by using the Bochner technique combined with the
maximum principle. Here, with some appropriate skills, we extend the ambient manifold
to a more generalized Ricci symmetric manifold; then, we obtain some rigidity classifica-
tions when the ambient manifold is an Einstein manifold. These skills are also applicable
to (spacelike) submanifolds in (pseudo) Riemannian manifolds, which means that many
results of the isometric immersion theory of submanifolds can be generalized.

Meanwhile, we give several non-trivial examples in order to prove the existence
of the Ricci symmetric manifolds satisfying the curvature conditions (1) and (2). The
Okumura-type inequality (19) introduced in [26] also implies the case of hypersurfaces
with two distinct principal curvatures. However, we were not able to point out whether
this inequality has a certain geometric significance.
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