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Abstract: Assignation-sequencing models have played a critical role in the competitiveness of manu-
facturing companies since the mid-1950s. The historic and constant evolution of these models, from
simple assignations to complex constrained formulations, shows the need for, and increased interest
in, more robust models. Thus, this paper presents a model to schedule agents in unrelated parallel
machines that includes sequence and agent–machine-dependent setup times (ASUPM), considers an
agent-to-machine relationship, and seeks to minimize the maximum makespan criteria. By depicting
a more realistic scenario and to address thisNP-hard problem, six mixed-integer linear formulations
are proposed, and due to its ease of diversification and construct solutions, two multi-start heuristics,
composed of seven algorithms, are divided into two categories: Construction of initial solution
(designed algorithm) and improvement by intra (tabu search) and inter perturbation (insertions and
interchanges). Three different solvers are used and compared, and heuristics algorithms are tested
using randomly generated instances. It was found that models that linearizing the objective function
by both job completion time and machine time is faster and related to the heuristics, and presents
an outstanding level of performance in a small number of instances, since it can find the optimal
value for almost every instance, has very good behavior in a medium level of instances, and decent
performance in a large number of instances, where the relative deviations tend to increase concerning
the small and medium instances. Additionally, two real-world applications of the problem are
presented: scheduling in the automotive industry and healthcare.

Keywords: agent scheduling; unrelated parallel machines; makespan; dependent setup times

1. Introduction

Currently, production costs are critical for companies, as they have a direct impact
on the capacity for consumption, production, price, and economic growth. This is the
case of the assignment costs that are incurred when allocating (and using these) resources.
These costs are typically associated with the jobs performed in specific machines and the
corresponding time taken to complete the task [1]. When independent (parallel) machines
are used, the sequence in which the activities that make up the task are carried out has a
direct impact on the expenses; the machine used for carrying out the task, either in cost or
time, also has an impact. Additionally, the performance/supervision of the task and on
which machine it is completed has a direct impact, given the cost per direct unit of labor.

Classic allocation models usually take these jobs and machines into consideration,
where operating times are assumed to be the same for each machine, simplifying a real-
world scenario [2]. The literature addressing machine scheduling is vast; several surveys
and reviews on the topic can be found in [3–10]. However, allocation costs also include the
person or robot, and the subject in charge of the jobs (who). The literature in this regard is
scarce and there is a gap in developing models that consider the subject (who) along with
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the machine (where) and jobs to be performed (what). Furthermore, subjects and machines
are commonly independent and unrelated, which implies setup and processing times are
both dependent on the subject, machinery, and jobs. This does not consider the fact that the
subject has many disadvantages, such as not managing personnel correctly or not taking
advantage of the capacities, abilities, and experiences of the subjects. Additionally, it can
be mistakenly assumed that the completion of a job will be completed at the same time or
will have the same result no matter which method was used to complete it and the ability
or experience level of the operator.

Although the subject who performs the task is not usually considered, some research
works have recently been published regarding unrelated parallel machines that consider
both sequence- and machine-dependent setup times (UPMS problem), with maximum
makespan criteria used to minimize one of the most studied optimization criteria in
scheduling problems [11]. For instance, references [12,13] presented mixed-linear integer
formulations to solve the UPMS problem, and compared their models against published
models and instances, improving the results in the literature. Furthermore, several studies
have presented heuristic algorithms to solve the problem. The work by [14] proposes a
hybrid estimation of distribution algorithm using an iterated greedy technique and Taguchi
methods to investigate the effect of the parameters’ values in the model performance.
Later, reference [15] presented a hybrid genetic algorithm by proposing the use of so-called
2-optimization to generate neighborhoods in the local search. Meanwhile, reference [16]
proposed a constraint programming algorithm approach to solve the problem alongside
branching methods. The problem of the symbiotic organism search algorithm with a
local search engine is addressed in in [17]. The paper by [18] presents an adaptation of a
simulated annealing algorithm, using the sine-cosine algorithm as a local search method,
and [19] published the comparison of four stochastic local search heuristics to solve the
problem: late acceptance hill-climbing, step counting hill-climbing, iterated local search,
and simulated annealing. In addition to the heuristics mentioned, several parallel machine
scheduling problems are solved with multi-start algorithms, as shown in [20–23]. Multi-
start algorithms execute several times from diverse points in the solution space and are,
generally, composed of an initial construction and an improvement method [23]. Due to
the capacity of the multi-start methods to diversify and construct solutions, the algorithms
presented further in this paper follow this technique.

Additionally, several authors have proposed variations and additional constraints
to the UPMS problem. For instance, in [24] a modification of the problem is proposed,
adding several constraints: the resource to perform jobs, machine eligibility, and job
precedence. A pure integer formulation is introduced, with minimization of makespan
criteria. The parameters of the model are calibrated with the Taguchi method. Two
heuristics for the variation are presented: a genetic algorithm and artificial immune systems.
The performance of the heuristics proposed is evaluated using generated instances. The
research published in [25] considers the variant when to process a job is necessary to
use a defined quantity of a given resource. That quantity depends on the job and the
machine utilized. There is resource constraint (availability). The authors proposed two
mixed integer linear models, and three heuristic algorithms: machine-assignment fixing,
job–machine reduction, and greedy-based fixing. The algorithms are tested using published
instances. In [26], a model is proposed where not all machines are available at any time,
due to failure and maintenance activities. The authors presented a mixed-integer linear
model where preventive activities are included, and a multi-start heuristic algorithm to
solve large instances. The heuristic constructs an initial solution, and then by local search
methods, the solution is improved. The model and algorithms were tested against the
best-known values for instances in the literature. In [27], a variation of the problem is
presented, adding machine eligibility and resources constraints. In this study, the resources
are further constrained by adding types of resources. A mixed-integer formulation and
two genetic algorithms are proposed as heuristic methods. The first one is a pure genetic
algorithm, while the second one uses a local search method instead of the chromosome



Mathematics 2021, 9, 2955 3 of 34

scheme. The algorithms were calibrated by the response surface method. The heuristics
performance is tested with generated instances. Later, power consumption criteria and
variable operation speed in the machines are included in [28]. They proposed a mixed-
integer linear formulation, and a smart pool search heuristic to find solutions near a defined
Pareto front. The model and algorithms are tested in generated instances. Finally, in [29]
three different scenarios or modifications to the problem are proposed: a time limit to
produce the maximum number of jobs, the completion time to minimize the weighted
sum of jobs, and the minimization of auxiliary resources needed to perform jobs. For
each scenario, mixed-integer formulations are proposed and compared to each other using
generated instances.

Specific to the literature scheduling agents/servers in machines, reference [2] pre-
sented an algorithm to schedule multi-agent on two identical parallel machines, where
the makespan is minimized. A scheduling model with three agents in just one machine
is also proposed by [30], who seek to minimize the number of jobs assigned to the first
agent. Here, the maximum tardiness of the jobs assigned to agent two cannot exceed a
defined limit, and agent three must conduct a maintenance activity in each period. More-
over, reference [31] considered two competing agents that perform two sets of jobs on
parallel machines, ensuring that the total completion time of jobs from the first agent is
minimized, while the maximum tardiness of the second agent must be within a defined
limit. Furthermore, reference [32] proposed agent-based scheduling in two identical par-
allel machines that are treated as agents along with tasks. The goal is to minimize both
the total tardiness and makespan. In the same year, reference [33] proposed a model in
the automotive assembly lines environment, where multiple servers are scheduled in a
just-in-time approach. The objective is to sequence material on each server to minimize
side-line inventory levels. These authors proposed a mixed-integer linear formulation
and an ant colony optimization algorithm. The paper by [34] proposed a multi-agent
scheduling problem, where a set of jobs is processed on identical machines. The objective is
to minimize the individual makespan of both agents. Parallelly, reference [35] proposed a
model in a no-wait flow shop system to maximize the weighted number of just-in-time jobs
for each agent. Here, two solution methods of the problem are addressed, constrained and
Pareto optimization. In [36], a model is presented to schedule servers on parallel machines
to minimize the makespan, considering a setup time. Each machine has a known, fixed,
sequence of jobs. A scheduling model is proposed by [37] to assign several tasks to agents,
aiming at minimizing the objective function of each agent, which is composed of the total
completion time and weighted number of late tasks, allowing for interruptions. The work
by [38] proposed a model to schedule tasks to machines, using a transportation robot on
cells. The purpose of the problem is to minimize the makespan, by a mixed-integer linear
model and a heuristic algorithm. Finally, reference [39] proposed a scheduling model for
automotive parts manufacturers. Jobs are scheduled in uniform parallel machines, where
servers set up the process before the machine performs the job. Additional constraints are
considered regarding machine eligibility, job splitting, and limited servers.

To develop an assignation model that considers the elements where, who and what
in independent and unrelated machines, this research presents the formulation and solu-
tions to the “Agent scheduling in unrelated parallel machines with sequence and agent–machine
dependent setup times (ASUPM) problem” which cover a wide variety of applications, from
job shops and laboratories up to services such as healthcare and bank services. With the
application of the model, organizations can schedule and manage employees in an efficient
way, ensuring the optimal use of machinery and reducing their spending to perform tasks,
either distances, times, or costs. Specifically, this problem considers the scheduling of n jobs
on m unrelated parallel machines operated by q agents (always q = m and a correlation
one machine to one agent). The objective is to minimize the maximum completion time of
the schedule (makespan), and considering there is a setup time that depends on the agent,
machine, and sequence. The main contributions of the paper are:
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• Formulation of the problem and six different linear mixed-integer formulations;
• Heuristic algorithms to solve the problem;
• Comparison of models and heuristics by computational results.

The paper is structured as follows: Section 2 presents the definition of the problem, pa-
rameters, and assumptions, Section 3 presents the proposed methods to solve the problem,
Section 4 shows the experiments and results, and finally, Section 5 discusses and concludes
the results of the paper.

2. Problem Definition, Parameters and Assumptions

The Agent scheduling in unrelated parallel machines with sequence and agent–
machine dependent setup times (ASUPM) is a minimization problem. The criteria to
minimize is the maximum completion time of the schedule, also known as maximum
makespan and denoted by cmax.

The ASUPM problem is a three-stage decision problem: agent–machine assignment,
order or sequence to process jobs, and machine-sequence assignment. The characteristics
and assumptions are listed below:

• There is a set E of q agents.
• There is a set M of m parallel machines (always q = m).
• There is a set N of n jobs to be scheduled.
• The objective is to schedule jobs for each agent, each of them assigned to one unique

machine (an agent should be in charge of only one machine), in such a way that the
makespan cmax is minimized.

• At the beginning, all jobs, machines, and agents are available. Once a job is finished,
the machine j is available to perform another job. Jobs cannot be interrupted until
finalization.

• Every job k has a processing time pik in each machine i.
• There is agent–machine dependent setup time srijk for agent r performing job k just

after job j in machine i. Note that, not necessarily srijk = srikj.

Figure 1 shows a graphical representation of the ASUPM problem. Gray blocks
represent processing time, while white blocks the setup times.
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Figure 1. Graphical representation of the problem.

Alongside the number m of machines, the complexity of parallel machine scheduling
problems generally grows exponentially, making large instance problems intractable [3]. In
general, the deterministic scheduling problems belong to the category of Combinatorial
Optimization problems, many of them are NP-hard, [40,41]. Likely, NP-hard complexity
problems cannot be solved efficiently by optimization algorithms, requiring exponential
time to find an optimal solution, and the development of heuristic algorithms to find a
fast solution, by sacrificing optimality [3]. Note that, to define the ASUPM problem, a new
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variable, agents, is added to the definition of the UPMS problem, conserving the number of
machines m, and the number of jobs n, so it is not difficult to see that the ASUPM problem
contains the UPMS problem (see Appendix A). As stated in [42–45], the UPMS problems
belongs to the NP-hard complexity, ergo, the ASUPM is also a NP-hard problem.

3. Proposed Methods
3.1. Linear Formulations

Six mixed-integer formulations are proposed, which have as foundations the linear
models presented by [23] for the unrelated parallel machine scheduling problem with
sequence and machine-dependent setup times (UPSM). The model notation is listed below:

• Variable xrijk takes 1 if agent r performs job k just after job j in machine i, 0 otherwise.
• Variable yrik takes 1 if agent r performs job k in machine i, 0 otherwise.
• cj stands for completion time of job j.
• V is used as a large constant.
• N0 is used to denote the set N of n jobs plus a dummy one. All times, both processing

and setup associated with the dummy job are 0.
• xri0k is used to denote that the job k will be performed first in machine i by agent r.
• xrij0 is used to denote that the job j will be performed last in machine i by agent r.

Since the problem aims to minimize the maximum makespan, it is needed to linearize
the objective function. To do so, the job completion will be used, by stating that all
completion times for any job j must be smaller or equal than the maximum makespan cmax.

The first lineal model is stated as:

Min Z = cmax (1)

Subject to :

∑
r∈E

∑
i∈M

∑
j∈N0
j 6=k

xrijk = 1 ; ∀k ∈ N (2)

∑
r∈E

∑
i∈M

∑
k∈N0
j 6=k

xrijk = 1 ; ∀j ∈ N (3)

∑
k∈N0
j 6=k

xrijk − ∑
h∈N0
j 6=h

xrihj = 0 ; ∀j ∈ N, ∀i ∈ M, ∀r ∈ E (4)

∑
i∈M

∑
k∈N

xri0k ≤ 1 ; ∀r ∈ E (5)

∑
r∈E

∑
k∈N

xri0k ≤ 1 ; ∀i ∈ M (6)

ck − cj + V(1− xrijk) ≥ srijk + pik ; ∀r ∈ E, ∀i ∈ M, ∀k ∈ N, ∀j ∈ N0, j 6= k (7)

c0 = 0 (8)

cj ≤ cmax ; ∀j ∈ N (9)

xrijk ∈ {0, 1} ; ∀r ∈ E, ∀i ∈ M, ∀j ∈ N0, ∀k ∈ N0, j 6= k (10)

cj ≥ 0 ; ∀j ∈ N (11)

Objective function (1) minimizes the makespan of the solution. Constraint (2) defines
one predecessor to every job, while constraint (3) defines one successor to every job.
Constraint (4) ensures that a predecessor and successor of a job are scheduled in the same
machine. Constraint (5) ensures the scheduling of the first job with relation one machine to
one agent, constraint (6) ensures the scheduling of the first job with relation one agent to
one machine. Constraint (7) avoids loops in the processing order, constraint (8) states that
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the dummy job has no duration. Constraint (9) linearizes the objective function. Finally,
constraints (10) and (11) state the nature of variables x and c, respectively.

The second model can be defined from the first model, by swapping constraints (2)–(4) by

∑
r∈E

∑
i∈M

yrik = 1 ; ∀k ∈ N (12)

yrik = ∑
j∈N0
j 6=k

xrijk ; ∀r ∈ E, ∀i ∈ M, ∀k ∈ N (13)

yrij = ∑
k∈N0
k 6=j

xrijk ; ∀r ∈ E, ∀i ∈ M, ∀j ∈ N (14)

Furthermore, adding the constraints

yrik ≥ 0 ; ∀r ∈ E, ∀i ∈ M, ∀k ∈ N (15)

Constraint (12) assigns a job to exactly one machine and one agent. Constraint (13)
ensures that a predecessor for a job is scheduled in the same machine with the same agent.
Constraint (14) ensures that a successor for a job is scheduled in the same machine with the
same agent. Constraint (15) defines the nature of y variables.

Let us introduce another way to linearize the objective function, using the span of the
machine, Oi. The span is the completion time of the last job in the sequence assigned to the
machine i, and for models using xrijk variables are defined by expression (16).

Oi = ∑
j∈N0
j 6=k

∑
k∈N

(srijk + pik)xrijk ; ∀r ∈ E, ∀i ∈ M (16)

Furthermore, the linearization of the objective function by expression (17).

Oi ≤ Cmax ; ∀r ∈ E, ∀i ∈ M (17)

The above expression can be rewritten as:

∑
j∈N0
j 6=k

∑
k∈N

(srijk + pik)xrijk ≤ cmax ; ∀r ∈ E, ∀i ∈ M (18)

Additionally, the linearization using yrik variables is defined by:

∑
j∈N0
j 6=k

∑
k∈N

srijk ∗ xrijk + ∑
k∈N

pik ∗ yrik ≤ cmax ; ∀r ∈ E, ∀i ∈ M (19)

From the first and second model and considering the linearization by machine span,
four extra formulations can be defined:

• Model 3: Replace contraints (9) by contraints (18) in the first model (use of x variables
and linearization by machine span).

• Model 4: Replace contraints (9) by contraints (19) in the second model (use of y
variables and linearization by machine span).

• Model 5: Add contraints (18) to the first model (use of x variables and linearization by
both job completion time and machine span).

• Model 6: Add contraints (19) to the second model (use of y variables and linearization
by both job completion time and machine span).

In the Results section, a comparison is presented between the six formulations pro-
posed to investigate which one produces better results in less computational time.
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3.2. Heuristic Algorithms

Due to the NP-hard complexity of the ASUPM problem, it is impossible, compu-
tationally speaking, to solve large instances with mixed-integer linear models, because
exponential time is required to find an optimal solution [3]. Hence, a heuristic is proposed
to solve the problem in an efficient and faster way, without ensuring optimality. The
heuristic is composed of seven algorithms and divided into two categories: Construction
of initial solution (designed algorithm) and improvement by intra (tabu search) and inter
perturbation (insertions and interchanges). Table 1 presents the maximum number of
iterations and the maximum number of iterations without improvement allowed for the
heuristic algorithms. The stopping criteria, m, for the Algorithm 1 is directly related to the
length p of the job sequence being improved with tabu search, while for Algorithms 2–5, is
related to the number of jobs and agents of the instance. In this way, the stopping criteria is
not a constant value, but proportional to the size of the instance.

Algorithm 1: Tabu search

1 take current solution as a route of a machine;
2 while iterations within limits of maximum iteration criteria do
3 generate the neighborhood (2-swap) for the current solution and calculate the

makespan;
4 choose the best admissible solution;
5 update tabu list and current solution;
6 if current solution is better than historic solution then
7 set historic solution to current solution;
8 end
9 end

10 return historic solution;
Result: Intra perturbation (different to initial solution if improved)

Algorithm 2: Job insertion

1 take current solution from previous algorithms;
2 while iterations within limits of maximum iteration criteria do
3 choose a sequence of jobs from an agent;
4 choose a job from the sequence selected;
5 insert the chosen job in all other sequences of jobs and apply tabu search

(Algorithm 1);
6 if a insertion makespan is better than current solution then
7 update the current solution with the best insertion;
8 eliminate the chosen job of the sequence of chosen agent and apply tabu

search (Algorithm 1) ;
9 end

10 if current solution is better than historic solution then
11 set historic solution to current solution;
12 end
13 end
14 return historic solution;

Result: Inter perturbation (different to initial solution if improved)
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Algorithm 3: Job interchange

1 take current solution from previous algorithms;
2 while iterations within limits of maximum iteration criteria do
3 choose a randomly selected agent;
4 choose a randomly selected job from the sequence of the chosen agent;
5 for all sequence of agents (except chosen agent) do
6 change the chosen job with a randomly selected job of the sequence;
7 apply tabu search (Algorithm 1) to the sequences where jobs were changed;
8 end
9 if the makespan of one or several changes is smaller than the maximum makespan for

both involved sequences then
10 update current solution with the sequences which average makespan has

the greatest difference with respect to the maximum makespan;
11 end
12 end
13 return current solution;

Result: Inter perturbation (different to initial solution if improved)

Algorithm 4: Job insertion and interchange

1 take current solution from previous algorithms;
2 while iterations within limits of maximum iteration criteria do
3 apply job interchange (Algorithm 3) to update the current solution;
4 apply job insertion (Algorithm 2) to update the current solution;
5 end
6 return current solution;

Result: Inter perturbation (different to initial solution if improved)

Algorithm 5: Change of machines

1 take current solution from previous algorithms;
2 while iterations within limits of maximum iteration criteria do
3 update the list of machines (assignation to agents);
4 if running first version of the algorithm then
5 apply job interchange (Algorithm 3);
6 apply job insertion (Algorithm 2);
7 end
8 if running second version of the algorithm then
9 apply job insertion and interchange (Algorithm 4);

10 end
11 if current solution is better than historic solution then
12 set historic solution to current solution;
13 end
14 end
15 return historic solution;

Result: Inter perturbation with machines (different to initial solution if improved)
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Table 1. Stopping criteria for the algorithms by number of iterations.

Algorithm Description Maximum
Iterations (m)

Maximum Iterations
without Improvement

1 Tabu search d2.5pe p
2 Job insertion agentsd jobs

agents e dm
2 e

3 Job interchange agentsd jobs
agents e dm

2 e
4 Job insertion and interchange agentsd jobs

agents e dm
2 e

5 Change of machines agentsd jobs
agents e dm

2 e

3.2.1. Constructive Phase

The constructive phase aims to assemble the first sequences of jobs for each
agent/machine and provide the improvement phase with a feasible and good solution,
which, for different runs, will be different due to the addition of controlled randomness.
The pseudo-code of the proposed constructive heuristic is presented in Algorithm 6. Firstly,
to initialize the sequences, a machine and an initial job is assigned to each agent. To do
so, an unassigned machine is selected randomly. Then, the processing time of performing
every available job j in the machine selected is summed, plus the average setup time to
perform that job j before any other job available (for the available agents). The job and
agent associated with the lowest value are then assigned to the machine selected. The
process is repeated until all agents have a machine and an initial job assigned.

Algorithm 6: Constructive process

1 take the data of the instance;
2 while machines without job/agent assigned do
3 assign an available job and agent to a machine i;
4 update lists of assigned and unassigned jobs/machines/agents;
5 end
6 while jobs without agent/machine assigned do
7 assign an available job j to a machine;
8 update lists of assigned and unassigned jobs;
9 end

10 return list of jobs assignments (solution) and list of assigned machines;
Result: Initial solution for the problem

Tabu Search

Later, the sequences of all agents are completed with the unassigned jobs (at this point,
the machine assigned to an agent does not change). An unassigned job is selected. The
job is inserted at the beginning and the end of every agent’s sequence of jobs. For each
insertion, the increment in the makespan is calculated, this will result in 2r values. The
jobs are inserted only at the beginning/end to sustain the criteria of insertion based on
increments in makespan over the iterations. Then, the values are sorted in ascending order,
and a sublist of candidates is created with the first d 2r

3 e elements (that is, at least one-third
of the values will be considered as candidates). A value is randomly selected from the
sublist, and the selected job is assigned in the machine and position associated with the
value. The process is repeated and finished when all jobs are assigned. The feasible solution
is then passed to the improvement algorithms to decrease the maximum makespan of
the sequences.

3.2.2. Improvement Phase

The objective of this phase is to minimize as much as possible the maximum makespan
of the initial solution, obtained in the constructive phase. To improve the solution, different
techniques are used to intra and inter perturb the solution.
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Tabu search is used to perform an intra perturbation of a sequence of jobs, that
is, improvements within machines. Here, a version is implemented based on the algo-
rithms published in [46]. The pseudo-code of the tabu search implemented is presented
in Algorithm 1. In each iteration, a 2-swap neighborhood is evaluated (local search). The
2-swap implies a neighborhood size of p(p−1)

2 , where p is the length of the sequence. For
instance, if a sequence of a machine i is given by the jobs ( f , g, h), its neighborhood is
defined as:

(h, g, f )—swapped f and h
(g, f , h)—swapped f and g
( f , h, g)—swapped g and h

The makespan is calculated for each member of the neighborhood, and the best
admissible solution is chosen. The best admissible solution is defined as one in which
both members of the pair of jobs swapped are not tabu and increments the less possible
(or decreases) the makespan. If the solution is tabu but improves the best solution, it is
also chosen (aspiration criteria). The swapped jobs associated with the member of the
neighborhood chosen are designed as tabu for the next d0.4pe iterations (proportional
to the length of the sequence). That number of iterations is defined as the tabu tenure,
which allows avoiding loops around a local minimum. The process is iterated according
to Table 1.

Job Insertion

Insertion of jobs is applied to inter perturb the current solution, that is, moving jobs
from machines, as presented in the pseudo-code of Algorithm 2. The algorithm is iterated
according to Table 1. First, a sequence of jobs of an agent is chosen. An agent is selected
randomly, except if the current iteration is multiple of d jobs

agents e, then the sequence of the
busiest agent (more jobs assigned) is chosen, in other words, the busiest agent will be
selected each d jobs

agents e iterations (proportional to the instance size), to balance the jobs
assigned within agents, and hence, try to reduce the maximum makespan by letting the
agents have a similar workload.

From the selected sequence, a job is chosen randomly. That job is then inserted in all
other sequences of jobs, at any position. For each insertion, tabu search is applied, and
the makespan is calculated. An insertion is chosen if and only if its makespan is smaller
than the maximum makespan of the current solution, and the difference concerning the
maximum makespan is the greatest among all insertions. Then, tabu search is applied to
the selected sequence (the one that now has one less job), and the current solution is set to
the perturbed solution.

As the criteria to choose an insertion only assures that the maximum makespan does
not increment, the current solution is compared against the best historical. If the maximum
makespan of the current solution is smaller than the maximum makespan of the historic
solution, historic is set to current. The algorithm returns the historic solution, different
from the initial solution if the insertion technique found a better sequence for the jobs
among agents. Note that, at this point, the machines assigned to agents do not change.

Job Interchange

As the insertion of jobs, the job interchange technique is applied to inter perturb the
current solution by swapping jobs from machines, as presented in the pseudo-code of
Algorithm 3. The logic behind this perturbation technique is: Firstly, from the current
solution, a sequence of jobs of an agent is chosen randomly, and a job from this sequence.
For all other sequences of jobs, the selected job is swapped with a randomly selected job.

Once the jobs are changed, tabu search is applied in both machines involved in the
change and the makespan calculated. A change is chosen if and only if the makespan of the
two sequences involved is smaller than the maximum makespan of the current solution,
and the average difference concerning the maximum makespan is the greatest among all
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interchanges. Then, the current solution is set to the perturbed solution, and the algorithm
is iterated according to Table 1. The algorithm returns the best solution found, different
from the initial solution if the perturbation technique found a better accommodation for
the jobs. Still, at this point, the machines assigned to agents do not change.

Job Insertion and Interchange

The job insertion and interchange procedure, Algorithm 4, is performed to inter
perturb a given solution. To the given solution is applied job interchange (Algorithm 3),
and immediately after, job insertion is applied (Algorithm 2). The process is iterated
according to Table 1. The algorithm returns the best solution found, different from the
initial solution if the perturbation technique found a better accommodation for the jobs.
Note that this algorithm does not change machines assigned to agents.

Change of Machines

Presented in Algorithm 5, the change of machines procedure is performed to inter
perturb the current solution, by changing the machines assigned to agents. The algorithm
is iterated according to Table 1.

First, the historic solution is set to the current solution, and it is decided which
machines are changed in the current solution. A couple of agents are chosen randomly
to swap machines, except if the current iteration is multiple of 4, then all the agents are
assigned randomly to any machine. Every 4 iterations, the algorithm will try to reduce the
maximum makespan by perturbing all sequences at the same time, involving all agents,
machines and jobs. Unlike the other hyperparameters of the other algorithms, which are
proportional to the size of the instance, in this case, four iterations were chosen because
for the large instances few perturbations were made in all the sequences. In this way, all
sequences are constantly disturbed, allowing more solutions to be evaluated.

Then, to the perturbed solution is applied job interchange (Algorithm 3), and to its
result job insertion is applied (Algorithm 2), to explore a vast amount of neighborhoods.
A second version of the change of machines could be defined, if instead of applying
job interchange and insertion, Algorithm 4 is applied, allowing to explore more feasible
solutions for a change of machines. After performing the job insertion and interchange, the
maximum makespan is compared against the maximum makespan of the historic solution,
if it is smaller, historic is set to current. The algorithm returns the historic solution, different
from the initial solution if the perturbation technique found a better sequence for the jobs.

3.2.3. Heuristic Conformation

To assembly a heuristic to solve the ASUPM problem, the previously presented
algorithms are used in a specific order: depending on the algorithms run, there could be
two versions of the heuristic. Both versions are run a fixed amount of time given by the
expression time = (rn) (200 ms), where r is the number of agents and n is the number of
jobs of the instance being solved. Due to the time criteria to run the algorithm, controlled
randomness is applied in all algorithms, since making sequential changes and swaps of
jobs/machines by order can cause local searches to skip solutions that reduce significantly
the makespan; time could be over before the last elements in the sequences are evaluated.

The pseudo-code of the first version of the heuristic is presented in Algorithm 7. To
solve the problem, first, it is needed to construct a solution based on the instance data,
applying Algorithm 6. Now, with an initial solution available, the solution is improved
respecting the assignation of machines to agents by changing and inserting jobs within
sequences (Algorithm 4). The solution is further improved by swapping and changing
machines to agents, performing the Algorithm 5. From this point and until the time expires,
the solution is being improved by the first version of Algorithm 5 if the first alternative of
the heuristic is run, and by the second version of Algorithm 5 for the second alternative of
the heuristic. When the time is over, the heuristic brings a solution to the problem, which
consists of a list of machines assigned to agents, the sequence of jobs of each machine, the
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list of makespans of each sequence, and the maximum makespan, whose objective was
to minimize. Note that, even though the second alternative of the heuristic returns the
same elements as the alternative one, it lasts longer for each iteration: for every change of
machine more solutions are explored, that is, alternative two can evaluate a greater variety
of neighborhoods and their local minima.

Algorithm 7: Heuristic for the ASUPM problem

1 construct an initial solution (Algorithm 6);
2 update solution changing and inserting jobs (Algorithm 4);
3 update solution changing the machines assigned to agents (Algorithm 5);
4 while time within limits of maximum allowed run-time do
5 if running first alternative of the heuristic then
6 update solution changing the machines assigned to agents (first version of

Algorithm 5);
7 end
8 if running second alternative of the heuristic then
9 update solution changing the machines assigned to agents (second version

of Algorithm 5);
10 end
11 end
12 return solution;

Result: Final result for the problem

To respect the fluency of reading, an exemplification of the heuristic is presented in
the Appendix B section. Additionally, there are presented two application examples in
Appendix C: scheduling in the automotive industry and healthcare.

4. Experiments and Results

To test the performance of the solving technique methods proposed, the results of
numerical and statistical analysis are obtained for the models and heuristic. To perform
the analysis, there were randomly generated instances for the problem, both set-up and
processing times with a discrete uniform distribution in the range [1, 99]. To classify an
instance by size, it was considered the total data x of the instance, which is given by the
expression x = setupTimesData + processingTimesData, which in terms of the number of
agents q and the number of jobs n is equivalent to x = q2n2 + qn. The size classification of
an instance depending on its total data is presented in Table 2.

Table 2. Instance size based on total data.

Size Total Data (x)

Small x < 10, 000
Medium 10, 000 ≤ x < 100, 000

Large x ≥ 100, 000

4.1. Mixed-Integer Linear Models Results

To compare the performance of the models, the six versions were modeled in Python’s
library PuLP, and a small, medium, and large instance were generated and solved with the
free-to-use solver COIN CBC 2.10.5 (Coin-Or Foundation Inc., Towson, MD, USA), and the
commercial solvers CPLEX V12.10.0.0 (IBM, Armonk, NY, USA) and GUROBI 9.1.1 (Gurobi
Optimization, Beaverton, OR, USA). Each possible combination of instance, model, and
solver was run ten times. A solution is classified as “unsolved” if one hour of CPU run time
passed and the solver could not find the optimal value of the instance. The characteristics
of the computer used are Processor Core i5-8265U 1.6 GHz and 8 GB RAM. The summary
of run times is presented in Table 3.
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To determine which model and solver are the fastest for each one of the three sizes
of instances considered, paired two-sample Wilcoxon tests were performed in the pro-
gramming language R (the values obtained are considered as dependent since the same
instance is tested). First, for each size of the instance, it was compared models by pairs for
each solver. To do so, the following hypothesis is stated at five percent of significance (let
Mi and Mj represent the times to solve an instance for the linear models i and j, where
i, j = 1, 2, . . . , 6 and i 6= j):

H0 : Mi = Mj
H1 : Mi 6= Mj

Table 3. Average times (in seconds) for different instances, models and solvers.

Size Total Data Agents Jobs Model CBC CPLEX GUROBI

1 Unsolved 100.552 178.446
2 Unsolved 147.571 263.875
3 1680.951 21.548 102.419
4 1022.828 19.234 25.423
5 1079.978 17.531 65.812

Small 420 2 10

6 1273.468 16.604 11.265

1 Unsolved 92.995 61.731
2 Unsolved 65.494 49.395
3 114.100 37.578 12.379
4 135.784 22.855 10.605
5 86.302 21.596 9.589

Medium 22,650 10 15

6 128.592 12.663 9.565

1 Unsolved Unsolved Unsolved
2 Unsolved Unsolved 1848.641
3 Unsolved Unsolved 252.152
4 Unsolved Unsolved 303.049
5 Unsolved Unsolved 220.430

Large 360,600 20 30

6 Unsolved Unsolved 157.542

If the p-value is greater than α = 0.05, the models compared are statistically equal and
the comparison ends at this point. Contrarily, if the models are not statistically equal, the
comparison is continued and it is stated (at five percent of significance):

H0 : Mi ≥ Mj
H1 : Mi < Mj

If the p-value is smaller than α = 0.05, it is concluded that the run times of model i
are smaller concerning the run times of model j. Contrarily, if the p-value is greater than
α = 0.05, it is concluded that the run times of model i are greater with respect to the run
times of model j. When all comparisons are finished, the count of times model i is smaller
with respect to any other model, as is the count of times any other model is greater with
respect to model i. The model which has the higher count will be considered as the fastest
model for the solver. Then, the fastest model of each solver is compared in the same way to
determine the fastest model and solver of the instance. The process is repeated for each
one of the three sizes of instances. Since for many of the combinations tested, we did not
get an upper bound solution (because the solver reached the time limit or the computer
used ran out of memory), and the focus is to determine the fastest model and solver, partial
results are not shown.

It was tested a small instance of 2 agents and 10 jobs. According to the unpaired two-
sample Wilcoxon tests, for the CBC solver, models four, five, and six are tied in the criteria
to determine the fastest model: the count of times these models are smaller concerning
to any other model, plus the count of times any other model is greater with respect to
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these models is one. Since models four, five, and six are statistically equal, it was chosen
indiscriminately model four is the fastest model for CBC.

For the CPLEX and GUROBI solvers, the run times of the first five models are statis-
tically greater than model six, hence, model six is chosen as the fastest. Now, the fastest
models of each solver are compared similarly in Table 4 through unpaired two-sample
Wilcoxon tests. The tests indicate that the run times of model four (CBC) and model six
(CPLEX) are statistically greater than the run times of model six (GUROBI). For the small
instance, the fastest model is number six, solved with GUROBI.

Table 4. Comparison of fastest models for each solver to solve a small instance (two agents, ten jobs)
with unpaired two-sample Wilcoxon tests.

With Respect to→ CBC (Model 4) CPLEX (Model 6) GUROBI (Model 6) Total <

CBC (model 4) — > > 0
CPLEX (model 6) — — > 0

Total > 0 1 2 —

Additionally, a medium instance of 10 agents and 15 jobs was generated and tested.
For the CBC solver, with a score of three, model five is the fastest one, since the count
of times it is smaller with respect to any other model is one, and the count of times any
other model is greater concerning to it is two. For the CPLEX solver, the run times of the
first five models are statistically greater than model six, hence, model six is chosen as the
fastest. For the GUROBI solver, models five and six are tied with a score of four. Because
models five and six are statistically equal, it was chosen indiscriminately model six as the
fastest model for GUROBI. Similarly, the fastest models of each solver are compared in
Table 5 through unpaired two-sample Wilcoxon tests. The tests indicate that the run times
of model five (CBC) and model six (CPLEX) are statistically greater than the run times of
model six (GUROBI). For the medium instance, the fastest model is number six, solved
with GUROBI.

Table 5. Comparison of fastest models for each solver to solve a medium instance (ten agents, fifteen
jobs) with unpaired two-sample Wilcoxon tests.

With Respect to→ CBC (Model 5) CPLEX (Model 6) GUROBI (Model 6) Total <

CBC (model 5) — > > 0
CPLEX (model 6) — — > 0

Total > 0 1 2 —

Finally, a large instance of 20 agents and 30 jobs was tested. Since both CBC and
CPLEX solvers could not find the optimal value within the one-hour time limit, they are
discarded for the analysis to find the fastest model. For the GUROBI solver, the run times
of models two to five (model one could not solve the instance within the time limit) are
statistically greater than model six, hence, model six is chosen as the fastest. For the large
instance, the fastest model is number six, solved with GUROBI.

For the small, medium and large instances tested and considering the imposed time
constraint, there is statistical evidence to conclude that the fastest model is model six,
solved with GUROBI.

4.2. Heuristic Results

In this section, the two heuristic alternatives are compared to each other, as well as the
best results obtained against many optimal values for generated instances. The algorithms
that integrate the heuristic were programmed in Python 3.
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4.2.1. Comparison of Heuristics

Paired two-sample Wilcoxon tests were performed in the programming language R
to compare the performance of the two heuristic alternatives for a small, medium and a
large instance (same instances used in the previous section). Even though both heuristics
are different, and the results of the alternative one are not affected by the results of the
second alternative, results are considered dependent since we are comparing heuristics by
the same instance. Let A denote the population of alternative one of the heuristic and B the
population of alternative two. First, to determine if the values of A are equal to the values
of B, it is stated:

H0 : A = B
H1 : A 6= B

If there is enough statistical evidence to reject the null hypothesis, we may expect that
values from alternative two are smaller than the ones from version one, so it is stated:

H0 : B ≥ A
H1 : B < A

All tests were made with a significance level of five percent and a sample size of ten
for each population. Table 6 shows the codes of each stage of the heuristic presented in
Figures 2–4.

Table 6. Stage codes of the heuristic.

Heuristic Stage Description

1 Constructive: Initial solution
2 Improvement: Changes and insertions of jobs
3 Improvement: Changes of machines
4 Improvement: Changes and insertions of jobs to changes of machines

For the small instance (2 agents and 10 jobs), after the Wilcoxon test to determine
if the values obtained from alternatives one and two of the heuristic are equal, the null
hypothesis was failed to reject, so we conclude that the values are not significantly different.
Figure 2 shows five runs of the heuristic for the instance tested.

1 2 3 4 4 4

Heuristic stage

224

247

270

293

316

339

362

385

408

431

454

477

500

523

C
m

ax

Optimal: 224

Run 1: 224, 0.0% deviation

Run 2: 226, 0.892% deviation

Run 3: 226, 0.892% deviation

Run 4: 234, 4.464% deviation

Run 5: 226, 0.892% deviation

Heuristic behavior: Small instance (2 Agents, 10 Jobs)

Figure 2. Five runs and its results for a small instance in alternative two.

For the medium instance (10 agents and 15 jobs), it was rejected the null hypothesis of
the Wilcoxon test to determine if the values obtained from alternatives one and two of the
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heuristic are equal. The process is continued, by testing if the values from alternative two
are greater or equal than those from alternative one. The null hypothesis is also rejected,
so it is concluded that the values obtained from alternative two are significantly smaller.
Figure 3 shows five runs of the heuristic for the instance tested.

1 2 3 4 4 4 4

Heuristic stage

24

42

60

78

96

114

132

150

C
m

ax

Optimal: 24

Run 1: 31, 29.16% deviation

Run 2: 29, 20.83% deviation

Run 3: 25, 4.166% deviation

Run 4: 31, 29.16% deviation

Run 5: 30, 25.0% deviation

Heuristic behavior: Medium instance (10 Agents, 15 Jobs)

Figure 3. Five runs and its results for a medium instance in alternative two.

Finally, for the large instance (20 agents, 30 jobs), there was enough statistical evidence
to conclude that the values obtained from alternatives one and two of the heuristic are not
equal. Continuing with the comparisons, it was tested if the values from alternative two
are greater or equal than those from alternative one. The null hypothesis is also rejected,
so it is concluded that the values obtained from alternative two are significantly smaller.
Figure 4 shows five runs of the heuristic for the instance tested.

1 2 3 4

Heuristic stage

20

38

56

74

92

110

128

146

164

182

C
m

ax

Optimal: 20

Run 1: 25, 25.0% deviation

Run 2: 22, 10.0% deviation

Run 3: 26, 30.0% deviation

Run 4: 25, 25.0% deviation

Run 5: 27, 35.0% deviation

Heuristic behavior: Large instance (20 Agents, 30 Jobs)

Figure 4. Five runs and its results for a large instance in alternative two.

For the small instance, there is no statistical evidence to conclude that the versions of
the heuristic give different results. For the medium and large instances, there is enough
evidence to conclude that version two gives better results than version one. A summary of
the comparisons is presented in Table 7.
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Table 7. Summary of Wilcoxon tests to compare the alternatives of the heuristic.

Instance Size H0 : A = B H0 : B ≥ A

Small Fail to reject —
Medium Reject Reject

Large Reject Reject

4.2.2. Performance of the Heuristic: Comparison against Optimal Values

A set of instances was generated considering the following combinations of number
of agents r and number of jobs n: r ∈ {2, 3, 4, ..., 20}, n ∈ {rz+1, rz+2, rz+3, ..., rz+11} where z
represents the agent in the r set being combined. The instances generated were classified
according to Table 2. The heuristic was run at most three times, and the instances for which
the optimal value could not be found with model six and GUROBI within one hour of
CPU run time or due to lack of memory of the computer used were not considered. To
complete 100 instances of each size, some second versions of the considered instances were
generated (the selection of a considered instance was made randomly). Table 8 presents
the results of alternative two of the heuristic applied to the generated instances for which
the optimal value is known. The gap and relative deviation for a given instance i were
calculated in the expressions (20) and (21), respectively.

gapi = (heuristic best obtainedi)− (optimal valuei) (20)

relative deviationi (%) =
gapi

(optimal valuei)
(100) (21)

Table 8. Summary of the heuristic performance for generated instances.

Instance Size Instances Solved
to Optimality (%) Average Gap Maximum Gap Average Relative

Deviation (%)
Maximum Relative

Deviation (%)

Small 94 0.16 4 0.3199 12.903
Medium 35 2.69 10 9.718 36.842

Large 30 3.15 9 15.801 47.368

Figures 5a and 6a show the relative deviations and gaps obtained for small instances.
Only for six instances, the optimal value could not be found, representing less than 1%
of relative deviation. The average gap between the optimal and best-obtained values is
almost zero, which indicates that for small instances, the heuristic performs very well.

Now, it turns to analyzing the medium instances. Figures 5b and 6b show the devia-
tions and gaps obtained for that size of instances. 61% of the instances presented a relative
deviation below the average (9.71%). The gaps between the optimal and best-obtained
values are larger in comparison with small instances, but on average are close to zero (2.69).
For medium instances, the heuristic had a good performance.

Finally, let us analyze the results obtained for large instances. Figures 5c and 6c show
the deviations and gaps obtained. This time, around half the instances are below the
average relative deviation, which is 15.8%. The gaps with respect to optimal values are on
average greater than the gap for small and medium instances, and just 30 instances were
solved to optimality. The heuristic presented an acceptable performance for large instances.
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Figure 5. Relative deviation for: (a) Small, (b) Medium and (c) Large instances.
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Large instances.
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5. Discussion and Conclusions

The proposed model allows depicting a more integral scenario of productive systems
where individual attention is needed for each machine. Along with the management of
tasks and processes, the model incorporates the subject that can be a person, a robot, or
any entity in charge of operating these machines. Using a service process as an example,
the model can be used as a tool for employee management (if subjects are people), which
could lead to an increase in customer satisfaction if the makespan, and hence the time to
finish the services, are minimized.

There is a significant difference in the performance (time) to find an optimal value
between the linear models proposed in this study. In general, the models that linearize
the objective function by the machine span are faster than the models that linearize it by
the job completion time; however, the model that considers both types of linearization
and uses two index binary variables is the fastest. Similarly, there is a clear difference
between commercial and free-to-use optimizers, while the free-to-use optimizer used in
this research is slow and tends to be unstable for large instances, GUROBI presented the
fastest times to solve different sizes of instances, although the differences with respect to
CPLEX are not large.

The NP-hard complexity of the problem is easily experienced when dealing with
large instances since the computer runs out of memory before even finding a lower bound
for the objective function. Here is where heuristic algorithms gain relevance. The heuristics
are recommended to use when dealing with medium, but especially with large instances, as
the solvers can take too long to converge to optimality, and even before the computer used
can run out of memory. The performance difference between the two heuristics proposed
is evident for large instances, where the number of feasible solutions is high. Hence,
the second heuristic outperforms the first, given the exploration of more neighborhoods
(more possibilities to find a solution) for each machine change. In general, the proposed
heuristic will find a solution faster than the solvers, and has an outstanding performance
in small instances, since it can find the optimal value for almost every instance, very
good behavior in medium instances, and decent performance for large instances, where
the relative deviations tend to increase with respect to the small and medium instances.
Broadly, the heuristics perform well, for any size of the instance, if the relation of jobs
assigned to machines is low because it can explore more neighborhoods (solutions), due to
the nested improvement stage.

The problem addressed in this research mathematically includes the assignation
models where the dimension of decision variables is lower than the variables of the ASUPM
problem. The instances of those previous problems can be adapted and solved with the
models and heuristic proposed in this study. For example, the heuristic presented could
solve a problem of parallel machines and sequence-dependent times without agents, as well
as the problem with identical machines and fixed processing and setup times. However,
solving these sub-problems with the ASUPM methods would be computationally inefficient
because the duplicated data would result in exploring repeated neighborhoods.

Different real-world applications can be found in the industry and services. The model
could be applied in any process where a subject performs a task in a workstation/machine,
with or without an object in the machine. The application of models like the ASUPM will
allow companies to better manage their processes and resources by reducing assignment
costs or increasing the utilization of machines and resources to become more competitive.
Nonetheless, in real-life scenarios, a tolerance based on the nature of the application must
be defined to calibrate the algorithms with instances for which the optimal/best values are
known, before applying the heuristic.

Because the ASUPM is a NP-hard problem, a great opportunity for future research
is the development of models and algorithms that overperform the presented in this
paper. Additionally, future works should add more realistic elements such as Maintenance
activities, energy consumption, inventories, resources in the process, work shifts, and/or
just-in-time criteria.
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Abbreviations
The following abbreviations are used in this manuscript:

ASUPM Agent scheduling in unrelated parallel machines with sequence and agent–machine
dependent setup times

UPMS Unrelated parallel machines scheduling with sequence and machine-dependent
setup times

Appendix A. Contention of the UPMS in the ASUPM Problem

The UPMS problem belongs to the NP-hard complexity. To demonstrate that the
ASUPM problem is also NP-hard, it is needed to show that the ASUPM contains the
UPMS problem.

Let us recall that the UPMS problem aims to schedule jobs to machines while mini-
mizing the maximum makespan, and has as model parameters the processing time of job k
in machine i, pik and the setup times to perform job k right after job j in machine i, sijk. To
perform the demonstration, let us show that a UPMS instance could be adapted and solved
by the ASUPM defined techniques.

Let A be the variables, parameters and assumptions of the UPMS problem, x a valid
(in terms of size and content) instance for the UPMS problem with optimal value Z, B the
variables, parameters and assumptions of the ASUPM problem and y a valid instance for
the ASUPM problem with optimal value W. Since to the definition of the UPMS problem a
new variable is added, agents, conserving the number of machines, m, and the number of
jobs n, so it is stated:

Lemma A1. The ASUPM problem contains the UPMS problem.

A ⊆ B (A1)

Theorem A1. For any valid instance of the UPMS problem, x, exists a valid instance for the
ASUPM problem, y, composed of x in such a way that the solution to x and y is the same.

∀x ∃y =⇒ W = Z (A2)

Proof. To prove the theorem, let us first calculate the total number of data xt of a given
instance x for the UPMS problem. We know there is processing times pik, and sequence-
dependent setup times sijk, where i is the index corresponding to the set of m machines,
and j and k the indexes of the set of n jobs. By multiplying the number of elements in the
sets associated with the indexes, we can obatin the total data:

xt = Processing times + Setup times = mn + mn2 (A3)
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To calculate the total data yt for a given instance y for the ASUPM problem, we add to
the equation the number q of agents:

yt = Processing times + Setup times = qn + mqn2 (A4)

Because there is a machine for every agent, we can substitute q by m:

yt = mn + m2n2 (A5)

Now, the data difference between instances is calculated:

yt − xt = di f f erence (a) = (mn + m2n2)− (mn + mn2) (A6)

di f f erence (a) = m2n2 −mn2 (A7)

Coming back to the demonstration, let us recall the setup times definition for the
UPMS problem: there is a different time to setup job j before job k for every machine (sjk
represents a matrix with the setup times to perform job j before job k, that is, a matrix of
size n× n, with total data equal to n2):

∀i ∈ {1, 2, . . . , m} =⇒ sjk (A8)

Let S be the set of all sjk matrix, so m has a matrix of size n× n, that is, a total data of
mn2. The set S, alongside the processing times, have an optimal value of Z for the UPMS
problem. Now, the only way in which the optimal value Z is equal to the optimal value W
of the ASUPM problem is if and only if the numbers of the instance are the same. Since,
as presented above, the total data of the ASUPM problem instance, yt, is greater than the
total data of the UPMS instance xt, even if we use the same data of the x instance for the y
instance, we are missing data, the data corresponding to the new variable, agents. Because
there is a relation one agent to one machine, for each agent, the information of the setup
times for each machine is needed in order to duplicate data to obtain a valid ASUPM
problem instance (please note that, for both UPMS and ASUPM problems, the processing
times will be the same, because a machine i always lasts the same performing job j, no
matter the agent in charge of the machine):

∀r ∈ {1, 2, ..., q} =⇒ S (A9)

Let S∗ be the set of all S, so now q×m has a matrix of size n× n, that is, a total data of
qmn2 = m2n2. Then, the total data difference is calculated between the UPMS and ASUPM
instances. The processing time can be ignored for the difference calculation since it is a
constant matrix:

di f f erence (b) = m2n2 −mn2 (A10)

The relation di f f erence (a) = di f f erence (b) holds, so the instance created by dupli-
cating data from the UPMS instance is valid for the ASUPM problem. Now it is time to
check if the instances have the same optimal value. The set S of the UPMS problem valid
instance has an optimal value Z:

S =⇒ Z (A11)

In the valid ASUPM instance, we have a set S∗ composed of a q number of S, since we
duplicated data:

S∗ = {S, S, S, ..., q} (A12)

Each of the elements of S∗ has a local optima value, which is the same for all elements,
and turns out to be Z. The repeated local optima transfer into the global optima of the
instance, W, so Z = W, the instances have the same optimal value.

S∗ =⇒ W ∴ Z = W (A13)
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A UPMS instance can be adapted and solved by the ASUPM defined techniques, ergo,
the ASUPM contains the UPMS problem.

Appendix B. Heuristic Exemplification

Let us suppose we have an instance of 2 agents and 8 jobs that needs to be solved
with the heuristic proposed, whose processing times are (note that some values are colored,
these values will be helpful to identify the numbers used in the logic processes):

pik =

(
23 15 23 84 14 80 36 46
51 25 52 72 78 53 67 51

)
Furthermore, set-up times:

s11jk =



0 57 42 99 28 11 54 73
11 0 78 30 33 93 66 83
45 61 0 75 40 41 2 2
51 74 31 0 47 30 7 48
77 22 14 9 0 80 86 17
26 70 19 44 1 0 2 81
10 70 20 73 24 85 0 27
17 24 14 79 73 36 62 0


s12jk =



0 93 89 82 3 15 55 25
86 0 62 49 63 40 18 54
53 81 0 86 91 39 57 87
31 15 66 0 77 35 6 14
96 16 75 89 0 36 30 62
64 34 92 31 21 0 99 11
60 7 52 54 49 3 0 96
42 50 36 16 53 26 95 0



s21jk =



0 48 85 21 11 19 57 77
59 0 54 44 64 72 11 3
27 3 0 95 46 23 52 55
68 86 5 0 97 72 7 72
38 44 36 76 0 70 34 26
48 60 77 80 52 0 66 29
43 42 86 26 3 34 0 27
83 25 11 95 3 11 45 0


s22jk =



0 44 54 40 77 48 82 56
54 0 78 41 62 17 69 53
92 49 0 29 31 20 13 29
85 16 71 0 31 67 35 48
26 31 19 95 0 10 24 32
3 74 1 19 18 0 30 60

85 1 50 13 11 3 0 43
67 73 62 45 45 16 36 0



Appendix B.1. Construction of the Initial Solution

An initial solution will be constructed with the Algorithm 6. First, an available machine
is randomly selected, let us choose machine 2. The next step is, to sum the processing times
of performing each of the 8 available jobs in machine 2, plus the average setup time to
perform each job before any other. For instance, to evaluate the time it takes for job 4 to be
processed in machine 2 by agent 1, we perform: 72 + 31+15+66+77+35+6+14

7 = 106.8571.
From the computation, the minimum total time value, 78.1429, corresponds to agent 1

and job 2, so agent 1 is assigned machine 2 and job 2. Then, the process is continued; since
machine 1 is the only one available, it is selected. Similarly, the sum of processing times
and average setup times are computed for machine 1 and the jobs and agent available; after
the computations, with a value of 60.2857, machine 1 and job 5 are assigned to agent 2.

The sequences must be completed by assigning all available jobs (1, 3, 4, 6, 7, 8). To do
so, a job is randomly selected, let us pick job 6. This job is inserted at the beginning and the
end of the sequences of agents 1 (job 2) and 2 (job 5), and the increment in the makespan is
calculated for each insertion.

First, let us start evaluating the insertion at the beginning of the sequence of agent 1,
that is, the sequence of jobs 6-2. The increment in the makespan is calculated summing
the processing time of job 6 in machine 2 plus the setup time of performing job 2 after 6 in
machine 2 by agent 1, 53 + 34 = 87.

The next step is to evaluate the insertion of job 6 at the end of the jobs assigned to
agent 1, sequence 2-6. The increment in the makespan is the sum of the processing time of
job 6 in machine 2 plus the setup time of performing job 6 after 2 in machine 2 by agent 1,
53 + 40 = 93.
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Let us evaluate the insertion in the sequence of agent two, first at the beginning,
resulting in sequences 6-5. The makespan increment is the sum of the processing time of
job 6 in machine 1 plus the setup time of performing job 5 after 6 in machine 1 by agent 2,
80 + 52 = 132.

It is turning to evaluate the insertion of job 6 at the end of jobs assigned to agent 2,
sequence 5-6. The increment in the makespan is the sum of the processing time of job
6 in machine 1, plus the setup time of performing job 6 after 5 in machine 1 by agent 2,
80 + 70 = 150.

Now, we have 4 values: 87, 93, 132, 150. The values are sorted in ascending order,
in this case, the values are already ordered. Only the first d 2r

3 e = d
(2)(2)

3 e = 2 values are
considered for a subsequent sublist of candidates, which are 87, 93. A member of the list
of candidates is selected randomly, let us choose 93. Since the 93 value is associated with
agent 1 at the end position, job 6 is added to the now new sequence of jobs 2-6, assigned
to agent 1 and machine 2. The process is repeated until all 5 remaining jobs are assigned
to a sequence. Continuing with the Algorithm 6, an initial solution is obtained: Agent 1,
machine 2, jobs 2-6-8-3; Agent 2, machine 1, jobs 4-7-5-1, with maximum makespan equal
to 268.

Appendix B.2. Improvement by Inserting and Changing Jobs

When an initial solution is constructed, is then time to improve this solution, first
by changing and inserting jobs, according to Algorithm 4. Remember the current solu-
tion: Agent 1, machine 2, jobs 2-6-8-3; Agent 2, machine 1, jobs 4-7-5-1, with maximum
makespan 268.

To the current solution, first the change of jobs procedure is applied, presented in
Algorithm 3. According to this algorithm, first an agent is selected randomly. Let us pick
agent 2. Now, a job is randomly selected and extracted from the sequence of agent 2, let us
choose job 5, which leads to the sequence 4-7-1 of agent 2. For all other sequences of jobs,
job 5 is swapped with a randomly selected job. Since there is only one remaining sequence
of jobs (sequence of agent 1), job 3 of this sequence is selected (randomly) and extracted,
leading to the sequence 2-6-8 of agent 1. Now, the extracted jobs are swapped, resulting in
the sequence 2-6-8-5 for agent 1 and sequence 4-7-3-1 for agent 2. For the new sequences,
tabu search, Algorithm 1, is applied. Let us evaluate the application of tabu search in the
sequence 2-6-8-5 of agent 1, whose makespan is 311 (set initial to historic solution). Firstly,
for each of the neighborhoods of the current solution the makespan is calculated (tabu
search iteration 1):

6-2-8-5; swapped 6 and 2, makespan equal to 348.
8-6-2-5; swapped 8 and 2, makespan equal to 330.
5-6-8-2; swapped 5 and 2, makespan equal to 304.
2-8-6-5; swapped 8 and 6, makespan equal to 308.
2-5-8-6; swapped 5 and 6, makespan equal to 358.
2-6-5-8; swapped 5 and 8, makespan equal to 330.

With makespan equal to 304, the sequence 5-6-8-2 is selected, since it is the option the
reduces the most the makespan. In addition, the selected sequence is set as the historic
solution, because its makespan is smaller than the initial solution. The tabu tenure is
defined as d0.4ne = d(0.4)(4)e = 2, where n is the number of elements in the sequence
being evaluated. The swap of jobs 5-2 will be tabu for the next tabu tenure iterations (2),
that is, until iteration 3. The makespan is calculated for each of the neighborhoods of the
selected sequence (tabu iteration 2):

6-5-8-2; swapped 6 and 5, makespan equal to 340.
8-6-5-2; swapped 8 and 5, makespan equal to 270.
2-6-8-5; swapped 2 and 5, makespan equal to 311.
5-8-6-2; swapped 8 and 6, makespan equal to 329.
5-2-8-6; swapped 2 and 6, makespan equal to 303.
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5-6-2-8; swapped 2 and 8, makespan equal to 331.

The sequence 8-6-5-2, with makespan 270 is selected since it reduces the most makespan.
This sequence is set as the historic solution, because its makespan is smaller than the previ-
ous historic of 304. The tabu list (in terms of the number of iteration) is {(5-2): 3, (8-5): 4}.
The neighborhood is defined as (tabu iteration 3):

6-8-5-2; swapped 6 and 8, makespan equal to 287.
5-6-8-2; swapped 5 and 8, makespan equal to 304 (is tabu).

2-6-5-8; swapped 2 and 8, makespan equal to 330.
8-5-6-2; swapped 5 and 6, makespan equal to 330.
8-2-5-6; swapped 2 and 6, makespan equal to 356.

8-6-2-5; swapped 2 and 5, makespan equal to 330 (is tabu).

Note that two sequences were tabu, which means they cannot be selected, except, by
the aspiration criteria, if its makespan is smaller than 270 (historic smallest in tabu search),
but this is not the case. None of the options reduce the makespan, so, the sequence 6-8-5-2
is selected since its makespan, 287, increases the least the makespan and it is not tabu. The
tabu list is updated, {(8-5): 4, (6,8): 5}, and the neighborhood for the current solution is
evaluated (tabu iteration 4):

8-6-5-2; swapped 8 and 6, makespan equal to 270 (is tabu).
5-8-6-2; swapped 5 and 6, makespan equal to 329.
2-8-5-6; swapped 2 and 6, makespan equal to 350.

6-5-8-2; swapped 5 and 8, makespan equal to 340 (is tabu).
6-2-5-8; swapped 2 and 8, makespan equal to 366.
6-8-2-5; swapped 2 and 5, makespan equal to 331.

Note that we have a sequence with a makespan of 270, this reduces the most the
makespan, but, being tabu, and being not smaller than the historic smallest in tabu search,
is not chosen. The best admissible sequence is 5-8-6-2, with a makespan of 329. The
subsequent results of the tabu search are presented below.

Tabu iteration 5, current solution 5-8-6-2, makespan 329. Tabu list {(6,8): 5, (5,6): 6}.
Neighborhoods:

8-5-6-2; swapped 8 and 5, makespan equal to 330.
6-8-5-2; swapped 6 and 5, makespan equal to 287 (is tabu).

2-8-6-5; swapped 2 and 5, makespan equal to 308.
5-6-8-2; swapped 6 and 8, makespan equal to 304 (is tabu).

5-2-6-8; swapped 2 and 8, makespan equal to 274.
5-8-2-6; swapped 2 and 6, makespan equal to 359.

Tabu iteration 6, current solution 5-2-6-8, makespan 274. Tabu list {(5,6): 6, (2,8): 7}.
Neighborhoods:

2-5-6-8; swapped 2 and 5, makespan equal to 317.
6-2-5-8; swapped 6 and 5, makespan equal to 366 (is tabu).

8-2-6-5; swapped 8 and 5, makespan equal to 318.
5-6-2-8; swapped 6 and 2, makespan equal to 331.

5-8-6-2; swapped 8 and 2, makespan equal to 329 (is tabu).
5-2-8-6; swapped 8 and 6, makespan equal to 303.

The number of maximum iterations for the tabu search is defined by
d2.5ne = d(2.5)(4)e = 10, and the number of maximum iterations without improvement
by n = 4. The best solution in the tabu search was, with a makespan of 270, the sequence
8-6-5-2, found in iteration 2. Four iterations passed without improvement (iteration 3, 4, 5
and 6), so the tabu search finishes at this point, returning the best solution.

Back to the change of jobs procedure, Algorithm 3, we applied tabu search to the
sequence 2-6-8-5 of agent 1, resulting in 8-6-5-2 with a makespan of 270. We need to apply
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tabu search to the sequence of agent 2, 4-7-3-1. If we apply tabu search according to the
criteria defined above, the sequence 3-1-4-7 is obtained, with a makespan of 221. Since
one of the solutions obtained in the tabu search is greater than the maximum makespan of
the global current solution, 268, the new sequences are discarded and a new iteration of
Algorithm 3, change of jobs, is started.

From the current global solution, Agent 1, machine 2, jobs 2-6-8-3; Agent 2, machine 1,
jobs 4-7-5-1, with maximum makespan 268, an agent is selected randomly, let us pick
agent 1. From the sequence of agent 1, a job is randomly selected and extracted, let us
choose job 3, obtaining the sequence 2-6-8. From the remaining sequence, agent 1, a job
is randomly selected and extracted, let us pick job 4, resulting in sequence 7-5-1. The
extracted jobs are swapped, resulting in sequence 2-6-8-4 for agent 1, and sequence 7-5-1-3
for agent 2. If we apply tabu search to both sequences, for agent 1, the sequence 6-8-4-2 is
obtained, with a makespan of 243, and sequence 7-5-3-1, with a makespan of 162, for agent
2. Since both makespans are smaller than the maximum makespan of the global current
solution, 268, the new sequences obtained are set to the current solution.

As stated before, the number of maximum iterations for the change of jobs procedure
is defined by m = agentsd jobs

agents e = 2d 8
2e = 8, and number of maximum iterations without

improvement by dm
2 e = 4. Continuing with the computations, the best solution is found in

iteration 2, with a maximum makespan of 243, four iterations passed without improvement
(iteration 3, 4, 5 and 6), so the change of jobs technique finishes at this point, with a
solution: Agent 1, machine 2, jobs 6-8-4-2; Agent 2, machine 1, jobs 7-5-3-1, with maximum
makespan 243.

The next step in the changing and inserting jobs procedure is to perform the Algorithm 2,
job insertion, to the solution found in the change of jobs procedure (Algorithm 3). First,
an agent is chosen randomly, except every d jobs

agents e = d
8
2e = 4 iterations, when the busiest

agent (the one with more jobs assigned) is selected. Since this will be the first iteration, let
us make a random choice, agent 1. After, a job from the sequence of the selected agent is
chosen randomly, let us pick job 2. Job 2 is then inserted in all other sequences of jobs, at
any position. For each insertion, tabu search is applied; since the only sequence remaining
is the sequence of jobs of agent 2, there will be only one insertion per iteration. Job 2 is
inserted in the sequence of agent 2, resulting in 7-5-3-1-2. To this sequence tabu search
is applied, obtaining 1-5-3-2-7, with a makespan of 172. Because the makespan obtained
is smaller than the maximum makespan of the current global solution, 243, we keep the
insertion. Then, tabu search is applied to the sequence of agent 1, where job 2 was removed:
6-8-4. Tabu search gives the sequence 6-8-4 as a solution, with a makespan of 203. The
solution: Agent 1, machine 2, jobs 6-8-4; Agent 2, machine 1, jobs 1-5-3-2-7, with maximum
makespan 203 is set to the current and historic solution since it reduces the global maximum
makespan.

For the next iteration, the second one, let us pick agent 2, and job 1 from its sequence
of jobs. Job 1 is inserted in the sequence of agent 1, resulting in 6-8-4-1. After tabu search,
the sequence 1-6-8-4 is obtained, with a makespan of 269. The maximum makespan of the
current solution is 203, so the insertion is discarded because it makes the solution worse.

The number of maximum iterations for the change of jobs procedure is defined by
m = agentsd jobs

agents e = 2d 8
2e = 8, and number of maximum iterations without improvement

by dm
2 e = 4. The best solution is found in the first iteration, and according to further

computations, insertions in iterations 3, 4 and 5 did not improve and update the current
solution, as four iterations passed without improvement, the job insertion algorithm
finishes at this point. In addition, job insertion and interchange, Algorithm 4, is finished
now, with the solution: Agent 1, machine 2, jobs 6-8-4; Agent 2, machine 1, jobs 1-5-3-2-7,
with maximum makespan 203.
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Appendix B.3. Improvement by Changing of Machines

The improvement by changing and inserting jobs respected the initial assignation of
machines to agents, this time, further solutions will be evaluated by changing machines,
according to Algorithm 5. First, the current solution is set to the historic solution (Agent 1,
machine 2, jobs 6-8-4; Agent 2, machine 1, jobs 1-5-3-2-7, with maximum makespan 203). To
develop the perturbation technique, it is needed to update the list of machines by choosing
randomly a couple of agents and changing their assigned machines, except if the current
iterations are multiple of 4, then all agents will be assigned a machine randomly. Since
this is the first iteration, let us choose agent 1 and change its machine with agent 2, so, the
assignations of machines and jobs to evaluate are: Agent 1, machine 1 jobs 6-8-4; Agent 2,
machine 2, jobs 1-5-3-2-7. To this solution, is then applied the job interchange technique
explained previously (Algorithm 3), to obtain the solution: Agent 1, machine 1, jobs 1-5-4;
Agent 2, machine 2, jobs 8-6-3-7-2, with a maximum makespan of 279. To this solution, the
job insertion technique explained above is applied (Algorithm 2). After the procedure, a
solution is obtained: Agent 1, machine 1, jobs 5-4-8-1; Agent 2, machine 2, jobs 6-3-7-2, with
a maximum makespan of 241. Since the maximum makespan of the perturbed solution
is greater than the historic maximum makespan (203), it makes the solution worse, the
assignation is discarded and a new iteration is started.

For the second iteration, let us pick agent 2, and change its machine with agent 1, to
evaluate the solution: Agent 1, machine 1, jobs 6-8-4; Agent 2, machine 2, jobs 1-5-3-2-7.
After the application of the job interchange technique, the solution is obtained: Agent 1,
machine 1, jobs 5-3-7; Agent 2, machine 2, jobs 8-6-1-4-2, with maximum makespan 327. To
this solution the job insertion technique is applied to obtain the solution: Agent 1, machine
1, jobs 8-3-7-1-5; Agent 2, machine 2, jobs 4-2-6, with maximum makespan 196. The solution
obtained in this iteration reduces the maximum makespan of 7 units with respect to the
historic solution, so we set the found assignation as the historic solution.

Similarly to other algorithms, the number of maximum iterations for the change
of machines procedure is defined by m = agentsd jobs

agents e = 2d 8
2e = 8, and number of

maximum iterations without improvement by dm
2 e = 4. If the computations are continued,

the best solution is found in the second iteration, the changes of machines in iterations 3, 4,
5 and 6 did not improve and update the current solution, as four iterations passed without
improvement, the algorithm finishes at this point, with the historic solution: Agent 1,
machine 1, jobs 8-3-7-1-5; Agent 2, machine 2, jobs 4-2-6, with maximum makespan 196.

For both of the alternatives of the heuristic, the first iteration is completed with
Algorithm 5, and further iterations will continue to improve the solution by changing ma-
chines. However, for the second alternative of the heuristic, the improvement is made with
the second version of the changing of machines procedure (Algorithm 5). The difference is
stated after the new assignation of machines, where instead of applying Algorithms 2 and 3,
Algorithm 4 is applied. Because the second change of machines procedure, (Algorithm 5),
is composed of algorithms that were already exemplified, the details of its application are
not shown.

Appendix B.4. Final Results of the Heuristics for the Instance Being Solved

There are presented in Table A1 the summary of results of the two versions of the
heuristic for the instance being solved. Let us remember that the solution after the first
iteration is (which is the same for both versions): Agent 1, machine 1, jobs 8-3-7-1-5; Agent 2,
machine 2, jobs 4-2-6, with maximum makespan 196. The optimal maximum makespan for
the instance is 185.

The optimal solution for the instance is: Agent 1, machine 1, jobs 5-8-3-7-1; Agent 2,
machine 2, jobs 4-2-6, with maximum makespan 185. Both versions of the heuristic found
the optimal solution in the specified time, time = (rn)(200 ms) = (2)(8)(200 ms) = 3.2 s,
where r is the number of agents and n the number of jobs of the instance. The second
version of the heuristic explores more possible solutions for each change of machine
evaluated, that is why the number of iterations is more than four times smaller than the
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iterations in version one of the heuristics. Please note that because the heuristics have
elements of randomness, the solution for different runs could not be the same, especially
if the instance being solved is large. Figure A1 shows the graphical representation of the
solution found.

Table A1. Summary of results, two alternatives of the heuristic.

Heuristic Version 1 Heuristic Version 2

Iteration Algorithm Max Makespan Iteration Algorithm Max Makespan

1
Algorithm 6 (constructive) 268

1
Algorithm 6 (constructive) 268

Algorithm 4 (change,
insert jobs) 203 Algorithm 4 (change,

insert jobs) 203

Algorithm 5 (change machines) 196 Algorithm 5 (change machines) 196

2 Algorithm 5 (change machines) 196 2 Algorithm 5 (change machines,
second version) 194

3 Algorithm 5 (change machines) 196 3 Algorithm 5 (change machines,
second version) 185

...
...

... 4 Algorithm 5 (change machines,
second version) 185

23 Algorithm 5 (change machines) 194
...

...
...

24 Algorithm 5 (change machines) 194 10 Algorithm 5 (change machines,
second version) 185

...
...

...

29 Algorithm 5 (change machines) 185

30 Algorithm 5 (change machines) 185

...
...

...

46 Algorithm 5 (change machines) 185

0 20 40 60 80 100 120 140 160 180
Time (minutes)

Agent 1

Agent 2

5 8 3 7 1

4 2 6

Graphical representation of the solution
Processing time
Set-up time

Figure A1. Graphical solution of the instance used for the exemplification of the heuristics.
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Appendix C. Examples of the Model Application

All of the data presented in this section is fictional and is only used to exemplify the
applications of the model.

Appendix C.1. Scheduling of Automotive Seat Tests

When a person is sitting in a front car seat, either driving or in the passenger seat,
unconsciously, she/he is continually making down-up movements, caused by the vibration
generated by the transit of the car on surfaces that are never completely smooth. The
movement of the person and the seat is shown in Figure A2.

Figure A2. Vibration in automotive seats.

The person in the seat has a weight, w, that is supported by the seat. The vibration
combined with the weight of the passenger could cause severe affectations in the seat, such
as aesthetic affectation, especially in the areas that are in contact with the person (gluteus
cush and lumbar support), as well as structural and safety affectations, e.g., cracks in the
metal structure behind the cloth and sponge of the seat. Before selling a new car model,
automotive manufacturers must ensure that the vibration does not cause affectations in
the seat, to do so, simulations are performed in specialized laboratories under controlled
environments. The tests are prepared by engineers, who set up the seat in a jounce tester
machine to simulate the vibration, as shown in Figure A3.

Figure A3. Vibration simulation in automotive seats.

Let us suppose we are in charge of a seat test laboratory, where 8 employees work
and 8 different jounce tester machines are available in parallel. We need to perform
several vibrations tests for the seats of car models K10H, J21W and L21C from a French
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manufacturer, and to make the best use of the machine’s operating time and the engineers’
time, it is necessary to schedule the tests in such a way that the jobs take as little time as
possible. The jobs to be scheduled and the engineers available are presented in Table A2.

Table A2. Engineers and tests to be scheduled in jounce tester machines.

Engineer ID Test ID

Sebastián 1 K10H FR LH MY 20 1
Alejandro 2 K10H FR RH MY 20 2
Refugio 3 K10H FR LH MY 21 3
Gustavo 4 K10H FR RH MY 21 4
Nazareth 5 K10H FR LH MY 22 5

Silvia 6 K10H FR RH MY 22 6
Iván 7 J21W FR LH MY 20 7
Adán 8 J21W FR RH MY 20 8

J21W FR LH MY 21 9
CODES J21W FR RH MY 21 10

FR: Front J21W FR LH MY 22 11
LH: Left hand side J21W FR RH MY 22 12

RH: Right hand side L21C FR LH MY 21 13
MY: Model year L21C FR RH MY 21 14

L21C FR RH MY 22 15

This problem represents an instance of 8 agents and 15 jobs. After solving the instance
with the models proposed (and obtaining an optimal maximum makespan of 260), we
can inform their schedule to the employees (optimal assignation of machines and jobs), as
presented in Table A3.

Table A3. Engineers schedule for vibration tests.

Person Jounce Tester Test (in That Order)

Sebastián 1 3
Alejandro 8 4-11
Refugio 7 13-14
Gustavo 6 6-8
Nazareth 2 5-9

Silvia 3 2-1
Iván 4 12-15
Adán 5 10-7

From the solution, we can also obtain the time in which each job will be finished,
as presented in Table A4. Figure A4 shows the graph representation of the engineer’s
schedule.
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Table A4. Finalization time for vibration tests.

Test Finished at Time (Minutes)

1 256
2 73
3 150
4 103
5 97
6 50
7 241
8 184
9 244
10 94
11 253
12 52
13 130
14 260
15 240

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Time (minutes)

Sebastián

Alejandro

Refugio

Gustavo

Nazareth

Silvia

Iván

Adán

Test 3

Test 4 Test 11

Test 13 Test 14

Test 6 Test 8

Test 5 Test 9

Test 2 Test 1

Test 12 Test 15

Test 10 Test 7

Job schedule, seat tests

Processing time
Set-up time

Figure A4. Vibration tests schedule for the engineers.

Appendix C.2. Hemodialysis Scheduling in Hospitals

When a person’s kidneys are not healthy, they suffer from so-called renal failure: toxic
wastes from the blood are not filtered, hydration is not regulated, urine is not produced
properly, and the concentration of substances in the blood cannot be regulated. Renal
failure can be treated with hemodialysis, a purification process that helps to filter water
and toxins from the blood. To perform the hemodialysis, a nurse prepares the process of
placing needles in the patient’s arm. The artificial kidney is then programmed by the nurse
and makes it operate the time the patient needs, the machine pumps blood through a filter
and back into the body. When the artificial kidney is operating, a nurse must monitor the
process at all moments, to safeguard the patient’s condition [47].

Let us suppose we are the nurse in chief of the hemodialysis zone in a hospital. There
are 3 nurses on a 14-h shift and 3 different parallel artificial kidneys in the area, and for the
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next day, 10 patients must receive their treatment. It is needed to schedule the treatments in
such a way that all the hemodialysis are finished in the shorter possible time, to make the
best use of the artificial kidneys’ operating time, to increase the utilization percentage of the
nurses, and to indicate the patients the exact time they have to show up in the hospital, to
do not make them wait until the beginning of their treatment. Based on the hospital rules,
the patients must be in the hospital 10 min before their appointment, and the hemodialysis
process and work shift start at 8 a.m. The hemodialysis to be scheduled and the nurses
available are shown in Table A5.

Table A5. Nurses and hemodialysis to be scheduled in artificial kidneys.

Nurse ID Hemodialysis ID

Marisol 1 Female, 30 years old 1
Josué 2 Female, 58 years old 2
Tania 3 Male, 45 years old 3

Male, 59 years old 4
Female, 53 years old 5
Male, 81 years old 6

Female, 41 years old 7
Female, 70 years old 8
Male, 39 years old 9

Female, 65 years old 10

The problem represents an instance of 3 agents and 10 jobs. After solving the instance,
an optimal maximum makespan of 756 is obtained. With the solution, we can inform the
nurses of their schedule for the next day, as presented in Table A6.

Table A6. Nurses schedule for hemodialysis.

Person Artificial Kidney Hemodialysis (in That Order)

Marisol 2 7-1-4-10
Josué 3 9-2-5
Tania 1 3-6-8

From the solution, the time in minutes that each hemodialysis will finish was also
obtained, as presented in Table A7. The time that each patient is notified to show up is
shown (remember that the treatments start at 8:00 a.m. and the patient must be in the
hospital 10 min before her/his appointment, before the set-up time corresponding to the
treatment).

Table A7. Appointments and finalization time for hemodialysis.

Patient/
Hemodialysis

Appointment
(Hour of the Day)

Finished at
(Hour of the Day)

Finished at Time
(Minutes after 8:00 a.m.)

1 08:34 13:11 321
2 11:35 15:45 475
3 07:50 11:36 226
4 13:01 16:54 544
5 15:35 19:30 700
6 11:26 16:14 504
7 07:50 08:44 54
8 16:04 19:35 705
9 07:50 11:45 235

10 16:44 20:26 756

Figure A5 shows the graphical representation of the scheduling of hemodialysis.



Mathematics 2021, 9, 2955 32 of 34

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

Time (minutes)

Marisol

Josué

Tania

H7 H1 H4 H10

H9 H2 H5

H3 H6 H8

Job schedule, hemodialysis
Processing time
Set-up time
H: Hemodialysis

Figure A5. Hemodialisys schedule for the nurses.
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