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Abstract: We present new Monte Carlo algorithms for extracting mutual capacitances for a system
of conductors embedded in inhomogeneous isotropic dielectrics. We represent capacitances as
functionals of the solution of the external Dirichlet problem for the Laplace equation. Unbiased and
low-biased estimators for the capacitances are constructed on the trajectories of the Random Walk
on Spheres or the Random Walk on Hemispheres. The calculation results show that the accuracy of
these new algorithms does not exceed the statistical error of estimators, which is easily determined in
the course of calculations. The algorithms are based on mean value formulas for harmonic functions
in different domains and do not involve a transition to a difference problem. Hence, they do not need
a lot of storage space.

Keywords: capacitance; dirichlet boundary value problem; monte carlo method; unbiased estimator;
von-neumann-ulam scheme

1. Introduction

The problems of finding potentials and mutual capacitances for complex three-
dimensional objects have become widespread with the development of high-frequency
electrical engineering. In the case of one or two conductors, they can still be solved an-
alytically, but solving problems for systems of a large number of conductors of complex
shape causes significant difficulties. The more the operation frequency is, the more impact
on the system of parasitic capacitance and induction. This is true for radio frequency
communication devices, as well as very large-scale integration circuits and multilayer
printed-circuit boards [1,2].

In inhomogeneous media with permittivity ε(x) the electrostatic potential ϕ(x) satis-
fies the boundary value problem:

∆ϕ = 0, x ∈ R3 \ (Γi ∪ Γd);
ϕ(x) −→

|x|→∞
0;

ϕ|Γi = ϕi, ϕi = const;
ϕ+(x) = ϕ−(x), x ∈ Γd;

ε+
∂ϕ+(x)

∂n = ε− ∂ϕ−(x)
∂n , x ∈ Γd;∮

Γi
ε

∂ϕ
∂n dS = −qi.


(1)

Here Γi denotes the conductor surfaces, Γd is the union of the dielectric interfaces, n
is the external normal to Γd, |x| is Euclidean length of x, ϕ+ and ϕ− are the values of the
potential on different sides dielectric interfaces, ε+ and ε− are the permittivity constants
on different sides dielectric interfaces, ϕi are values of the potential on the Γi, dS is the
differential element of area, and qi is the charge on Γi (Figure 1).
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Figure 1. Domain for the boundary value problem.

Charges linearly depend on potentials [3]: qi = ∑m
j=1 Cij ϕj. Here, Cij is mutual electro-

static capacitance for the conductors i and j, it is known that Cij = Cji. Hence, Cij is equal
to the charge qi, when all potential ϕk = 0, if k 6= j, and ϕj = 1.

The analytical solution is only available for simple geometries [3], and could not be
used for real-life tasks. Another way is to use pattern-matching algorithms, but there
is dependency on available patterns and the quality of geometry approximation with
patterns [2,4].

The methods used most for computing capacitances in complicated three-dimensional
geometries are the boundary-element technique (for example, [5–7]) and Monte Carlo
methods (for example, [8–11]).

The boundary element method is used to solve the system of integral equations of
potential theory for the charge density on the surfaces of conductors. The charge on the
conductor is then calculated by integrating the density. The main drawbacks of these
methods are the necessity of approximation of the conductor’s surface, high random access
memory requirements, and additional computational error when equations are solved
using the iterative technique.

The Monte Carlo method is used to solve the Dirichlet boundary value problem (1).
Capacitance is calculated using the Gaussian formula through the normal derivative of
the potential. Monte Carlo algorithms for a boundary value problem are based on the
representation of its solution in the form of the mathematical expectation of some random
variable, which in mathematical statistics is called an unbiased estimator. A common
drawback for Monte Carlo methods isthe necessity of a large number of simulations, but
usually they are highly parallelizable and have low random access memory requirements.

There are various formulas for the average value for the potential, which determine
both the estimate itself and the type of Random Walk along the trajectories of which it is
calculated.

One of the first works on using Monte Carlo method for real-life capacitance extraction
is [8]. This article describes Random Walk on Cubes methods for rectilinear conductors
in a homogeneous medium. The proposed algorithm uses the mean value theorem for
the potential at the center of a cube. To simplify the procedure for modeling a Random
Walk, the problem was discretized. The development of the method of Random Walk
on Cubes in various directions (multiple dielectrics, non-Manhattan polygonal shapes,
optimizations) can be found, for example, in [12–14]. Besides the statistical error of Monte
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Carlo approximations, Walk on Cubes have additional bias because of the approximation
of Green’s function for cubes using the Fourier series.

In [15], Random Walk on Boundary was described for calculating conductor’s capac-
itance in free space, in [9] Random Walk on Spheres and Walk on Boundary were used
for estimating electrostatic properties of molecules, including cases for different (constant)
permittivities. These methods were extended in [16] for analysis on multidielectric inte-
grated circuits of arbitrary geometry from a scanning electron microscopy image. Besides
the statistical error of Monte Carlo approximations, there is additional bias, because of
various discretizations, that could not be estimated along with the calculations.

In this article we discuss algorithms of the Monte Carlo method that do not require
discretization of the boundary value problem. Consequently, there is no approximation
error in them. Due to this, it is possible to estimate the error of the approximate solution
of the problem during the calculations. Furthermore, Random Walks in unbounded
regions may not reach the boundary of the conductors in a finite time with a positive
probability. Forced completion of the trajectory leads to a bias in the estimate of the
potential, which authors usually do not take into account. Our proposed algorithms are
free from this drawback.

In our previous work [10,11], we developed algorithms for mutual capacitance calcu-
lation in homogeneous media on trajectories of a Walk on Spheres and in inhomogeneous
media on trajectories of a Walk on Hemispheres, when dielectric interfaces are polyhedral.
We summarize the main results of these works here.

In this paper, we also consider a new version of the Walk on Hemispheres and its
application to the calculation of electrostatic capacitances for systems with various dielectric
interfaces, including non-Manhattan geometries.

Using the examples of conductor systems for which the capacitances are calculated
analytically [3], it is shown that the accuracy of the Monte Carlo approximation is within the
statistical error. In more complex examples, the simulation results are compared with the
results of calculating these capacitances using the programs FastCap2 and FFTCap [6,17,18].

The paper is organized as follows. Section 2 introduces a description of the problem.
Section 3 describes different kinds of unbiased estimators for the capacitance. It begins
with a description of previously proposed algorithms in Sections 3.1 and 3.2, followed by
the description of a new version of the Walk on Hemispheres in Section 3.3, and finishes
with a description of the generic algorithm for capacitance extraction with these methods
in Section 3.4. Section 4 contains the numerical results for capacitance extraction, where we
compare the results of the proposed algorithms with analytical solutions or other programs.
Section 5 concludes the paper.

2. Integral Representation for the Capacitance

Using Gauss’s theorem we have

Cij = −
∮

Γ
ε

∂ϕ

∂n
dS, (2)

where Γ is the surface containing the i-th conductor inside and separating it from others
conductors and interfaces.

Using the Poisson formula, we obtain the following representation for the normal
derivative of the potential on the shell Γ:

∂ϕ(x)
∂n

=
1

4πr2

∮
Sr

3
r2 (y− x, n)ϕ(y)dyS, (3)

where x is a point on the shell around the i-th conductor, r is distance from point x to the
nearest conductor or interface, Sr is sphere of radius r centered at point x, y is a point on Sr
(Figure 2).
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Figure 2. First steps of Random Walk on Spheres for estimation of C1j. Here Γi are conductor’s
surfaces, Γ is a shell around first conductor.

Finally, replacing the normal derivative ∂ϕ/∂n by its integral representation in the
ball, which lies entirely in the region with the dielectric constant ε, we obtain an integral
representation of the mutual capacitance of the i-th and j-th conductors:

Cij = −
1
σΓ

∮
Γ

ε

r2

∮
Sr

3σΓ

4πr2 (y− x, n)ϕ(y)dySdxS, (4)

where σΓ is a surface area Γ.

3. Unbiased Estimators for the Capacitance

Using Formula (4) we have unbiased estimator for capacitance Cij

ξ =
3ε(X)σΓ

r
(ω, n)ϕ(X + rω). (5)

Here, a random point X is uniformly distributed on Γ, r = r(X), and ω is an isotropic
vector (random unit vector). It remains to estimate the potential at the point Y = X + r(X)ω.
This can be done using the mean value formula

ϕ(x) =
∫

Q
ϕ(y)P(x, dy), x ∈ Q, (6)

where Q = R3 \ D, and D is the set of interior points of all conductors. The unbiased
estimators for ϕ(Y) are constructed on trajectories of Random Walk {Yk}∞

k=0, (Y0 = Y),
in space Q. The kernel P(x, dy) must be stochastic or sub-stochastic. It determines the
distribution of the next point of the Random Walk over the current point.

Let

ξ0 =
3ε(X)σΓ

r
(ω, n). (7)

If at time k the “weight” Wk = P(Yk, Q) < 1, then the current value of the estimator
is multiplied by the “weight”: ξk+1 = Wkξk. The Random Walk stops at time ν, when it
reaches the δ-boundary of the conductors, that is, when the distance dist(Yk, ∂D) from
point Yk to the boundary of the conductors becomes less than the δ. Hence, it must satisfy
the condition P{ν < ∞} = 1. We define estimator ξδ = ξν, if dist(Yν, Γj) < δ, and
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zero, otherwise. If the boundary ∂D is smooth enough, then |Cij − Eξδ| < cδ, for some
constant c. In practice, the estimator ξδ is simulated in a reasonable time, only if Eξν < ∞.
Having received a sufficient number of realizations of the estimator ξδ and calculating their
arithmetic mean, we obtain an approximate value of the capacitance Cij.

We will now describe some of the types of Random Walks used to calculate the
capacitances of conductors.

3.1. Random Walk on Spheres for the External Dirichlet Problem

Random Walk on Spheres (WoS) is used to solve the external Dirichlet problem for
the Laplace equation [19], and allows for the calculation of the capacitances of conductors
in a homogeneous medium [10]. Let all the conductors lie inside a sphere SR of radius R
centered at the origin. Let ρ(y) be a continuous function such that c · dist(y, ∂D) ≤ ρ(y) ≤
dist(y, ∂D) for some constant c > 0.

By the mean value theorem for harmonic functions, we obtain ϕ(x) = Eϕ(x + ρ(x)ω)
for x ∈ R3 \ D. Let {ωk}∞

k=1 be a sequence of independent isotropic vectors. Then we get a
Random Walk

Yk+1 = Yk + ρ(Yk)ωk+1,

Y0 = Y,

Wk = 1,

k = 0, 1, 2, . . . .

To restrict the region of the Random Walk, we use the Poisson formula for |x| > R:

ϕ(x) =
1

4πR

∮
SR

|x|2 − R2

|x− y|3 dyS.

Namely, if |Yk| > R, then “weight” Wk = R/|Yk|, and Yk+1 is distributed on the sphere
SR with density

p(Yk, y) =
|Yk|2 − R2

|Yk − y|3 ·
|Yk|

4πR2 (8)

(Figure 3).

Γ1

Γ2
X

Y0

Γ Γ3

R
O

Figure 3. Random Walk on Spheres. Return on external sphere SR.
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It is proved [19] that the Random Walk on Spheres reaches the δ-neighborhood of the
boundary of the conductors in a finite time. The formulas for simulating the Random Walk
are also given.

3.2. Random Walk on Hemispheres

The Random Walk on Hemispheres (WoH) algorithm was proposed in [20] for solving
various boundary value problems for the Laplace and Poisson equations. It allows for the
calculation of capacitances when dielectric interfaces are polyhedral [11]. In cases when
surfaces of the conductors are also polyhedral, the algorithm gives unbiased statistical
estimators of the capacitances. We will now briefly describe this algorithm.

Let all the conductors and dielectric interfaces lie inside a sphere SR of radius R
centered at the origin. If |Yk| > R, then Yk+1 ∈ SR and has a distribution density (8).
“Weight” Wk = R/|Yk|.

Now, let Yk ∈ Γdl
, where Γdl

is a component of the dielectric interface. Next, we
choose the maximum r, such, that 0 < r < dist(Yk, D ∪ Γd \ Γdl

) and part of the Γdl
,

lying in sphere Sr(Yk), is plane. The sphere is divided into two parts S+
r (Yk) and S−r (Yk)

lying in media with permittivity constants ε+ and ε−, respectively. The point Yk+1 is
uniformly distributed in S+

r (Yk) or in S−r (Yk) with probability ε+/(ε+ + ε−) and ε−/(ε+ +
ε−) respectively (Figure 4).

ε+

ε− Yk

Figure 4. Random Walk on Hemispheres. Exit from interface.

If Yk /∈ Γd and |Yk| ≤ R, then Yk+1 is distributed on a sphere or hemisphere. The
center of the hemisphere Ŷk must be in a plane containing a face of the conductor surface
or interface and is the orthogonal projection of Yk onto this plane.

Hemisphere radius rk = |Yk − Ŷk|/β, where 0 < β < 1 is a fixed constant. The hemi-
sphere must be contained in a medium with a dielectric constant ε(Yk). The distribution
density of the point Yk+1 on the hemisphere is the normal derivative of the Green’s function
for the half of the ball

p(Yk, y) =


2rk β
4π

(
1

|Yk−y|3 −
1

(β|Y∗k −y|)
3

)
, y ∈ H,

rk
4π

(
1− β2)( 1

|Yk−y|3 −
1

|Yk−y|3

)
, y ∈ S.

(9)
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Here H is the plane part, and S is the spherical part of the hemisphere. The point Yk
is symmetric to Yk relative to plane H. The point Y∗k lies outside of the sphere S and it is
inverse to the point Yk (|Ŷk −Yk| · |Ŷk −Y∗k | = r2) (Figure 5).

SH

YŶY Y∗Y∗

r

Figure 5. Random Walk on Hemispheres. Symmetrical points on hemisphere.

If it is impossible to construct such a hemisphere, then Yk+1 is distributed uniformly
on a sphere of radius rk = dist(Yk, D ∪ Γd), centered at Yk.

Von Neumann’s Acceptance-Rejection Method can be used to simulate density (9). To
do this, we write the density in the form

p(Yk, y) =
1

4π

cos ϕYky

|Yk − y|2
· k1(Yk, y), (10)

where ϕYky is the angle between the vector y−Yk and the external normal to the surface of
the hemisphere at the point y.

The first factor in this formula is the distribution density of the point Z on the surface
of the hemisphere and the vector ω = (Z−Yk)/|Z−Yk| is isotropic one. The second factor
does not exceed the constant M = max(M1, M2), where

M1 =
2
β

√
1 + β2

1−
(

β√
1 + β2

)3
,

M2 =
√

1 + β2 1 + β

1− β

(
1−

(
1− β

1 + β

)3
)

.

To select the next point of the random walk, we simulate an isotropic vector ω and a
random variable α with uniform distribution on [0, 1]. Then we define the point Z, in which
the ray emerging from the Yk in the direction ω crosses the hemisphere. If αM < k1(Yk, Z),
then Yk+1 = Z. Otherwise, it is necessary to repeat the simulation until the inequality is
true (Figure 6).
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Γ1

Γ2
X

Y0

Γ

Y1

Γ3

Ŷ1

Figure 6. Random Walk on Hemispheres. Jump on hemisphere.

3.3. Random Walk on Hemispheres for a Convex Dielectric Interfaces (RWHC)

Let γ be a connected convex part of some dielectric interface Γdl
lying inside a sphere

Sr(x) of radius r, centered at point x. For all y ∈ Γdl
we choose the direction of the normal

vector ny so, that the surface Γdl
lies in the half-space (z− y, ny) ≤ 0. Surface γ divides the

sphere into two parts S+ and S−, lying in media with permittivity constants ε+ and ε−,
respectively, and (z− y, ny) ≤ 0 for all z ∈ S−.

The potential ϕ(x) is a harmonic function for the part of the ball bounded by surfaces
S−, γ and part of the ball bounded by surfaces S+, γ also. Using the second Green’s
formula for a harmonic function in a bounded domain, we obtain the following Theorem.

Theorem 1. Let λ = ε+/ε− and let ϕxy be the angle between vectors ny, y− x. Then the potential
ϕ(y) satisfies the mean value formulas:

ϕ(x) =
1

1 + λ
· 1

2πr2

∫
S−

ϕ(y)dyS +
λ

1 + λ
· 1

2πr2

∫
S+

ϕ(y)dyS +

+
1− λ

1 + λ
· 1

2π

∫
γ

cos ϕxy

|x− y|2 ϕ(y)dyS, x ∈ γ, (11)

ϕ(x) =
1

4πr2

∫
S−

ϕ(y)dyS + λ · 1
4πr2

∫
S+

ϕ(y)dyS +

+ (1− λ) · 1
4π

∫
γ

cos ϕxy

|x− y|2 ϕ(y)dyS, x /∈ γ, ε(x) = ε−, (12)

ϕ(x) =
1

4πr2

∫
S+

ϕ(y)dyS +
1
λ
· 1

4πr2

∫
S−

ϕ(y)dyS−

−
(

1− 1
λ

)
· 1

4π

∫
γ

cos ϕxy

|x− y|2 ϕ(y)dyS, x /∈ γ, ε(x) = ε+. (13)

If λ < 1, the Formula (11) defines the stochastic kernel. To simulate the transition from
the surface γ, we chose with the probability λ/(1 + λ) a random direction ω, that satisfies
the condition (ω, nx) > 0, and define Y = x + rω. With probability 1/(1 + λ), we simulate
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a random direction ω satisfying the condition (ω, nx) < 0. We calculate Y = x + rω. If
Y /∈ S−, we change Y to a point Z ∈ γ, which is visible from x in the direction ω (Figure 7).

ε−

ε+ < ε−
S+

S−

x
γ

n

Y
ω

ε−

ε+ < ε−

S−

x

γ

n

Y

S+

ω

ε−

ε+ < ε−

S−

x
γ

n

S+

Z

Figure 7. RWHC. Jump from convex part of interface.

If λ < 1, the Formula (12) defines the stochastic kernel also. To simulate the transition
from x, we simulate a random direction ω and calculate Y = x + rω. If Y /∈ S−, than with
probability 1− λ we change Y to a point Z ∈ γ, which is visible from x in the direction ω
(Figure 8).

ε−

ε+ < ε−

S+

S−

x
γ

Y
ω

ε−

ε+ < ε−

S+

S−

x
γ

Y
ω

ε−

ε+ < ε−

S+

S−

Z
x

γ

Figure 8. RWHC. Jump from dielectric with higher permittivity.

If λ > 1, the Formula (13) defines the stochastic kernel, if any ray outgoing from
point x intersects γ at no more than one point. The modeling procedure is similar to the
algorithm for the Formula (12).

Thus, Formulas (11)–(13) make it possible to simulate transitions from a region with
a higher dielectric constant to a region with a lower dielectric constant. To pass from
point x through the interface Γdl

, it is sufficient to take such r ≤ dist(x, D ∪ Γd \ Γdl
) that

Sr(x) ∩ Γdl
6= ∅. Reverse transitions can be provided using, for example, formulas for

solving external and internal Dirichlet problems for standard domains. The exit from
the “bad” point x can be done by Random Walk on Spheres or Hemispheres in the set
Q(x) = {y|ε(y) = ε(x)}. As always, from distant points of the external medium there is a
transition to the sphere SR.

3.4. Algorithm for Mutual Capacitance Calculation

On this basis we could describe algorithm for capacitance estimation as follows:

1. For each conductor i select shell Γi, that separate it from other conductors and dielec-
tric interfaces.

2. Select radius R for, centered at the origin, “outer” sphere, that contains all conductors
and shells.

3. Select point X uniformly on Γi and Y uniformly on sphere of radius r = r(X) =
dist(X,∪n

k=1,k 6=iΓk) centered at X. Set ξ0 as shown in (7).
4. From point Y started appropriate kind of Walk on Hemispheres (see Sections 3.2 and 3.3).
5. If at some step n process exit outside of sphere SR, next point is selected at sphere SR

and “weight” updated, as described in Section 3.1.
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6. Otherwise, if at some step n, Yn located at flat surface of k-th conductor or at δ-
neighborhood of non-flat surface of k-th conductor, estimation ξn included into Cik
accumulator and number of trajectories, that used this conductor for evaluation is
incremented by 1. (Because Cij = Cji, we could use the same accumulator and counter
for both of them.) Values in other accumulators Cij are not changed, but the number
of trajectories for j-th conductor is also incremented by 1 with the exception of nested
conductors: if j-th conductor is inside i-th, its number of trajectories is not changed.

7. If the number of evaluated trajectories is not sufficient, return to step 3.
8. The approximation for capacitance Cik is calculated as value stored in the corre-

sponded accumulator divided by the stored number of trajectories for this accu-
mulator. If the system contains nested conductors, the self-capacitance of external
conductor m is updated as Cmm = Cmm−∑j:Dj⊂Dm Cjm (here sum is taken by numbers
of conductors that are located inside m-th).

4. Results
4.1. Mutual Capacitance of Two Spheres in Free Space

Mutual capacitance for two spheres could be calculated analytically [3]. When spheres
are not nested:

C1,1 = 4πεr1r2 sinh α
∞

∑
n=1

1
r2 sinh(nα) + r1 sinh[(n− 1)α]

;

C1,2 = −4πε
r1r2 sinh α

d

∞

∑
n=1

1
sinh(nα)

;

C2,2 = 4πεr1r2 sinh α
∞

∑
n=1

1
r1 sinh(nα) + r2 sinh[(n− 1)α]

;

cosh α =
d2 − r2

1 − r2
2

2r1r2

where r1 and r2 are radii, d—distance between sphere centers. For nested spheres (r2 > r1):

C1,1 = 4πεr1r2 sinh α
∞

∑
n=1

1
r2 sinh(nα)− r1 sinh[(n− 1)α]

;

C1,2 = −C1,1;

cosh α = −
d2 − r2

1 − r2
2

2r1r2
.

In Table 1 results of mutual capacitance estimation for two non-nested spheres using
Walk on Spheres are presented. Here and below ∆ is error estimation, calculated as triple
square root of ratio of sample variance to number of trajectories, Time is “wall time” of
calculation, and Memory is a peak memory usage. Calculations were performed on one
personal computer (PC) with central processing unit (CPU) “AMD Ryzen 7 2700 Eight-Core
Processor 3.20 GHz”. Monte Carlo simulations were performed in parallel by eight worker
processes on one PC using the Message Passing Interface, and memory usage is at its peak
for one worker process. FastCap2 and FFTCap are 32-bit single-threaded applications,
so no parallel execution were used for them. It should also be noted that we have not
used additional optimizations, so the calculation time could be improved for the Monte
Carlo case, for example, by using a different pseudo random number generator or using
optimizations in distance calculations.
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1st sphere radius: 5;
1st sphere center: (1, 2, 3);
1st sphere shell radius: 8;
2nd sphere radius: 3;
2nd sphere center: (10, 13, 12);
2nd sphere shell radius: 8;
“External” sphere radius: 31.155;
δ: 10−8.

Table 1. Mutual capacitance estimation for two non-nested spheres, Ci,j/4πε0.

Method 1,1 ∆ 1, 2 ∆ 2, 2 ∆ Time Memory

Analytical 5.29133 – −0.94883 – 3.18564 – – –

WoS, 105 5.14975 2.711 · 10−1 −0.93335 5.799 · 10−2 3.24719 1.268 · 10−1 – 11 Mb

WoS, 107 5.29655 2.717 · 10−2 −0.94894 5.805 · 10−3 3.19233 1.263 · 10−2 40 s 11 Mb

Usually, the bias order is the same as the order of δ, so, in this and following examples,
error of methods is equal to statistical error. We will say that results of the estimation are
matched, when the modulus of difference between the Monte Carlo estimation and the
reference solution are not more than the statistical error (|re f − est| ≤ ∆). As we can see
in the Table 1, the analytical solution and our estimation are matched, so the algorithm is
working correctly.

In Table 2, results of mutual capacitance estimation for two nested spheres using Walk
on Spheres (WoS) are presented. There is no formula for C22 in the case of two nested
spheres in [3], so we do not show the estimation results for this value.

1st sphere radius: 3;
1st sphere center: (10, 13, 12);
1st sphere shell radius: 5;
2nd sphere radius: 31;
2nd sphere center: (1, 2, 3);
2nd sphere shell radius: 35;
“External” sphere radius: 42.616;
δ: 10−8.

Table 2. Mutual capacitance estimation for two nested spheres, Ci,j/4πε0.

Method 1,1 ∆ 1,2 ∆ Time Memory

Analytical 3.47735 – −3.47735 – – –

WoS, 105 3.48643 1.531 · 10−1 −3.53438 1.292 · 10−1 – 11 Mb

WoS, 107 3.47455 1.531 · 10−2 −3.47807 1.289 · 10−2 30 s 11 Mb

Estimation results in Table 2 are within statistical error, so analytical solution and our
estimation are matched.

4.2. Capacitance of “Coated” Sphere

In Tables 3 and 4, results of capacitance estimation for the conductive sphere of radius
a encased in concentric spherical dielectric of radius b with relative permittivity ε using
RWHC are presented. In this example, the external sphere radius is equal to the dielectric

shell radius. Analytical solutions for this case is
16π2εε0ab
εa + b− a

[3]. Also here we compare

results with FastCap2 (FC2) [18] (correspondent sphere discretization was made using
spheregen tool from [21] with refine depth 5).
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Table 3. Capacitance estimation for coated sphere, C/4πε0.

a = 1, b = 3 Anal. FC2 RWHC, 106 ∆ RWHC, 108 ∆

ε = 2 1.5000 1.5018 1.4813 3.111 · 10−2 1.4994 3.114 · 10−3

ε = 10 2.5000 2.5872 2.4403 1.889 · 10−1 2.5094 1.889 · 10−2

ε = 100 2.9411 4.3926 2.7198 2.055 2.8966 2.055 · 10−1

Comparing values in columns 2, 4, 5 of Table 3 we conclude that the analytical solution
and RWHC estimation are matched in all cases. However, comparing columns 2 and 3,
we can see that the estimation error for FC2 grows up with ε (as it is stated in [7]). So we
can state, that RWHC working correctly with high permittivities too, but more number of
simulation may be needed to get estimation with desired statistical error.

Table 4. Capacitance estimation for coated sphere. Time and memory usage.

FC2 RWHC, 108

a = 1, b = 3, ε = 2
Time, s 9 158
Memory, Mb 899 11

a = 1, b = 3, ε = 10
Time, s 9 148
Memory, Mb 899 11

a = 1, b = 3, ε = 100
Time, s 9 147
Memory, Mb 900 11

Table 4 shows that RWHC is used more often than boundary-element technique-based
methods, such as FC2, but use much less memory.

4.3. Mutual Capacitance of Two Spheres in Spherical Dielectric

In the Tables 5 and 6 results of mutual capacitance estimation using FC2 (correspon-
dent sphere discretization was made using spheregen tool from [21] with refined depth 5)
and RWHC for two conductive spheres in spherical dielectric (Figure 9) are presented. In
this case external sphere radius is set to the dielectric shell radius.

1st sphere radius: 5;
1st sphere center: (1, 2, 3);
1st sphere shell radius: 6;
2nd sphere radius: 3;
2nd sphere center: (10, 3, 11);
2nd sphere shell radius: 4;
Dielectric ball radius: 20;
δ: 10−8.



Mathematics 2021, 9, 2922 13 of 19

Figure 9. Two spheres in dielectrical shell.

Table 5. Mutual capacitance estimation for two spheres in dielectric shell, Ci,j/4πε0.

i, j FC2 RWHC, 106 ∆ RWHC, 108 ∆

ε = 2
1, 1 9.8444 9.9718 1.597 · 10−1 9.8192 1.598 · 10−2

1, 2 −3.3396 −3.3463 2.254 · 10−2 −3.3440 2.260 · 10−3

2, 2 6.0965 6.1454 6.760 · 10−2 6.0968 6.755 · 10−3

ε = 10
1, 1 33.262 33.440 8.264 · 10−1 32.890 8.270 · 10−2

1, 2 −21.038 −21.045 1.317 · 10−1 −21.118 1.318 · 10−2

2, 2 25.380 25.424 3.495 · 10−1 25.276 3.494 · 10−2

In this case we have no analytical solutions for reference, so we compare our results
with FC2. But we also have no error estimation for FC2 result, so we could not guarantee
that the difference will be within statistical margin of error. Comparing results in columns
2 and 3 of Table 5 we could say that the estimations are matched, but it is not true for
columns 2 and 4. In previous cases we ascertained that RWHC is matched with the
analytical solution. Also, in this case, we can see that results in columns 3 and 4 are
matched. So we can state that in this case the estimation error with FC2 is more than with
RWHC on 108 trajectories.

Table 6. Mutual capacitance estimation for two spheres in dielectric shell. Time and memory usage.

FC2 RWHC, 108

ε = 2
Time, min 13 3
Memory, Mb 1710 11

ε = 10
Time, min 14 3
Memory, Mb 1712 11

In Table 6 we can see that RWHC is better both in time and memory. This is due to the
fact that for FC2 spheres should be approximated with a large number of panels. Also, we
can see that with the refinement depth we used, we have almost reached the memory limit
for the original 32-bit fastcap application, so we cannot compare to these results with better
discretization.

4.4. Mutual Capacitance of Two Spheres in Spherical Dielectrics

In Tables 7 and 8, results of mutual capacitance estimation using FC2 (correspondent
sphere discretization was made using the spheregen tool from [21] with refined depth 5)
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and RWHC for two conductive spheres, each in its own spherical dielectric, (Figure 10) are
presented.

1st sphere radius: 5;
1st sphere center: (1, 2, 3);
1st dielectric radius: 9;
1st dielectric center: (2, 3, 4);
Relative permittivity of 1st dielectric: 2;
2nd sphere radius: 3;
2nd sphere center: (10, −3, 20);
2nd dielectric radius: 6;
2nd dielectric center: (10, −4, 20);
Relative permittivity of 2nd dielectric: 5;
External sphere radius: 30;
δ: 10−8.

Figure 10. Two spheres in dielectrical shells.

Table 7. Mutual capacitance estimation for two spheres in dielectric shells, Ci,j/4πε0.

i, j FC2 RWHC, 106 ∆ RWHC, 108 ∆

1, 1 7.0277 7.0672 1.655 · 10−1 7.0255 1.654 · 10−2

1, 2 −1.8095 −1.7865 2.002 · 10−2 −1.8003 1.997 · 10−3

2, 2 5.5841 5.6409 1.866 · 10−1 5.4919 1.866 · 10−2

There are no reference analytical solutions in this case either. Using the results from
Table 7, we have reached the same conclusion as in the previous case.

Table 8. Mutual capacitance estimation for two spheres in dielectric shells. Time and memory usage.

FC2 RWHC, 108

Time, s 17 296
Memory, Mb 1775 11

4.5. Mutual Capacitance of Parallel “Pins”

In Tables 9 and 10, the results of the mutual capacitance estimation using FFT-
Cap [17,18] (correspondent discretization was made using cubegen tool from [18] with
5 panels per side) and Walk on Hemispheres for 81 conductive “pins” placed in uniform
lattice points (Figure 11) are presented. The full capacitance matrix has dimensions of
81× 81, so we show only a few values in the table.
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Pin size: 1× 1× 10;
Cell size: 2× 2;
Shell offset: 0.05;
β: 0.5;
“External” sphere radius: 14.786;
δ: 10−16.

Figure 11. 9× 9 conductive pins.

Table 9. Mutual capacitance of 9× 9 conductive pins, Ci,j/4πε0.

i, j FFTCap WoH, 105 ∆ WoH, 107 ∆

1, 1 3.9865 3.9447 2.874 · 10−1 4.0079 2.855 · 10−2

1, 2 −1.3384 −1.3553 7.000 · 10−2 −1.3545 7.048 · 10−3

1, 81 −5.9305 · 10−3 −7.2766 · 10−3 3.514 · 10−3 −5.9480 · 10−3 3.455 · 10−4

In this case objects have flat faces, so this task is “good” for FFTCap and we can take
this solution as reference. The results from Table 9 shows that the estimations are matched.
Also, we could see that, besides matching statistical error, the results for WoH estimation
when i = 1, j = 81 have a larger statistical error than in other cases (about 6%). This is
due to the fact that these conductors are located in opposite corners of the lattice, so only a
small number of trajectories started near the first conductor will end on 81st. In this case,
to get an estimation with the desired statistical error, more simulations may be required.
For example, with 108 trajectories we get the value of −6.0515 · 10−3 and statistical error of
1.087 · 10−4 (less than 2%).

Also we could estimate difference with FFTCap results by norm: let A—FFTCap result

matrix, B—WoH result matrix for 107 trajectories from each conductor, then
‖A− B‖F
‖A‖F

≈

0.009, where ‖A‖F is Frobenius norm of matrix A.

Table 10. Mutual capacitance of 9× 9 conductive pins. Time and memory usage.

FFTCap WoH, 107

Time, min 10 34
Memory, Mb 239 12

4.6. Mutual Capacitance of Rectangular Parallelepipeds in Dielectric Shells

In Tables 11 and 12, the results of mutual capacitance estimation using FC2 (cor-
respondent sphere discretization was made using the spheregen tool from [21] with 10
and 15 panels per side) and Walk on Hemispheres for three conductive rectangular paral-
lelepipeds in parallelepipedic dielectrics (Figure 12) are presented.
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Conductor size: 10× 10× 1;
Dielectric size: 12× 12× 3;
C1 origin: (1, 1, 1);
Diel1 origin: (0, 0, 0);
ε1: 2;
C2 origin: (1, 1, 4);
Diel2 origin: (0, 0, 3);
ε2: 4;
C3 origin: (1, 1, 7);
Diel3 origin: (0, 0, 6);
ε3: 3;
Shell offset: 0.25;
β: 0.5;
“External” sphere radius: 19.714;
δ: 10−8.

C1

C2

C3

ε1

ε2

ε3

Figure 12. Rectangular parallelepipeds in dielectric shells.

Table 11. Mutual capacitance of rectangular parallelepipeds in dielectric shells, Ci,j/4πε0.

i, j FC2, n = 10 FC2, n = 15 WoH, 106 ∆ WoH, 108 ∆

1, 1 17.491 17.468 17.650 8.663 · 10−1 17.452 8.661 · 10−2

2, 1 −14.252 −14.247 −14.144 2.377 · 10−1 −14.218 2.374 · 10−2

2, 2 34.100 34.092 34.381 1.736 34.030 1.737 · 10−1

3, 1 −0.848 −0.855 −0.875 5.204 · 10−2 −0.861 5.164 · 10−3

3, 2 −18.284 −18.264 −18.094 2.898 · 10−1 −18.223 2.899 · 10−2

3, 3 21.787 21.766 21.827 1.314 21.676 1.314 · 10−1

As before, we can compare the RWHC results with the FC2 estimation. In Table 11,
the results are not matched between FC2 and RWHC with 108 trajectories when i = 2,
j = 1. Because WoH results are matched for 106 and 108 trajectories and FC2 results with
15 panels per side are closer to our estimation than results with 10 panels per side, we
could assume that this discrepancy is related to an FC2 estimation error, as in example
Section 4.3.

Table 12. Mutual capacitance of rectangular parallelepipeds in dielectric shells. Time and memory
usage.

FC2, n = 10 FC2, n = 15 WoH, 108

Time, s 4 8 3840
Memory, Mb 270 591 11
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4.7. Mutual Capacitance of “Woven Bus”

In Tables 13 and 14, the results of mutual capacitance estimation using FFTCap [18]
(correspondent discretization was made using wovengen tool from [21] with 10 panels per
side) and Walk on Hemispheres for 9× 9 woven bus [7] (Figure 13) are presented.

Width: 1;
Segment length: 8;
Distance between wovens: 1;
Shell offset: 0.1;
β: 0.5;
δ: 10−8.

Figure 13. 9× 9 woven bus.

Table 13. Mutual capacitance of “woven bus”, Ci,j/4πε0.

FFTCap WoH, 106 ∆ WoH, 108 ∆

1, 1 8.7662 8.7338 3.565 · 10−1 8.7480 3.566 · 10−2

1, 2 −5.1204 · 10−2 −5.3310 · 10−2 8.066 · 10−3 −5.1310 · 10−2 8.013 · 10−4

1, 18 −1.0981 −1.1145 5.534 · 10−2 −1.0996 5.476 · 10−3

The results in Table 13 match. The difference with FFTCap results also could be
evaluated by norm: let A—FFTCap result matrix, B—WoH result matrix for 108 trajectories

from each conductor, then
‖A− B‖F
‖A‖F

≈ 0.001.

Table 14. Mutual capacitance of “woven bus”. Time and memory usage.

FFTCap RWHC, 108

Time, min 16 176
Memory, Mb 1863 12

5. Conclusions

We developed some new numerical algorithms for extracting capacitances. These algo-
rithms do not use the approximation of the Laplace operator by its difference counterpart.
Their computational error is determined by the sum of the statistical error and the value
of the estimator bias. The statistical error is determined in the course of calculations. The
systematic error of the estimator is equal to the error when we approximate the potential at
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points lying near the boundary of the conductor by values at the boundary. This error is
controlled by the parameter δ.

The Random Walk on Spheres algorithm is universal in the case of a homogeneous
dielectric. It works for conductors with any geometry.

The Random Walk on Hemispheres is applied when dielectric interfaces are polyhedral.
In cases when surfaces of the conductors are also polyhedral, the algorithm gives unbiased
statistical estimators of the capacitances. The accuracy of this algorithm is equal to the
statistical error of the estimators, which is easily determined in the course of calculations.

The Modified Random Walk on Hemispheres algorithm works for convex dielectric
interfaces.

Computational experiments show that the algorithms are effective. For systems
where capacitances are calculated analytically [3], it is shown that the accuracy of the
Monte Carlo approximation is within the statistical error (see Tables 1–3). In more complex
examples, to prove that the Monte Carlo estimation results are correct, we have matched
them with the results of the calculation of the capacitances using the non-Monte Carlo
methods implemented in the FastCap2 and FFTCap programs [18] (see Tables 5, 7, 9, 11
and 13). The algorithm also works correctly in cases when the ratio of the permittivities is
100 or more (see Table 3).

Monte Carlo simulation times for different cases were presented with numerical re-
sults, but these are not final and could be improved upon, even with the same configuration
of PC, by using another implementation of the pseudo random number generator, for ex-
ample, or using a function for calculating distance that is optimized for a particular task.
For example, by using another implementation of pseudo random number generator, or
using function for calculating distance, that is optimized for particular task.
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