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Abstract: Let M be the Doob maximal operator on a filtered measure space and let v be an Ap

weight with 1 < p < +∞. We try proving that ‖M f ‖Lp(v) ≤ p′[v]
1

p−1

Ap
‖ f ‖Lp(v), where 1/p + 1/p′ = 1.

Although we do not find an approach which gives the constant p′, we obtain that ‖M f ‖Lp(v) ≤

p
1

p−1 p′[v]
1

p−1

Ap
‖ f ‖Lp(v), with lim

p→+∞
p

1
p−1 = 1.
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1. Introduction

Let M be the Doob maximal operator on a filtered measure space. For 1 < p < +∞, it
is well known (see, e.g., [1]) that

‖M f ‖Lp ≤ p′‖ f ‖Lp , (1)

where 1/p + 1/p′ = 1 and p′ is the best constant. Let v be an Ap weight with 1 < p < +∞.
Tanaka and Terasawa [2] proved that

‖M f ‖Lp(v) ≤ C[v]
1

p−1
Ap
‖ f ‖Lp(v), (2)

where C is independent of v.
For a Euclidean space with a dyadic filtration, the dyadic maximal operator is the

above Doob maximal operator. For the dyadic maximal operator, the constant 1/(p− 1) is
the optimal power on [v]Ap (see, e.g., [3,4]). It follows that the constant 1/(p− 1) is also the
optimal power on [v]Ap for the Doob maximal operator M.

In this note, we estimate the constant C in (2). Substituting v = 1 into (2), we get (1).
Thus, we conjecture that the constant C equals p′ in (2). However, we do not find an
approach which gives the constant C = p′. Our results are as follows.

Theorem 1. Let v be a weight and 1 < p < ∞. We have the inequality

‖M f ‖Lp(v) ≤ C‖ f ‖Lp(v) (3)

if and only if v ∈ Ap. Moreover, if we denote the smallest constant in (3) by ‖M‖, we have

[v]Ap ≤ ‖M‖p (4)

and

‖M‖ ≤ p
1

p−1 p′[v]
1

p−1
Ap

. (5)

Remark 1. The content of Theorem 1 is (5). In order to prove (5), we use different approaches as
follows:
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1. Motivated by the proof of [4] (Theorem B), we get C = p
1

p−1 p′.
2. Using the construction of principal sets [2] and the conditional sparsity [5], we have C =

a2η(p′−1)p′, where a, η are the constants in the construction of principal sets (Appendix A).
3. Long [1] [Theorem 6.6.3] qualitatively evaluated ‖M‖. Modifying Long’s proof, we have

C = p
1

p−1 p′ which is the same as 1.

Approaches 1 and 3 both use the boundedness of the Doob maximal operator twice and give the

same estimation C = p
1

p−1 p′. Approach 2 depends on the conditional sparsity and the boundedness

of the Doob maximal operator. Letting σ = v
1

p−1 and f = hσ, we can rewrite (3) as

‖M(hσ)‖Lp(v) ≤ C‖hσ‖Lp(σ).

Cao and Xue [6] (see also the references therein) used the atomic decomposition to study
weighted theory on the Euclidean space, but we do not know whether it is possible on the filtered
measure space.

This paper is organized as follows. Section 2 consists of the preliminaries for this

paper. In Section 3, we give the proof of Theorem 1, and in Section 4 we compare p
1

p−1 with
a2η(p′−1). In order to keep track of the constants in our paper, we modify the construction
of principal sets in Appendix A.

2. Preliminaries

The filtered measure space was discussed in [2,7], which is abstract and contains
several kinds of spaces. For example, a doubling metric space with systems of dyadic cubes
was introduced by Hytönen and Kairema [8]. In order to develop discrete martingale theory,
a probability space endowed with a family of σ-algebra was considered by Long [1]. In
addition, a Euclidean space with several adjacent systems of dyadic cubes was mentioned
by Hytönen [9]. Because the filtered measure space is abstract, it is possible to study these
spaces together ([10–12]). As is well known, Lacey, Petermichl and Reguera [13] studied
the shift operators, which are related to the martingale theory on a filtered measure space.
When Hytönen [9] solved the conjecture of A2, those operators became very useful.

2.1. Filtered Measure Space

Let (Ω,F , µ) be a measure space and let F 0 =
⋃{E : E ∈ F , µ(E) < +∞}. As for

σ-finite, we mean that Ω is a union of (Ei)i∈Z ⊂ F 0. We only consider σ-finite measure
space (Ω,F , µ) in this paper. Let B be a sub-family of F 0 and let f : Ω→ R be measurable
on (Ω,F , µ). If for all B ∈ B, we have

∫
B | f |dµ < +∞, then we say that f is B-integrable.

The family of the above functions is denoted by L1
B(F , µ).

Let B ⊂ F be a sub-σ-algebra and let f ∈ L1
B0(F , µ). Because of the σ-finiteness of

(Ω,B, µ) and Radon–Nikodým’s theorem, there is a unique function denoted by E( f |B) ∈
L1
B0(B, µ) or EB( f ) ∈ L1

B0(B, µ) such that∫
B

f dµ =
∫

B
EB( f )dµ, ∀B ∈ B0.

Letting (Ω,F , µ) with a family (Fi)i∈Z of sub-σ-algebras satisfying that (Fi)i∈Z is
increasing, we say that F has a filtration (Fi)i∈Z. Then, a quadruplet (Ω,F , µ; (Fi)i∈Z)
is said to be a filtered measure space. It is clear that L1

F0
i
(F , µ) ⊃ L1

F0
j
(F , µ) with i < j.

Let L :=
⋂

i∈Z
L1
F0

i
(F , µ) and f ∈ L, then (Ei( f ))i∈Z is a martingale, where Ei( f ) means

E( f |Fi). The reason is that Ei( f ) = Ei(Ei+1( f )), i ∈ Z.
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2.2. Stopping Times

Let (Ω,F , µ; (Fi)i∈Z) be a σ-finite filtered measure space and let τ : Ω → {−∞} ∪
Z∪ {+∞}. If for any i ∈ Z, we have {τ = i} ∈ Fi, then τ is said to be a stopping time. We
denote the family of all stopping times by T . For i ∈ Z, we denote Ti := {τ ∈ T : τ ≥ i}.

2.3. Operators and Weights

Let f ∈ L. The Doob maximal operator is defined by

M f = sup
i∈Z
|Ei( f )|.

For i ∈ Z, we define the tailed Doob maximal operator by

∗Mi f = sup
j≥i
|Ej( f )|.

For ω ∈ L with ω ≥ 0, we say that ω is a weight. The set of all weights is denoted
by L+. Let B ∈ F , ω ∈ L+. Then

∫
Ω χBdµ and

∫
Ω χBωdµ are denoted by |B| and |B|ω,

respectively. Now we give the definition of Ap weights.

Definition 1. Let 1 < p < ∞ and let ω be a weight. We say that the weight ω is an Ap weight, if
there exists a positive constant C such that

sup
j∈Z

Ej(ω)Ej(ω
1−p′)

p
p′ ≤ C, (6)

where 1
p + 1

p′ = 1. We denote the smallest constant C in (6) by [ω]Ap .

3. Approaches of Theorem 1

Proof of Theorem 1. We prove that (3) implies (4). For i ∈ Z and B ∈ F 0
i , we let f = χB.

Then
Ei(v

− 1
p−1 )χB ≤ M( f σ)χB,

where σ = v
1

p−1 . It follows from (3) that( ∫
B
Ei(v

− 1
p−1 )pvdµ

) 1
p ≤ ‖M‖

( ∫
Ω

v−
1

p−1 χBdµ
) 1

p
.

Thus

Ei(v
− 1

p−1 )pEi(v) ≤ ‖M‖pEi(v
− 1

p−1 ),

which shows that
[v]Ap ≤ ‖M‖p.

In order to prove (5), we provide the three approaches which we mentioned in
Remark 1.

Approach 1. It is clear that

En( f ) =
(
En(v)En(σ)

p−1 1
En(v)

( 1
En(σ)

En( f )
)p−1

) 1
p−1

=
(
En(v)En(σ)

p−1
) 1

p−1
( 1
En(v)

( 1
En(σ)

En( f )
)p−1

) 1
p−1

≤ [v]
1

p−1
Ap

Mv(v−1Mσ( f σ−1)p−1) 1
p−1 .
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Then, we have

M( f ) ≤ [v]
1

p−1
Ap

Mv(v−1Mσ( f σ−1)p−1) 1
p−1 .

Using the boundedness of Doob maximal operators Mv and Mσ, we obtain

‖M( f )‖Lp(v) ≤ [v]
1

p−1
Ap
‖Mv(v−1Mσ( f σ−1)p−1) 1

p−1 ‖Lp(v)

= [v]
1

p−1
Ap
‖Mv(v−1Mσ( f σ−1)p−1)‖ 1

p−1

Lp′ (v)

≤ p
1

p−1 [v]
1

p−1
Ap
‖Mσ( f σ−1)‖Lp(σ)

≤ p
1

p−1 p′[v]
1

p−1
Ap
‖ f ‖Lp(v).

Approach 2. For i ∈ Z, k ∈ Z and Ω0 ∈ F 0
i , we denote

P0 = {ak−1 < E( f σ|Fi) ≤ ak} ∩Ω0.

We claim that( ∫
P0

∗Mi( f σχP0)
pvdµ

) 1
p ≤ a2η(p′−1)p′[v]

p′
p

Ap

( ∫
P0

f pσdµ
) 1

p
, (7)

where a, η are the constants in the construction of principal sets (Appendix A). To see
this, we denote h = f σχP0 . For the above i, P0 and h, we construct principal sets. Then,
Lemma A1 shows that∫

P0

∗Mi( f σ)pvdµ ≤ a2p ∑
P∈P

∫
E(P)

ap(K2(P)−1)vdµ. (8)

To estimate |E(P)|v. For the sake of simplicity, we denote EFK1(P)
(·) by EP(·) without

confusion. We now estimate |E(P)|v as follows:

|E(P)|v ≤ |P|v =
∫

P
EP(v)dµ

=
∫

P
EP(v)p′EP(v)1−p′EP(σ)

pEP(σ)
−pdµ

=
∫

P
EP(v)p′EP(σ)

pEP(v)1−p′EP(σ)
−pdµ.

In the view of the definition of Ap and the construction of P , we have

|E(P)|v ≤ [v]p
′

Ap

∫
P
EP(v)1−p′EP(σ)

−pdµ

≤ ηp(p′−1)[v]p
′

Ap

∫
P
EP(v)1−p′EP(σ)

−pEP(χE(P))
p(p′−1)dµ

= ηp(p′−1)[v]p
′

Ap

∫
P
EP(v)1−p′EP(σ)

−pEP(χE(P)v
1
p σ

1
p′ )p(p′−1)dµ.

Noting that the conditional expectation satisfies Hölder’s inequality, we have

|E(P)|v ≤ ηp(p′−1)[v]p
′

Ap

∫
P
EP(v)1−p′EP(σ)

−p

×EP(vχE(P))
p′−1EP(σχE(P))dµ

≤ ηp(p′−1)[v]p
′

Ap

∫
P
EP(σ)

−pEP(σχE(P))dµ.
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As E(P) is a subset of P and aK2(P)−1χP ≤ EP(h)χP, we obtain that∫
E(P)

ap(K2(P)−1)vdµ ≤ ηp(p′−1)[v]p
′

Ap

∫
P
EP( f σ)pEP(σ)

−pEP(χE(P)σ)dµ

= ηp(p′−1)[v]p
′

Ap

∫
P
Eσ

P( f )pEP(χE(P)σ)dµ,

where we have used EP( f σ) = Eσ
P( f )EP(σ). Then,∫

E(P)
ap(K2(P)−1)vdµ ≤ ηp(p′−1)[v]p

′

Ap

∫
P
Eσ

P( f )pEP(χE(P)σ)dµ

= ηp(p′−1)[v]p
′

Ap

∫
P
Eσ

P( f )pχE(P)σdµ

≤ ηp(p′−1)[v]p
′

Ap

∫
P

Mσ( f χP0)
pχE(P)σdµ

= ηp(p′−1)[v]p
′

Ap

∫
E(P)

Mσ( f χP0)
pσdµ.

It follows from (8) and the boundedness of Doob maximal operator Mσ that∫
P0

∗Mi( f σ)pvdµ ≤ a2pηp(p′−1)[v]p
′

Ap ∑
P∈P

∫
E(P)

Mσ( f χP0)
pσdµ

≤ a2pηp(p′−1)[v]p
′

Ap ∑
P∈P

∫
E(P)

Mσ( f χP0)
pσdµ

≤ a2pηp(p′−1)(p′)p[v]p
′

Ap

∫
P0

f pσdµ,

which implies (7). Furthermore,∫
Ω0

∗Mi( f σ)pvdµ = ∑
k∈Z

∫
{ak−1<E( f σ|Fi)≤ak}∩Ω0

∗Mi( f σ)pvdµ

≤ a2pηp(p′−1)(p′)p[v]p
′

Ap ∑
k∈Z

∫
{ak−1<E( f σ|Fi)≤ak}∩Ω0

f pσdµ

≤ a2pηp(p′−1)(p′)p[v]p
′

Ap

∫
Ω0

f pσdµ.

Noting that (Ω,F , µ) is a σ-finite measure space, we obtain that

( ∫
Ω

∗Mi( f σ)pvdµ
) 1

p ≤ a2η(p′−1)p′[v]
p′
p

Ap

( ∫
Ω

f pσdµ
) 1

p .

Because ∗Mi(·) ↑ Mi(·) as i ↓ −∞, then

( ∫
Ω

M( f σ)pvdµ
) 1

p ≤ a2η(p′−1)p′[v]
p′
p

Ap

( ∫
Ω

f pσdµ
) 1

p .

Approach 3. For f ∈ Lp(vdµ), b > 1 and k ∈ Z, we define stopping times

τk = inf{n : | fn| > bk}.

Then, we denote

Ak,j := {τk < ∞} ∩ {bj < E(σ|FFτk
) ≤ bj+1}

and
Bk,j := {τk < ∞, τk+1 = ∞} ∩ {bj < E(σ|FFτk

) ≤ bj+1}, j ∈ Z.
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It follows that Ak,j ∈ Fτk , Bk,j ⊆ Ak,j. It is clear that {Bk,j}k,j is a family of disjoint
sets and

{bk < M f ≤ bk+1} = {τk < ∞, τk+1 = ∞} =
⋃

j∈Z.

Bk,j, k ∈ Z.

Following from
E( f |Fτk ) = Eσ( f σ−1|Fτk

)
E(σ|Fτk ),

we have

bkp ≤ ess inf
Ak,j

E( f |Fτk )
p

≤ ess inf
Ak,j

Eσ( f σ−1|Fτk

)p ess sup
Ak,j

E(σ|Fτk )
p

≤ bp ess inf
Ak,j

Eσ( f σ−1|Fτk )
p|Bk,j|−1

v

∫
Bk,j

E(σ|Fτk )
pvdµ.

Applying the Ap condition

1 ≤ E(v|Fτ)E(σ|Fτ)
p−1 ≤ [v]Ap , ∀τ,

we have

E(σ|Fτk )
p ≤ [v]

p
p−1
Ap

E(v|Fτk )
−p′ = [v]

p
p−1
Ap

Ev(v−1|Fτk )
p′ .

It follows that∫
Ω
(M f )pvdµ = ∑

k∈Z

∫
{bk<M f≤bk+1}

(M f )pvdµ

≤ bp ∑
k∈Z

∫
{bk<M f≤bk+1}

bkpvdµ

= bp ∑
k∈Z,j∈Z

∫
Bk,j

bkpvdµ

≤ b2p[v]
p

p−1
Ap ∑

k∈Z,j∈Z
ess inf

Ak,j
Eσ( f σ−1|Fτk )

p
∫

Bk,j

Ev(v−1|Fτk )
p′vdµ.

Letting X := Z2 and

ϑ(k, j) :=
∫

Bk,j

Ev(v−1|Fτk )
p′vdµ,

we have that ϑ is a measure on X. For f ∈ Lp(vdµ) and λ > 0, we denote

T f (k, j) := ess inf
Ak,j

Eσ( f σ−1|Fτk )
p,

Eλ :=
{
(k, j) : ess inf

Ak,j
Eσ( f σ−1|Fτk )

p > λ
}

,

Gλ :=
⋃

(k,j)∈Eλ

Ak,j.
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It follows that

|{T f > λ}|ϑ = ∑
(k,j)∈Eλ

∫
Bk,j

Ev(v−1|Fτk )
p′vdµ

≤ ∑
(k,j)∈Eλ

∫
Bk,j

Ev(v−1χGλ
|Fτk )

p′vdµ

≤
∫

Gλ

(
Mv(v−1χGλ

)
)p′vdµ.

For τ = inf
{

n : Eσ( f σ−1|Fn)p > λ
}

, we obtain Gλ ⊆
{

Mσ( f σ−1)p > λ
}
=

{τ < ∞}.
In view of the boundedness of Doob maximal operator Mv, we get that

|{T f > λ}|ϑ ≤
∫

Gλ

(
Mv(v−1χGλ

)
)p′vdµ

≤
∫
{τ<∞}

(
Mv(v−1χ{τ<∞})

)p′vdµ

≤ pp′ |{τ < ∞}|σ
= pp′ |{Mσ( f σ−1)p > λ}|σ.

Therefore,∫
Ω
(M f )pvdµ ≤ b2p[v]

p
p−1
Ap

∫
X

T f dϑ = b2p[v]
p

p−1
Ap

∫ ∞

0
|{T f > λ}|ϑdλ

≤ b2p pp′ [v]
p

p−1
Ap

∫ ∞

0
|{Mσ( f σ−1)p > λ}|σdλ

= b2p pp′ [v]
p

p−1
Ap

∫
Ω

Mσ( f σ−1)pσdµ.

Using the boundedness of Doob maximal operator Mσ, we conclude that∫
Ω
(M f )pvdµ ≤ b2p pp′ p′p[v]

p
p−1
Ap

∫
Ω
| f |pvdµ. (9)

Taking limit as b→ 1+ in (9), we have

‖M f ‖Lp(v) ≤ p′p
1

p−1
[v]

1
p−1
Ap
‖ f ‖Lp(v).

4. Comparison of p
1

p−1 and a2η(p′−1)

We compare p
1

p−1 with a2η(p′−1) in this section, where a > 1 and η = a
a−1 are the

constants in the construction of principal sets (Appendix A). We split our comparison into
two theorems, Theorems 2 and 3.

Theorem 2. For 1 < p < +∞, let ϕ(a) = a2η(p′−1). Then, we have

min
a>1

ϕ(a) = ϕ(
2p− 1
2p− 2

).

Proof. We deal with ln ϕ(a). Then,

ln ϕ(a) = 2 ln a +
1

p− 1
ln

a
a− 1

.
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It is easy to check lim
a→1+

ln ϕ(a) = lim
a→+∞

ln ϕ(a) = +∞. We have

(
ln ϕ(a)

)′
=

2
a
+

1
a(p− 1)

− 1
(a− 1)(p− 1)

.

It is clear that the unique a0 =: 2p−1
2p−2 solves equation

(
ln ϕ(a)

)′
= 0 and a0 = 2p−1

2p−2 > 1.
Thus,

min
a>1

ϕ(a) = ϕ(
2p− 1
2p− 2

) = (
2p− 1
2p− 2

)2(2p− 1)
1

p−1 .

It follows from Theorem 2 that the minimum of ϕ(a) is a function of p. Then, we denote

the minimum ( 2p−1
2p−2 )

2(2p− 1)
1

p−1 and the constant p
1

p−1 by φ(p) and ψ(p), respectively.

Because of 2p−1
2p−2 > 1 and 2p− 1 > p, we have φ(p) ≥ ψ(p). Now we study limits of φ(p)

and ψ(p) in the following Theorem 3.

Theorem 3. Let φ and ψ as above. Then,

lim
p→1+

φ(p) = +∞, lim
p→1+

ψ(p) = e

and
lim

p→+∞
φ(p) = lim

p→+∞
ψ(p) = 1.

Moreover,

lim
p→+∞

ln φ(p)
ln ψ(p)

= 1.

Proof. Because

lim
p→1+

ln φ(p) = lim
p→1+

2 ln(
2p− 1
2p− 2

) + lim
p→1+

1
p− 1

ln(2p− 1) = +∞,

and
lim

p→+∞
ln φ(p) = lim

p→+∞
2 ln(

2p− 1
2p− 2

) + lim
p→+∞

1
p− 1

ln(2p− 1) = 0,

we have lim
p→1+

φ(p) = +∞ and lim
p→+∞

φ(p) = 1, respectively.

Similarly, we get lim
p→1+

ψ(p) = e and lim
p→+∞

ψ(p) = 1.

Finally, we obtain

lim
p→+∞

ln φ(p)
ln ψ(p)

= lim
p→+∞

2 ln( 2p−1
2p−2 ) +

1
p−1 ln(2p− 1)

1
p−1 ln p

= lim
p→+∞

2(p− 1) ln( 2p−1
2p−2 ) + ln(2p− 1)

ln p

= lim
p→+∞

2(p− 1) ln( 2p−1
2p−2 )

ln p
+ lim

p→+∞

ln(2p− 1)
ln p

= 0 + 1 = 1.

Remark 2. We give further properties of φ(p) and ψ(p).
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1. We claim that the function φ(p) is decreasing on (1,+∞). Writing φ1(p) = ( 2p−1
2p−2 )

2 and

φ2(p) = (2p− 1)
1

p−1 , we will show that φ1(p) and φ2(p) are both decreasing on (1,+∞).
Combining this with 0 < φ1(p) and 0 < φ2(p), we obtain that φ(p) is decreasing on
(1,+∞). We now check that φ1(p) and φ2(p) are both decreasing.
For φ1(p) with p ∈ (1,+∞), it is clear that

φ1(p) = (
2p− 1
2p− 2

)2 = (1 +
1

2p− 2
)2.

Thus, φ1(p) is decreasing on (1,+∞).
For φ2(p) with p ∈ (1,+∞), consider

ln φ2(p) =
1

p− 1
ln(2p− 1).

It is clear that(
ln φ2(p)

)′
=

1

(p− 1)2

(
(

2
2p− 1

)(p− 1)− ln(2p− 1)
)

=
1

(p− 1)2

(2(p− 1)
2p− 1

− ln(2p− 1)
)

.

Using the mean value theorem, we have

ln(2p− 1) = ln(2p− 1)− ln 1 =
1
ξ
(2p− 1− 1) =

1
ξ

(
2(p− 1)

)
,

where ξ ∈ (1, 2p− 1). It follows that

ln(2p− 1) >
2(p− 1)
2p− 1

,

which implies
(

ln φ2(p)
)′

< 0. Thus, φ2(p) is decreasing on (1,+∞).
2. We claim that the function ψ(p) is decreasing on (1,+∞). It suffices to show that ψ′(p) < 0.

We have

ψ′(p) =
ψ(p)

(p− 1)2 (1−
1
p
+ ln

1
p
).

It is clear that ψ′(p) < 0 if and only if 1− 1
p + ln 1

p < 0. Let s(t) = 1− t + ln t with

t ∈ (0, 1]. Because of s′(t) = 1
t − 1 > 0 on (0, 1), the function s(t) is strictly increasing

on (0, 1]. It follows from s(1) = 0 that s(t) < 0 on (0, 1). That is, 1− 1
p + ln 1

p < 0 with
p > 1. Thus, ψ(p) is decreasing on (1,+∞).

At the end of Section 4, we check our work with the graphing device in Figure 1.
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Figure 1. Computer confirmation of φ(p) and ψ(p).

5. Conclusions and Future Work

Let M be the Doob maximal operator on a filtered measure space and let v be an Ap
weight with 1 < p < +∞. In this note, we try proving that

‖M f ‖Lp(v) ≤ p′[v]
1

p−1
Ap
‖ f ‖Lp(v), (10)

where 1/p + 1/p′ = 1. Although we do not find an approach which gives the constant p′

in (10), we obtain that

‖M f ‖Lp(v) ≤ p
1

p−1 p′[v]
1

p−1
Ap
‖ f ‖Lp(v),

with lim
p→+∞

p
1

p−1 = 1.

As is well known, Cao and Xue [6] (see also the references therein) used the atomic
decomposition to study weighted theory on the Euclidean space, and we will try the
approach of atomic decomposition on the filtered measure space.

Furthermore, the multilinear analogue of Theorem 1 is interesting but difficult. One of
the reasons is that there are no multilinear analogues of approaches 1 and 3.
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Appendix A. Construction of Principal Sets

The construction of principal sets first appeared in Tanaka and Terasawa [2], and Chen,
Zhu, Zuo and Jiao [5,14] found the conditional sparsity of the construction, which is new
and useful. We will use the construction of principal sets. Because we keep track of the
constants of the conditional sparsity, we will give the modifications in the construction of
principal sets in this Appendix A.

For i ∈ Z, h ∈ L+, a > 1 and k ∈ Z, stopping times are defined by

τ := inf{j ≥ i : E(h|Fj) > ak+1}.

Let
P0 := {ak−1 < E(h|Fi) ≤ ak} ∩Ω0,

where Ω0 ∈ F 0
i , then P0 ∈ F 0

i . We denote K1(P0) := i and K2(P0) := k. Then, we define
P1 := {P0}, which is the first generation P1. Now we show how to define the second one.
Let

τP0 := τχP0 + ∞χPc
0
,

where Pc
0 = Ω \ P0. Let P be a subset of P0 with µ(P) > 0. If there is i < j and k + 1 < j

such that

P = {al−1 < E(h|Fj) ≤ al} ∩ {τP0 = j} ∩ P0

= {al−1 < E(h|Fj) ≤ al} ∩ {τ = j} ∩ P0,

we say that P is a principal set of P0. We denote K1(P) := j and K2(P) := l. Letting
P(P0) be the family of the above principal sets of P0, we say that P2 := P(P0) is the
second generation.

Following [5] (p. 804), we have

µ(P0) ≤
a

a− 1
µ
(
E(P0)

)
=: ηµ

(
E(P0)

)
where

E(P0) := P0 ∩ {τP0 = ∞} = P0 ∩ {τ = ∞} = P0\
⋃

P∈P(P0)

P.

Furthermore, we have χP0 ≤ ηEi(χE(P0)
)χP0 , which is called the conditional sparsity of

principal sets with η (see [5,14]).
Proceeding inductively, we obtain the next generalizations

Pn+1 :=
⋃

P∈Pn

P(P).

Let

P :=
∞⋃

n=1

Pn,

then the collection of principal sets P satisfies the following properties:

1. The sets E(P) where P ∈ P are disjoint and P0 =
⋃

P∈P
E(P);

2. P ∈ FK1(P);
3. χP ≤ ηE(χE(P)|FK1(P))χP;
4. aK2(P)−1 < E(h|FK1(P)) ≤ aK2(P) on P;
5. sup

j≥i
Ej(hχP) ≤ aK2(P)+1 on E(P);

6. χ{K1(P)≤j<τ(P)}Ej(h) ≤ aK2(P)+1.

where η = a/(a− 1).
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Now, we represent the tailed Doob maximal operator by the principal sets, which is
the following lemma.

Lemma A1. Let h ∈ L+, a > 1 and i ∈ Z. For k ∈ Z and Ω0 ∈ F 0
i , we let

P0 := {ak−1 < E(h|Fi) ≤ ak} ∩Ω0.

If µ(P0) > 0, then

∗Mi(h)χP0 = ∗Mi(hχP0)χP0

= ∑
P∈P

∗Mi(hχP0)χE(P)

≤ a2 ∑
P∈P

a(K2(P)−1)χE(P).
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