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Abstract: For the example of one nonlinear mathematical model in food engineering with several
equilibria and stochastic perturbations, a simple criterion for determining a stable or unstable equi-
librium is reported. The obtained analytical results are illustrated by detailed numerical simulations
of solutions of the considered Ito stochastic differential equations. The proposed criterion can be
used for a wide class of nonlinear mathematical models in different applications.
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1. Introduction

The aim of this paper is to show a simple criterion to determine a stable or unstable
equilibrium for nonlinear systems with several equilibria under stochastic perturbations.

Different types of food models are popular in food engineering research (see, for
instance, [1–10] and the references therein). To demonstrate the proposed criterion, the
following mathematical model from the food engineering that is described by a nonlinear
system with fractional nonlinearity [5]

dA(t)
dt

= r1 A(t)(1− kA(t))− µA(t)P(t)
β + P(t)

,

dP(t)
dt

= r2P(t)− αA(t)P(t), t ≥ 0,

(1)

and the positive initial conditions A(0) > 0 and P(0) > 0 was chosen. Here, A(t) and P(t)
are the concentration of aflatoxins and probiotics in a given food matrix, respectively. All
parameters are positive constants and mean the following: r1 is the intrinsic production rate
of aflatoxins, 1/k is hte concentration of aflatoxins that can be formed within food matrix,
µ is the detoxification ability of probiotics, β is the half-saturation for the association term,
r2 is the rate of the occurrence/application of probiotics, and α is the rate of formation of
aflatoxin–probiotics complexes.

Below, all non-negative equilibria of model (1) are considered and the property of
stability or instability of each from these equilibria under stochastic perturbations is inves-
tigated. The obtained results refine and generalize the results of [5], where model (1) is
investigated from the point of view of improving food systems and in the deterministic
case only.

The proposed criterion can be used for a wide class of nonlinear mathematical models
in different applications.

The remainder of the paper is organized as follows: In Section 2, three possible
equilibria of model (1) are described with the necessary and sufficient conditions for the
existence of the third equilibrium. In Section 3, a method of stochastic perturbations of
model (1) is presented, and the linearization of the considered system of Ito’s stochastic
differential equations for each from the possible equilibria of model (1) is obtained; in
Section 4, some necessary auxiliary definitions and statements from the theory of stability
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of Ito’s stochastic differential equations are included, sufficient conditions of stability or
instability for each from three possible equilibria are obtained, and a detail numerical
analysis of model (1) under stochastic perturbations is presented via numerical simulations
of its solutions. In Section 5, the conclusions are presented, and in Appendix A the standard
method used in the paper for the linearization of a nonlinear system is shown.

2. Equilibria

The equilibria of the system (1) are defined by the conditions A(t) = A = const and
P(t) = P = const, i.e., by the system of two algebraic equations(

r1(1− kA)− µP
β + P

)
A = 0,

(r2 − αA)P = 0,
(2)

which has the following three solutions:

E0 = (0, 0), E1 =

(
1
k

, 0
)

, E2 =

(
r2

α
, and

β(α− kr2)

kr2 − α(1− µr−1
1 )

)
. (3)

Note that the equilibria E0 and E1 always exist and, from (3), it follows that the positive
equilibrium E2 exists if and only if

α > kr2 > α

(
1− µ

r1

)
. (4)

Remark 1. Note that in [5], one of the conditions for the existence of equilibrium E2 is considered

in the form α < kr2 and r1kr2 + µα < r1α, which is equivalent to α < kr2 < α

(
1− µ

r1

)
, which

is evidently impossible.

3. Stochastic Perturbations and Linearization

Let E∗ = (A∗, P∗) be one from the equilibria (3) of system (1). Let us suppose that
the system (1) is exposed to stochastic perturbations that are of the white noise type and
are proportional to the deviation in the system state (A(t), P(t)) from the equilibrium
E∗ = (A∗, P∗). Then, the system (1) transforms to the following system of Ito’s stochastic
differential equations [11]:

dA(t) =
(

r1 A(t)(1− kA(t))− µA(t)P(t)
β + P(t)

)
dt + σ1(A(t)− A∗)dw1(t),

dP(t) = (r2P(t)− αA(t)P(t))dt + σ2(P(t)− P∗)dw2(t),
(5)

where σ1 and σ2 are constants and w1(t) and w2(t) are the mutually independent standard
Wiener processes.

Note that the equilibrium E∗ = (A∗, P∗) of initial system (1) is the solution of the
stochastic system (5) too.

Calculating the Jacobian matrix for the system (5), we obtain the linear approximation
(see (A3) in the Appendix A) of the nonlinear system (5) in the form

dz1(t) =
((

r1(1− 2kA∗)− µP∗

β + P∗

)
z1(t)−

µβA∗

(β + P∗)2 z2(t)
)

dt + σ1z1(t)dw1(t),

dz2(t) = (−αP∗z1(t) + (r2 − αA∗)z2(t))dt + σ2z2(t)dw2(t).
(6)

Using (2). rewrite the linear system (6) separately for each equilibrium (3):
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- for E0, the system (6) splits into two separate unrelated equations:

dz1(t) = r1z1(t)dt + σ1z1(t)dw1(t),

dz2(t) = r2z2(t)dt + σ2z2(t)dw2(t);
(7)

- for E1,

dz1(t) =
(
−r1z1(t)−

µ

kβ
z2(t)

)
dt + σ1z1(t)dw1(t),

dz2(t) =−
(α

k
− r2

)
z2(t)dt + σ2z2(t)dw2(t);

(8)

- for E2,

dz1(t) =

(
− kr1r2

α
z1(t)−

r2
1r2(kr2 − α(1− µr−1

1 ))2

α3βµ
z2(t)

)
dt + σ1z1(t)dw1(t);

dz2(t) =−
r1αβ(α− kr2)

kr2 − α(1− µr−1
1 )

z1(t)dt + σ2z2(t)dw2(t).

(9)

4. Stability

Let {Ω,F , P} be a complete probability space; {Ft, t ≥ 0} be a nondecreasing family
of sub-σ-algebras of F , i.e., Ft1 ⊂ Ft2 for t1 < t2; and E be the mathematical expectation
with respect to the measure P.

Consider the system of two linear stochastic differential equations [12]

ẋ1(t) = a11x1(t) + a12x2(t) + σ1x1(t)ẇ1(t),
ẋ2(t) = a21x1(t) + a22x2(t) + σ2x2(t)ẇ2(t),

(10)

where aij and σi, i, j = 1, 2 are constants; and w1(t) and w2(t) are the mutually independent
standard Wiener processes.

Definition 1. The zero solution of the system (6) is called stable in probability if for any ε1 > 0
and ε2 > 0, there exists δ > 0 such that the solution z(t) = (z1(t), z2(t)) of the system (6) satisfies
the condition P{supt≥0 |z(t)| > ε1} < ε2, provided that P{|z(0)| < δ} = 1.

Definition 2. The zero solution of the system (10) is called:

- mean square stable if for each ε > 0, there exists a δ > 0 such that E|x(t)|2 < ε, x(t) =

(x1(t), x2(t)), and t ≥ 0, provided that |x(0)|2 < δ;
- asymptotically mean square stable if it is mean square stable and, for each initial value x(0),

the solution x(t) of the system (10) satisfies the condition lim
t→∞

E|x(t)|2 = 0.

Remark 2. Note that the level of nonlinearity of the system (5) is higher than one. It is known [12]
that, in this case, a sufficient condition for asymptotic mean square stability of the zero solution of
the linear approximation (6) at the same time is a sufficient condition for stability in probability
of the appropriate equilibrium of the system (5). Therefore, to obtain the conditions for stability in
probability of each from equilibria (3), it is enough to obtain the conditions for asymptotic mean
square stability of the zero solution for each from the linear systems (7)–(9). On the other hand,
the instability of one of the linear systems (7), (8), or (9) means the instability of the corresponding
equilibrium of the system (5).

Remark 3. In the deterministic case (σ1 = σ2 = 0), the zero solution of the system (10) is
asymptotically stable if and only if [12]

Tr(A) = a11 + a22 < 0,

det(A) = a11a22 − a12a21 > 0.
(11)



Mathematics 2021, 9, 3013 4 of 8

Lemma 1 ([12]). Put A = ‖aij‖, i, j = 1, 2, δi =
1
2 σ2

i , i = 1, 2. Suppose that the conditions (11)
hold, a12 6= 0, and

δ1 <
|Tr(A)|det(A)

A2
, δ2 <

|Tr(A)|det(A)− A2δ1

A1 − |Tr(A)|δ1
,

A1 = det(A) + a2
11, A2 = det(A) + a2

22.
(12)

Then, the zero solution of the system (10) is asymptotically mean square stable.

Remark 4. The proof of Lemma 1 is based on using the Lyapunov function v = x′Px, where P > 0
is the positive definite solution of the matrix equation PA + A′P = −Q, Q > 0, and estimating
the negative definite square form Lv < 0, where L is the generator [11] of the system (10). (For
more details, see [12], p. 48.)

Corollary 1. If a12a21 = 0, then the conditions (11) and (12) take the form

a11 < 0, a22 < 0.

δ1 < −a11, δ2 < −a22.
(13)

If a22 = 0, then the conditions (11) take the form

a11 < 0, a12a21 < 0. (14)

4.1. Equilibrium E0

From (11), it follows that in the deterministic case (σ1 = σ2 = 0), the zero solution of
the system (7) is unstable. However, under the conditions

σ2
1 > 2r1, σ2

2 > 2r2, (15)

the so-called “stabilization by noise” occurs [13,14].
In Figure 1, 25 trajectories of the solution of Equation (5) are shown with r1 = 0.1,

r2 = 0.15, µ = 0.1, k = 2.5, α = 0.9, β = 0.1, A(0) = 0.15, P(0) = 0.2, σ1 = 0.18, and
σ2 = 0.19. The equilibrium E0(0, 0) is unstable, so the trajectories fill the whole space.

In Figure 2, 25 trajectories of the solution of Equation (5) are shown with A(0) = 0.4,
P(0) = 0.6, σ1 = 1.1, and σ2 = 1.2, and the same values of all other parameters as
in Figure 1. The conditions (15) hold, stabilization by noise’ occurs, and all trajectories
converge to the unstable equilibrium E0(0, 0).

Figure 1. The 25 trajectories of A(t) (blue) and P(t) (green) of a solution of the system (5), with
r1 = 0.1, r2 = 0.15, µ = 0.1, k = 2.5, α = 0.9, β = 0.1, A(0) = 0.15, P(0) = 0.2, σ1 = 0.18, and
σ2 = 0.19.
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Figure 2. The 25 trajectories A(t) (blue) and P(t) (green) of a solution of the system (5), with r1 = 0.1,
r2 = 0.15, µ = 0.1, k = 2.5, α = 0.9, β = 0.1, A(0) = 0.4, P(0) = 0.6, σ1 = 1.1, and σ2 = 1.2.

4.2. Equilibrium E1

For system (8), the conditions (13) take the form

1
2

σ2
1 < r1,

1
2

σ2
2 + r2 <

α

k
. (16)

So, by conditions (16), the equilibrium E1 is stable in probability.
In Figure 3, three trajectories of the solution of Equation (5) are shown with r1 = 0.6,

r2 = 0.2, µ = 0.1, k = 2.5, α = 0.9, β = 0.1, σ1 = 0.1, and σ2 = 0.4, and different initial
conditions: M1(0.15, 0.4), M2(0.5, 0.6), and M3(0.9, 0.5). The conditions (16) hold, and all
trajectories converge to the stable equilibrium E1 = (A∗, P∗) with A∗ = 0.4, and P∗ = 0.

In Figure 4, 50 trajectories of the solution of Equation (5) are shown with A(0) = 0.65,
P(0) = 0.15, σ1 = 0.6, and σ2 = 0.4, and the same values of all other parameters as in
Figure 3. All trajectories converge to the stable equilibrium E1 = (A∗, P∗) = (0.4, 0).

Figure 3. Three trajectories of a solution (A(t), P(t)) of the system (5) are shown with r1 = 0.6,
r2 = 0.2, µ = 0.1, k = 2.5, α = 0.9, β = 0.1, σ1 = 0.1, and σ2 = 0.4, for different initial conditions:
M1(0.15, 0.4), M2(0.5, 0.6), and M3(0.9, 0.5).
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Figure 4. Fifty trajectories A(t) (blue) and P(t) (green) of a solution of the system (5) are shown with
r1 = 0.6, r2 = 0.2, µ = 0.1, k = 2.5, α = 0.9, β = 0.1, A(0) = 0.65, P(0) = 0.15, σ1 = 0.6, and σ2 = 0.4.

4.3. Equilibrium E2

In the system (9), a22 = 0 and a12a21 > 0, i.e., the second condition (14) does not hold.
So, in the deterministic case, the equilibrium E2 is unstable.

In Figure 5, three trajectories of the solution (A(t), P(t)) of the system (5) are shown
with r1 = 0.6, r2 = 0.21, µ = 0.6, k = 2.5, α = 0.7, β = 0.1, σ1 = 0.12, σ2 = 0.03,
A∗ = 0.3, and P∗ = 0.0333, and different initial conditions: M1(0.28, 0.035), M2(0.31, 0.035),
M3(0.3, 0.031). One can see that the all initial conditions are close enough to the equilib-
rium (A∗, P∗), but all trajectories move away from the equilibrium, since this equilibrium
is unstable.

In Figure 6, 25 trajectories of the solution of Equation (5) are shown with A(0) = 0.31,
P(0) = 0.0433, σ1 = 0.1, and σ2 = 0.1, and the same values of all other parameters as in
Figure 5. All trajectories move away from the equilibrium E2 = (A∗, P∗) = (0.3, 0.0333),
since this equilibrium is unstable.

Figure 5. Three trajectories of a solution (A(t), P(t)) of the system (5) with r1 = 0.6, r2 = 0.21,
µ = 0.6, k = 2.5, α = 0.7, β = 0.1, σ1 = 0.12, and σ2 = 0.03, and initial conditions M1(0.28, 0.035),
M2(0.31, 0.035), and M3(0.3, 0.031).
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Figure 6. Twenty-five trajectories A(t) (blue) and P(t) (green) of the solution of system (5) with
r1 = 0.6, r2 = 0.21, µ = 0.6, k = 2.5, α = 0.7, β = 0.1, A(0) = 0.31, P(0) = 0.0433, σ1 = 0.1, and
σ2 = 0.1.

Remark 5. Note that to simulate solutions of the considered Ito stochastic differential equations in
Figures 1–6, a special algorithm for modeling trajectories of the standard Wiener process was used,
as described in [12].

5. Conclusions

Systems of nonlinear differential equations are used to describe mathematical models
in many different applications. As a rule, such models can have several equilibria, each
of which can be stable or unstable. A simple criterion was proposed in this paper that
can define the stability or instability of each considered equilibrium under the presence
of stochastic perturbations around of this equilibrium. Additionally, we showed how the
classical “stabilization by noise” can be applied for stabilization of an unstable equilibrium.
We also showed how the properties of the nonlinear model equilibria under stochastic
perturbations can be demonstrated via numerical simulations of solutions of the considered
Ito stochastic differential equations. The obtained results can be applied to many other
nonlinear models in different applications.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Linearization

Consider the nonlinear differential equation

dx(t)
dt

= F(x(t)), (A1)

where x ∈ Rn and the equation F(x) = 0 has a solution x∗ that is an equilibrium of the
differential Equation (A1). Using the new variable y(t) = x(t)− x∗, Equation (A1) can be
represented in the form

dy(t)
dt

= F(x∗ + y(t)). (A2)

It is clear that the stability of the zero solution of Equation (A2) is equivalent to stability
of the equilibrium x∗ of Equation (A1).
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Let JF =

∥∥∥∥∥ ∂Fi
∂xj

∥∥∥∥∥, i, j = 1, ..., n, be the Jacobian matrix of the function F = {F1, ..., Fn}

and lim|y|→0
|o(y)|
|y| = 0, where |y| is the Euclidean norm in Rn. Using Taylor’s expansion

in the form F(x∗ + y) = F(x∗) + JF(x∗)y + o(y) and the equality F(x∗) = 0, we obtain the
linear approximation

dz(t)
dt

= JF(x∗)z(t) (A3)

of Equation (A2).
So, a condition for asymptotic stability of the zero solution of Equation (A3) is also a

condition for the local stability of the equilibrium x∗ of the initial Equation (A1).
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