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1. Introduction

Due to the complexity of the environment and the inherent ambiguity of human cogni-
tion, the information data in real world optimization problems are usually uncertain. More
often, we can not ignore the fact that small uncertainties in data may lead to a completely
meaningless of the usual optimal solutions from a practical viewpoint. Therefore, much
interest has been paid to the uncertain optimization problems, see [1–4].

There are various approaches used to tackle the optimization problems with uncer-
tainty, such as stochastic process [5], fuzzy set theory [6] and interval analysis [7]. Among
them, the method of interval analysis is to express an uncertain variable as a real interval
or an interval-valued function (IVF), which has been applied to many fields, such as, the
models involving inexact linear programming problems [8], data envelopment analysis [9],
optimal control [10], goal programming [11], minimax regret solutions [12] and multi-
period portfolio selection problems [13] etc. Up to now, we can find many works involving
interval-valued optimization problems (IVOPs) (see [14,15]).

In classical optimization theory, the derivative is the most frequently used one. It plays
an important role in the study of optimality conditions and duality theorems in constrained
optimization problems. To date, various notions of IVF’s derivative have been proposed,
see [16–23]. One famous concept is H-derivative defined in [16]. However, the H-derivative
is restrictive. In 2009, Stefanini and Bede presented the gH-derivative [23] to overcome
the disadvantages of H-derivative. Furthermore, in [24], Guo et al. proposed the gH-
symmetrically derivative which is more general than gH-derivative. Researchers of optimal
problems have largely used these derivatives of IVFs. For instance, Wu [25] considered the
Karush–Kuhn–Tucker (KKT) conditions for nonlinear IVOPs using H-derivative. In [26,27],
Wolfe type dual problems of IVOPs were investigated. Later, more general KKT optimality
conditions has been proposed by Chalco-Cano et al. [28,29] based on gH-derivative.
Besides, Jayswal et al. [30] extended optimality conditions and duality theorems for IVOPs
with the generalized convexity. Antczak et al. [31] studied the optimality conditions and
duality results for nonsmooth vector optimization problems with multiple IVFs [32]. In

Mathematics 2021, 9, 2979. https://doi.org/10.3390/math9222979 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8209-3869
https://doi.org/10.3390/math9222979
https://doi.org/10.3390/math9222979
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9222979
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9222979?type=check_update&version=2


Mathematics 2021, 9, 2979 2 of 14

2019, Ghosh [33] have extended the KKT condition for constrained IVOPs. In addition,
Van [34] investigated the duality results for interval-valued pseudoconvex optimization
problems with equilibrium constraints.

Based on the fact that the IVOPs have been extensively studied on optimality condition
and duality by many researchers in recent years, in this paper, we continue to study and
develop these results on optimality conditions and Wolfe duality of IVOPs on the basis of
the gH-symmetrically derivative. In addition, we are going to introduce more appropriate
concepts of symmetric pseudo-convexity and symmetric quasi-convexity to weak the
convexity hypothesis.

The remaining of the paper is as follows: In Section 2, we give preliminaries and recall
some main concepts. In Section 3, we propose the directional gH-symmetrically derivative
and more appropriate concepts of generalized convexity. Section 4 establishes the necessary
optimality conditions and Wolfe duality theorems. In Section 5, we apply the generalized
convexities to investigate the content in Section 4. Our results are properly wider than the
results in [28–30].

2. Preliminaries

Theorem 1 ([35]). Suppose that f : M → R is symmetrically differentiable on M and N is an
open convex subset of M. Then f is convex on N if and only if

f (t)− f (t∗) ≥ f s(t∗)T(t− t∗), for all t, t∗ ∈ N. (1)

Theorem 2 ([36]). Let A be a m× n real matrix and let c ∈ Rn be a column vector. Then the
implication

At ≤ 0⇒ cTt ≤ 0 (2)

holds for all t ∈ Rn if and only if
∃u ≥ 0 : uT A = cT , (3)

where u ∈ Rm.

Let I be the set of all bounded and closed intervals in R, i.e.,

I = {a = [a, a]|a, a ∈ R and a ≤ a}.

For a = [a, a], b = [b, b], c = [c, c] ∈ I and k ∈ R, we have

a + b = [a, a] + [b, b] = [a + b, a + b],

k · a = k · [a, a] =
{

[ka, ka], if k > 0;
[ka, ka], if k ≤ 0.

In [23], Stefanini and Bede presented the gH-difference:

a	g b = c⇔
{

a = b + c;
or b = a + (−1)c.

In addition, this difference between two intervals always exists, i.e.,

a	g b =
[

min{a− b, a− b}, max{a− b, a− b}
]
.

Furthermore, the partial order relation “�LU" on I is determined as follows:

[a, a] �LU [b, b]⇔ a ≤ b and a ≤ b,

[a, a] ≺LU [b, b]⇔ [a, a] �LU [b, b] and [a, a] 6= [b, b],

a and b are said to be comparable if and only if a �LU b or a �LU b.
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Let Rn be the n-dimensional Euclidean space, and T ⊂ Rn is an open set. We call the
function F : T → I an IVF, i.e., F(t) is a closed interval in R for every t ∈ T. The IVF F can
also be denoted as F = [F, F], where F and F are real functions and F ≤ F on T. Moreover,
F, F are called the endpoint functions of F.

Definition 1 ([24]). Let F : T → I. Then F is said to be gH-symmetrically differentiable
at t0 ∈ T if there exists Fs(t0) ∈ I such that:

lim
||h||→0

F(t0 + h)	g F(t0 − h)
||h|| = Fs(t0). (4)

Definition 2 ([24]). Let F : T → I and t0 ∈ T. If the IVF ϕ(ti) = F(t0
1, . . . , t0

i−1, ti, t0
i+1, . . . , t0

n)

is gH-symmetrically differentiable at t0
i , then we say that F has the ith partial gH-symmetrically

derivative ( ∂s F
∂ti

)g(t0) at t0 and

(
∂sF
∂ti

)g(t0) = ϕs(t0
i ).

Definition 3 ([24]). Let F : T → I be an IVF, and ∂s
ti

F stands for the partial gH-symmetrically
derivative with respect to the ith variable ti. If ∂s

ti
F(t0) (i = 1, . . . , n) exist on some neighborhoods

of t0 and are continuous at t0, then F is said to be gH-symmetrically differentiable at t0 ∈ T.
Moreover, we denote by

∇sF(t0) =
(
∂s

t1
F(t0), . . . , ∂s

tn F(t0)
)

the symmetric gradient of F at t0.

Theorem 3 ([24]). Let the IVF F : T → I be continuous in (t0 − δ, t0 + δ) for some δ > 0. Then
F is gH-symmetrically differentiable at t0 ∈ T if and only if F and F are symmetrically differentiable
at t0.

Definition 4 ([28]). Let F = [F, F] be an IVF defined on T. We say that F is LU-convex at t∗ if

F(θt∗ + (1− θ)t) �LU θF(t∗) + (1− θ)F(t)

for every θ ∈ [0, 1] and t ∈ T.

Now, we introduce the following IVOP :

min F(t) (5)

subject to gi(t) ≤ 0, i = 1, . . . , m,

where F : M→ I, gi : M→ R (i = 1, . . . , m), and M ⊂ Rn is an open and convex set. Let

X = {t ∈ Rn : t ∈ M and gi(t) ≤ 0, i = 1, . . . , m}

be the collection of feasible points of Problem (5), and the set of objective values of primal
Problem (5) is indicated by:

OP(F,X ) = {F(t) : t ∈ X}. (6)

Moreover, we review the definition of non-dominated solution to the Problem (5):

Definition 5 ([27]). Let t∗ be a feasible solution of Problem (5), i.e., t∗ ∈ X . Then t∗ is said to be a
non-dominated solution of Problem (5) if there exists no t ∈ X \ {t∗} such that: F(t) ≺LU F(t∗).

The KKT sufficient optimality conditions of Problem (5) have been obtained in [24]:
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Theorem 4 ([24], Sufficient optimality condition). Assume that F : M→ I is LU-convex and
gH-symmetrically differentiable at t∗, g : M→ Rn is convex and symmetrically differentiable at
t∗. If there exist (Lagrange) multipliers 0 ≤ µi ∈ R, i = 1, . . . , m such that

∇sF(t∗) +∇sF(t∗) +
m

∑
i=1

µi∇sgi(t∗) = 0;

m

∑
i=1

µigi(t∗) = 0, where µ = (µ1, . . . , µm)
T ,

(7)

then t∗ is a non-dominated solution to Problem (5).

Example 1. Consider the IVOP as below:

min F(t) (8)

subject to g1(t) ≤ 0,

g2(t) ≤ 0,

where

F(t) =
{

[4t2 + 2t− 3, 3t2 + 3t], if t ∈ (−1, 0);
[3t− 3, 3t], if t ∈ [0, 1),

and
g1(t) = −t; g2(t) = t− 1.

By simple calculation, F is LU-convex and gH-symmetrically differentiable at t = 0 and

∇sF(0) = [
5
2

, 3], gs
1(0) = −1, and gs

2(0) = 1.

The condition (7) in Theorem 4 is satisfied at t = 0 when µ1 = 11
2 , and µ2 = 0.

On the other hand, it can be easily verified that t = 0 is a non-dominated solution of
Problem (8). Hence, Theorem 4 is verified.

Noted that F is not gH-differentiable at t = 0, the sufficient conditions in [24] are properly
wider than those in [28].

3. Generalized Convexity of gH-Symmetrically Differentiable IVFs

The LU-convexity assumption in [28] may be restrictive. For example, the IVF

F(t) =
{

[t, 2t], if t ≥ 0;
[2t, t], if t < 0,

is not LU-convex at t = 0. Inspired by this, we introduce the directional gH-symmetrically
derivative and the concepts of generalized convexity for IVFs which will be used in
Section 4.

Definition 6. Let F : T → I be an IVF and h ∈ Rn. Then F is called directional gH-symmetrically
differentiable at t0 in the direction h if DsF(t0 : h) ∈ I exists and

DsF(t0 : h) = lim
α→0+

F(t0 + αh)	g F(t0 − αh)
2α

. (9)

If t = (t1, . . . , tn)T and ei = (0, . . . ,
i
1, . . . , 0), then DsF(t : ei) is the partial gH-symmetrically

derivative of F with respect to ti at t.
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Theorem 5. If F : T → I is gH-symmetrically differentiable at t ∈ T and h ∈ Rn, then the
directional gH-symmetrically derivative exists and

DsF(t : h) = Fs(t)Th.

Proof. Since, by hypothesis, F is gH-symmetrically differentiable at t, then there exists
Fs(t) ∈ I such that:

lim
αh→0

F(t + αh)	g F(t− αh)
2αh

= Fs(t).

Then, we have:

lim
α→0

D
( F(t + αh)	g F(t− αh)

2α
, Fs(t)h

)
= 0.

i.e.,
DsF(t : h) = Fs(t)h.

Thus, we complete the proof.

Definition 7. The IVF F : T → I is called symmetric pseudo-convex (SP-convex) at t0 ∈ T, if F
is gH-symmetrically differentiable at t0 and

Fs(t0)(t− t0) �LU 0 implies F(t) �LU F(t0),

for all t ∈ T.

F is said to be symmetric pseudo-concave (SP-concave) at t0 if −F is SP-convex at t0.

Definition 8. The IVF F : T → I is called symmetric quasi-convex (SQ-convex) at t0 ∈ T, if F is
gH-symmetrically differentiable at t0 and

F(t) �LU F(t0) implies Fs(t0)(t− t0) �LU 0,

for all t ∈ T.

F is said to be symmetric quasi-concave (SQ-concave) at t0 if −F is SQ-convex at t0.

Remark 1. When F = F, i.e., F degenerates to a real function, the concepts of SQ-convexity and
SP-convexity will degenerate to s-quasiconvexity and s-pseudoconvexity in [35].

4. KKT Necessary Conditions

The necessary optimality conditions are an important part of the optimization theory,
because these conditions can be used to exclude all the feasible solutions which are not
optimal solutions, i.e., they can identify all options for solving the problem. From this point,
using gH-symmetrically derivative, we establish a KKT necessary optimality condition
which is more general than [28,29].

In order to obtain the necessary condition of Problem (5), we shall use the Slater’s
constraint qualification [37]. Such condition is:

∃t0 ∈ X such that gi(t0) < 0, i = 1, . . . , m. (10)

Theorem 6 (Necessary optimality condition). Assume that F : M → I is LU-convex and
gH-symmetrically differentiable, gi : M→ R(i = 1, . . . , m) are symmetrically differentiable and
convex on M. Suppose H = {i : gi(t∗) = 0}. If t∗ is a non-dominated solution to Problem (5) and
the following conditions are satisfied:
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(A1) For every i ∈ H and for all y ∈ Rn, there exist some positive real numbers ξi, when 0 < ξ < ξi
and ∇sgi(t∗)Ty < 0, we have:

∇sgi(t∗ + ξy)Ty < 0;

(A2) The set X satisfies the Slater’s constraint qualification. For i ∈ H and for all h ∈ Rn,
D+F(t∗ : h) ≥ 0 implies that DsF(t∗ : h) ≥ 0 or D+F(t∗ : h) ≥ 0 implies that DsF(t∗ :
h) ≥ 0;

where D+F and D−F (D+F and D−F) are the right-sided and left-sided directional derivative of F
(F). Then, there exists u∗ ∈ Rm

+ such that condition (7) in Theorem 4 holds.

Proof. Suppose the above conditions are satisfied. Assume there exists w ∈ Rn such that:

wT∇sgi(t∗) ≤ 0,

and wT∇sF(t∗) < 0, wT∇sF(t∗) < 0, (∀i ∈ H).
(11)

Since X satisfies the Slater’s constraint qualification, by Equation (10), there exists
t0 ∈ X such that gi(t0) < 0 (i = 1, . . . , m). Then we have:

gi(t0)− gi(t∗) < 0, (∀i ∈ H),

Combining Theorem 1 and the convexity of gi, we have

∇sgi(t∗)(t0 − t∗) < 0, (∀i ∈ H).

by inequality (11), we get

∇sgi(t∗)[w + ρ(t0 − t∗)] < 0, (∀i ∈ H)

for all ρ > 0. By hypothesis in (A1), there exists ξi > 0 such that

gi(t∗ + ξ[w + ρ(t0 − t∗)] < 0, (∀i ∈ H)

for 0 < ξ < ξi. Therefore, we have: t∗ + ξ[w + ρ(t0 − t∗)] ∈ X .
Since t∗ is a non-dominated solution to Problem (5), there exists no feasible solution t

such that: F(t) ≺ F(t∗), i.e.,

F(t∗ + ξ[w + ρ(t0 − t∗)]) ≥ F(t∗),

or F(t∗ + ξ[w + ρ(t0 − t∗)]) ≥ F(t∗).

By hypothesis (A2), we have

[w + ρ(t0 − t∗)]∇sF(t∗) ≥ 0,

or [w + ρ(t0 − t∗)]∇sF(t∗) ≥ 0,

for all ρ > 0. When ρ→ 0+, we obtain

wT∇sF(t∗) ≥ 0, or wT∇sF(t∗) ≥ 0, (12)

which contradicts to the inequality (11).
Thus, inequality (11) has no solution. By Theorem 2, there exists 0 ≤ µ∗i ∈ R such that

∇sF(t∗) +∇sF(t∗) +
m

∑
i=1

µ∗i ∇sgi(t∗) = 0.
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For i 6∈ H, let µi = 0, then we have
m
∑

i=1
µigi(t∗) = 0. The proof is complete.

Example 2. Continued from Example 1, note that g1(0) = 0 and gs
1(t) ≡ −1. Moreover, M

satisfies the Slater’s condition. For h ∈ Rn we have:

D+F(0 : h) = lim
α→0+

F(0 + αh)− F(0)
α

=

{
3h, h > 0;
2h, h ≤ 0.

D−F(0 : h) = lim
α→0−

F(0 + αh)− F(0)
α

= 3h.

Obviously, D+F(t∗ : h) ≥ 0 implies that

D+F(t∗ : h) + D−F(t∗ : h) ≥ 0.

Thus, the conditions in Theorem 6 hold at t = 0.
On the other hand, we have:

∇sF(0) +∇sF(0) + ∑
i∈H

µ∗i ∇sgi(0) (13)

=
5
2
+ 3 + µ1 · (−1) + µ2 · 1 = 0

when µ1 = 11
2 , µ2 = 0. Hence, Theorem 6 is verified.

5. Wolfe Type Duality

In this section, we consider the Wolfe dual Problem (14) of Problem (5) as follows:

max F(t) +
m

∑
i=1

µigi(t) (14)

subject to ∇sF(t) +∇sF(t) +
m

∑
i=1

µi∇sgi(t) = 0,

µ = (µ1, . . . , µm) ≥ 0.

For convenience, we write:

L(t, µ) = F(t) +
m

∑
i=1

µ1gi(t). (15)

We denote by

Y = {(t, µ) ∈ Rn ×Rm : ∇sF(t) +∇sF(t) +
m

∑
i=1

µi∇sgi(t) = 0} (16)

the feasible set of dual Problem (14) and

OD(L,Y) = {L(t, µ) : (t, µ) ∈ Y} (17)

the set of all objective values of Problem (14).

Definition 9. Let (t∗, µ∗) be a feasible solution to Problem (14), i.e., (t∗, µ∗) ∈ Y . (t∗, µ∗) is said
to be a non-dominated solution to Problem (14), if there is no (t, µ) ∈ Y such that L(t∗, µ∗) ≺LU
L(t, µ).

Next, we discuss the solvability for Wolfe primal and dual problems.



Mathematics 2021, 9, 2979 8 of 14

Lemma 1. Assume that F : M→ I is LU-convex and gH-symmetrically differentiable, gi : M→
R(i = 1, . . . , m) are symmetrically differentiable and convex on M. Furthermore, H = {i :
gi(t∗) = 0}. If t̂, (t, µ) are feasible solutions to Problems (5) and (14), respectively, then the
following statements hold true:

(B1) If F(t) ≥ F(t̂), then F(t̂) ≥ L(t, µ);
(B2) If F(t) ≥ F(t̂), then F(t̂) ≥ L(t, µ).

Moreover, the statements still hold true under strict inequality.

Proof. Suppose t̂, (t, µ) are feasible solutions to Problem (5) and (14), respectively. Since F
is LU-convex, we have:

F(t̂) ≥ F(t) +∇sF(t)(t̂− t)

= F(t)−∇sF(t)(t̂− t)−
m

∑
i=1
∇sgi(t)(t̂− t)

≥ F(t) + F(t)− F(t̂) +
m

∑
i=1

[gi(t)− gi(t̂)].

If F(t)− F(t̂) ≥ 0, it follows that

F(t̂) ≥ F(t) +
m

∑
i=1

gi(t) = L(t, µ).

Thus, the statement (B1) holds true. On the other hand, if F(t)− F(t̂) > 0, then

F(t̂) > F(t) +
m

∑
i=1

gi(t) = L(t, µ).

The other statements can also be proof by using similar arguments.

Lemma 2. Under the same assumption to Lemma 1, if t̂, (t, µ) are feasible solutions to Problems
(5) and (14), respectively, then the following statements hold true:

(C1) If F(t) ≤ F(t̂), then F(t̂) ≥ L(t, µ);
(C2) If F(t) ≤ F(t̂), then F(t̂) ≥ L(t, µ).

Moreover, the statements still hold true under strict inequality.

Proof. Suppose F(t) ≤ F(t̂), then we have:

F(t̂)− L(t, µ)

=F(t̂)− F(t)−
m

∑
i=1

µigi(t)

≥Fs
(t)(t̂− t) + [−

m

∑
i=1

µigi(t̂) +
m

∑
i=1

µigi(t̂)−
m

∑
i=1

µigi(t)]

≥Fs
(t)(t̂− t) + [−

m

∑
i=1

µigi(t̂) +
m

∑
i=1

µigs
i (t)(t̂− t)]

=[Fs
(t) +

m

∑
i=1

µigs
i (t)](t̂− t)−

m

∑
i=1

µigi(t̂)

=− Fs(t̂− t)−
m

∑
i=1

µigi(t̂)

≥F(t)− F(t̂)−
m

∑
i=1

µigi(t̂)
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=F(t)− L(t̂, µ)

≥0.

Thus, the statement (C1) holds true. On the other hand, if F(t) < F(t̂), then:

F(t̂) > L(t, µ).

The proof of (C2) is similar to (C1), so we omit it.

Theorem 7. (Weak duality) Under the same assumption of Lemma 1, if t̂, (t, µ) are feasible
solutions to Problems (5) and (14), respectively, then the following statements hold true:

(D1) If F(t) and F(t̂) are comparable, then F(t̂) � L(t, µ).
(D2) If F(t) and F(t̂) are not comparable, then F(t̂) > L(t, µ) or F(t̂) > L(t, µ).

Proof. If F(t) and F(t̂) are comparable, by Lemmas 1 and 2, we can obtain the statement
(D1); If F(t), F(t̂) are not comparable, then we have:

F(t̂) ⊂ F(t), or F(t̂) ⊃ F(t).

By Lemmas 1 and 2, we obtain that:

F(t̂) > L(t, µ), or F(t̂) > L(t, µ).

The proof is complete.

Example 3. Consider the optimization problem in Example 1. The corresponding Wolfe duality
problem is:

max F(t) + µ1g1(t) + µ2g2(t) (18)

subject to ∇sF(t) +∇sF(t) + µ1∇sg1(t) + µ2∇sg2(t) = 0,

µ = (µ1, µ2) ≥ 0.

Clearly, t̂ = 0 is a feasible solution of the Problem (8) and the objective value is [−3, 0].
Moreover, (t, µ1, µ2) = (− 1

2 , 0, 2) is a feasible solution to the Problem (18), and objective value is
[−6,− 15

4 ].
We observe that

F(0) � L(−1
2

, 0, 2). (19)

Hence, Theorem 7 is verified.

Theorem 8. (Solvability) Under the same assumption of Lemma 1, if (t∗, µ∗) ∈ Y and L(t∗, µ∗) ∈
OP(F,X ), then (t∗, µ∗) solves the Problem (14).

Proof. Suppose (t∗, µ∗) is not a non-dominated solution to Problem (14), then there exists
(t, µ) ∈ Y so that:

L(t∗, µ∗) ≺ L(t, µ).

Since L(t∗, µ∗) ∈ OP(F,X ), there exists t̂ ∈ X such that:

F(t̂) = L(t∗, µ∗) ≺ L(t, µ). (20)

According to Theorem 7, if F(t), F(t̂) are comparable, then we have

F(t̂) � L(t, µ).
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If F(t), F(t̂) are not comparable, then:

F(t̂) > L(t, µ), or F(t̂) > L(t, µ).

These two results are contradict to Equation (20). Thus, we complete the proof.

Theorem 9. (Solvability) Under the same assumption of Lemma 1, if t̂ ∈ X is a feasible solution
to Problem (5) and F(t̂) ∈ OD(L,Y), then t̂ solves the Problem (5).

Proof. The proof is similar to Theorem 8, so we omit it.

Corollary 1. Under the same assumption of Lemma 1, if t̂, (t∗, µ∗) are feasible solutions to
Problems (5) and (14), respectively, moreover, if F(t̂) = L(t∗, µ∗), then t̂ solves Problem (5) and
(t∗, µ∗) solves the Problem (14).

Proof. The proof follows Theorem 8 and Theorem 9.

Theorem 10. (Strong duality) Under the same assumption of Lemma 1, if F, gi (i = 1, . . . , m)
satisfy the conditions (A1) and (A2) at t∗, then there exists µ∗ ∈ Rm

+ such that (t∗, µ∗) is a solution
of Problem (14) and

L(t∗, µ∗) = F(t∗).

Proof. By Theorem 6, there exists µ∗ ∈ Rm
+ such that:

∇sF(t∗) +∇sF(t∗) +
m

∑
i=1

µ∗i ∇sgi(t∗) = 0, (21)

and
m
∑

i=1
gi(t∗) = 0. It can be shown that L(t∗, µ∗) ∈ OD(L,Y) and

L(t∗, µ∗) = F(t∗).

By Corollary 1, there exists µ∗ ∈ Rm
+ such that (t∗, µ∗) is a solution to Problem (14).

The proof is complete.

Example 4. Continued from Example 2, after calculation, the non-dominated solution to Problem
(18) is (0, 11

2 , 0) and the objective value is [−6, 0]; While t = 0 is also a non-dominated solution to
Problem (8) and the objective value is [−6, 0]. Then we have:

L(0,
7
2

, 0) = F(0).

On the other hand, the IVF F in Example 2 satisfies the conditions (A1) and (A2), which
verifies Theorem 10.

6. The optimality Conditions with Generalized Convexity

In this section, we use the concepts of SP-convexity and SQ-convexity which are
less restrictive than LU-convexity to obtain some generalized optimality theorems of
Problem (5).

Theorem 11. (Sufficient condition) Suppose F is SP-convex and gi is s-quasiconvex at t∗ for i ∈ H.
If t∗ ∈ X , and for some µ∗ ∈ Rn

+ condition (7) in Theorem 4 holds, then t∗ is a non-dominated
solution to Problem (5).
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Proof. Assume for some µ∗ ≥ 0, condition (7) in Theorem 4 holds. We have
m
∑

i=1
µ∗i gi(t∗) =

0, where µ∗i = 0 when i 6∈ H. Since gi(t) ≤ gi(t∗) and gi is s-quasiconvex at t∗ for i ∈ H,
we obtain gs

i (t
∗)(t− t∗) ≤ 0. Thus:

m

∑
i=1

µ∗i gs
i (t
∗)(t− t∗) ≤ 0, for all t ∈ X ,

which implies:
∇s(F(t∗) + F(t∗))(t− t∗) ≥ 0 for all t ∈ X .

Thanks to the SP-convexity of F, we have:

F(t) + F(t) ≥ F(t∗) + F(t∗) for all t ∈ X . (22)

Then t∗ is an optimal solution to the real-valued objective function F + F subject to the
same constraints of Problem (5). Suppose t∗ is not a non-dominated solution of Problem
(5), there exists t ∈ X such that:

F(t) ≺ F(t∗)

which contradicts Equation (22). The proof is complete.

Example 5. Consider the following optimization:

min F(t) (23)

subject to g1(t) ≤ 0,

g2(t) ≤ 0.

where:

F(t) =
{

[t3 + t, 2t3 + t], if t ≥ 0;
[2t, 1.5t], if t < 0,

and g1(t) = −t, g2(t) = t− 1.
We observe that F is not gH-differentiable at t = 0, and F is not LU-convex at t = 0 with:

F(0) 6� 2
3

F(
1
4
) +

1
3

F(−1
2
).

However, F is SP-convex at t = 0 and gi is s-quasiconvex at t = 0 for i ∈ H. Furthermore, F
is gH-symmetrically differentiable at t = 0 with

Fs(0) = [
5
4

,
3
2
].

Moreover, we have:

∇sF(0) +∇sF(0) +
m

∑
i=1

µi∇sgi(0) = 0;

m

∑
i=1

µigi(0) = 0, where µ = (
11
4

, 0)T .
(24)

On the other hand, t = 0 is a non-dominated solution to Problem (23), which verifies
Theorem 11.

Theorem 12. (Necessary condition) Suppose F is SQ-concave at t∗ and gi is s-pseudoconcave at
t∗ for i ∈ H. If t∗ is a non-dominated solution to Problem (5) and gi is lower semicontinuous on M
for all i 6∈ H, then (t∗, µ∗) satisfies condition (7) in Theorem 4 with some µ∗ ≥ 0.
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Proof. Assume X1 = {t ∈ X : gi(t) < 0 for all i 6∈ H}. The set X1 is relatively open since
gi is lower semicontinuous on M for each i 6∈ H. Since t∗ ∈ X1, there is some α0 such that
for any y ∈ En, t∗ + αy ∈ X1 when: 0 < α < α0.

Suppose 0 < α < α0 and for i ∈ H we have gs
i (t
∗)Ty ≤ 0, then gs

i (t
∗)Tαy ≤ 0 for

i ∈ H. According to the s-pseudoconcavity of gi at t∗, we have:

gi(t∗ + αy) ≤ gi(t∗).

Since t∗ solves Problem (5), we have: F(t∗) �LU F(t∗ + αy). The SQ-concavity of F at
t∗ implies that

(∇sF(t∗) +∇sF(t∗))(αy) ≥ 0.

Thus:
gs

i (t
∗)Ty ≤ 0, (∇sF(t∗) +∇sF(t∗))y < 0

has no solution y in Rn. Hence, by Farkas’ lemma, there exist µ∗i ≥ 0 such that:

∇sF(t∗) +∇sF(t∗) +
m

∑
i=1

µ∗i ∇sgi(t∗) = 0.

Example 6. Note that in Example 5, t = 0 is a non-dominated solution. F is SQ-concave at t = 0,
and g1(t) = −t is s-pseudoconcave at t = 0, g2(t) = t− 1 is lower semicontinuous on R.

On the other hand, for µ = ( 11
4 , 0), the condition (7) is satisfied at t = 0 which verifies

Theorem 12.

Theorem 13. (Weak duality) Suppose for each µ such that (t, µ) ∈ R, L(·, µ) is SP-convex on X .
Then for all t̂ ∈ X and (t, µ) ∈ Y , L(t, µ) �LU F(t̂).

Proof. Consider t̂ ∈ X and (t, µ) ∈ Y . Then we have: Ls
t(t, µ) = 0. Since L(·, µ) is

SP-convex on X , we obtain L(t̂, µ) � L(t, µ). Therefore,

F(t̂) +
m

∑
i=1

uigi(t̂) � L(t, µ).

The proof is complete.

Example 7. Continued the problem of Example 5, t = 0 is a feasible solution to Problem (23) and
the objective value is F(0) = 0.

Moreover, (t, µ) = (1, 11, 0) is a feasible solution to the Wolfe problem of Problem (23) and
the objective value is [−9,−8]. Furthermore, we have

F(0) � L(1, 11, 0),

which verifies Theorem 13.

Theorem 14. (Strong duality) Suppose F, gi (i = 1, . . . , m) and t∗ satisfy the conditions of
Theorem 12. Furthermore, for each µ such that (t, µ) ∈ R, L(·, µ) is SP-convex on X . Then there
exists a µ∗ ≥ 0 such that (t∗, µ∗) solves Problem (14) and L(t∗, µ∗) = F(t∗).

Proof. The proof is similar to the proof of Theorem 10.

Example 8. Continued from Example 5, the non-dominated solution to Wolfe dual of Problem (23)
is (0, 11

4 , 0) and the objective value is L(0, 11
4 , 0) = 0.
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While t = 0 is also a non-dominated solution of Problem (23) and the objective value is
F(0) = 0. Then we have:

L(0,
11
4

, 0) = F(0).

On the other hand, the IVF F in Example 5 satisfies the conditions of Theorem 14, which
verifies Theorem 14.

7. Conclusions

The IVOP is an interesting topic with many real world applications. The nondiffer-
entiable counterpart of this problem is an interesting topic too. In this work, we newly
investigate a topic on gH-symmetrically differentiable IVOPs and obtain the KKT condi-
tions and duality theorems which are properly wider than those in [28]. Additionally, more
appropriate concepts of generalized convexity are introduced to extend the optimality
conditions in [24]. Some developments of the results presented in this paper, which will be
investigated in future papers, are given by the study of the saddle-point optimality criteria
for the considered class of IVOPs.
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