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Abstract: We consider systems of differential equations with polynomial and rational nonlinearities
and with a dependence on a discrete parameter. Such systems arise in biological and ecological
applications, where the discrete parameter can be interpreted as a genetic code. The genetic code
defines system responses to external perturbations. We suppose that these responses are defined by
deep networks. We investigate the stability of attractors of our systems under sequences of perturba-
tions (for example, stresses induced by environmental changes), and we introduce a new concept of
biosystem stability via gene regulation. We show that if the gene regulation is absent, then biosystems
sooner or later collapse under fluctuations. By a genetic regulation, one can provide attractor stability
for large times. Therefore, in the framework of our model, we prove the Gromov–Carbone hypothesis
that evolution by replication makes biosystems robust against random fluctuations. We apply these
results to a model of cancer immune therapy.

Keywords: stability; evolution; response to stress; deep networks

1. Introduction

In this paper, we consider systems of differential equations with polynomial and
rational nonlinearities and with a dependence on a discrete parameter (hybrid systems).
Such systems arise in biological and ecological applications, where the discrete parameter
allows us to incorporate in the model a genetic regulation by a genetic code. We investigate
the stability of attractors of these systems under stress. The attractors define system
functioning regimes, while stresses are sudden changes of system parameters (for example,
heat shocks). Our aim is to investigate the attractor stability under infinite sequences of
shocks. It is inspired by the following idea of M. Gromov and A. Carbone: “Homeostasis
of an individual cell cannot be stable for a long time as it would be destroyed by random
fluctuations within and out of cell. There is no adequate mathematical formalism to express
the intuitively clear idea of replicative stability of dynamical systems” ([1], p. 40). It
is clear that replicative stability is important for the evolution of cancer cells, viruses,
for example, such as COVID 19, and bacteria such as E. coli. There is no doubt that
replication helps viruses and bacteria survive in changing environments (see, for example,
Lensky’s experiment with E. coli [2]). However, there is a non-trivial question: how to
estimate chances that such replicative evolution can continue eternally even under action
of therapeutic agents? For COVID-19, it is an important question of will we have fourth or
fifth pandemic waves, etc., or can the virus vanish? In this paper, however, we consider
cancer cells as an example because our analyses are more applicable to this case.

Using a model, proposed in this paper, one can formulate the Gromov–Carbone idea in
rigorous mathematical terms and, under some assumptions, to prove this hypothesis. Our
model exploits ideas of artificial intelligence theory; namely, we suppose that the response
to stress is defined by deep gene networks (DGN), which are similar to deep neural
networks (DNNs). It allows us to use estimates obtained recently in DNN theory [3–5].
Note that deep networks were recently applied as interpretable models of the gene network
regulations in [6].
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To describe replicative stability, we incorporate into our model a regulation by the
discrete parameter (for biosystems and ecosystems it is a gene regulation) and consider
how the stochastic stability depends on regulation. Our results help us to explain, for
example, why cancer cells exhibit a long survival time even under a strong therapy. Indeed,
cancer cells give us an example of evolving biosystem affected by a sequence of stresses (for
example, immune therapy or chemotherapy). It is worth noting that replicative stability
for biochemical systems, introduced in this paper, is a new idea for the theory of stability
(robustness) of these systems. Earlier, a number of works (see fundamental papers [7,8]
and references therein) considered a more usual approach, which investigates reactions of
the biochemical system to the small disturbances of kinetic rates or reagent concentrations.
We also investigate the stability in the vicinity of small changes in some states (attractors).
However, we take into account variations of the system genotype. We suppose that these
variations compensate for a significant part of external perturbations that reinforces the
system stability. The gene regulation system evolves in such a way that this compensation
mechanism becomes more and more effective, which provides stability under fluctuations
for large times.

Let us first outline the concept of stochastic stability. We consider organisms as
biochemical machines, which can be modeled by a system of ordinary differential equations.
A regime of our biosystem functioning is defined by an attractor A. Let us denote by Pδ,A,τ
the probability that the system state lies in a δ-neighborhood of the attractor A within
the time interval [0, τ]. The parameter δ > 0 defines the size of a homeostasis domain,
where the system stays viable (here we follow viability theory, see, for example, [9]). In
the framework of that viability approach, the Gromov–Carbone hypothesis reduces to two
claims. The first assertion is that for biological systems with fixed parameters and a fixed
genetic code,

Pδ,A,τ → 0 as τ → +∞. (1)

This means that all biosystem states, sooner or later, will be destroyed by fluctuations.
The second assertion is that a sequence of modifications of the system genotype can lead to
eternal stability, where the viability probability stays positive for all times:

Pδ,A,τ > β > 0 ∀ τ > 0, (2)

where β > 0. The constant β can be interpreted as follows: imagine a large population of
cancer cells, bacteria or viruses. Let this population be affected by consecutive therapeutic
attacks. The constant β describes the relative fraction of cells ( bacteria, viruses) that will
survive.

In other words, systems with fixed parameters are unstable under environment fluctu-
ations but the evolution of the genetic code can stabilize them. This replicative stability is
considered in [10] for some network models; see [11] for an overview. For some classes of
hybrid dynamical systems involving a dependence on discrete genotypes s(t), which can
evolve in time, it is shown that inequality (2) implies

sup
t∈[0,T]

L(s(t))→ +∞ T → ∞, (3)

i.e., the genotype length L has a tendency to increase. Here we assume that the genotype s
is a Boolean string (s1, ..., sN) and the length L of s is N. However, it is well known that the
genotype length does not correlate directly with the morphological complexity and that
evolution does not always lead to a genotype length increase. For example, Drosophila,
nematode and human have numbers of coding genes of the same order (although bacteria
genomes are much shorter than the nematode genome). Nonetheless, it is well known that
the gene regulation system has become more and more complex throughout evolution. In
this paper, we use deep networks (DNs) to describe gene regulation and show that DN
network growth makes biosystems stable for long time periods.
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Let us outline the model in more detail. In contrast to some earlier works [12–14], which
used either formidable computations [12,13], or sophisticated nonlinear asymptotics [14],
we use deep networks. These networks consist of, in general, many layers. The depth
L = Lnet of a network is the number of hidden layers, and the size S = Snet is the total
number of units. In practice, networks with depth Lnet = O(1) can be considered as
shallow, while deep networks typically have many layers. Connections between units in
these networks depend on coding sequences s = (s1, . . . , sN), si ∈ {0, 1} of Boolean genes,
which could be switched off (si = 0) or switched on (si = 1). The inputs of the DN’s are
the stress parameter values and the system states. The DN produces an output, which
depends on unit interconnections and thus on the genetic code, which determines these
interconnections. The main idea behind our model of regulation is that the DN output and
the stress impact cancel out each other.

To describe stress impacts, we use a model of subsequent environmental shocks. This
idea is consistent with the Gould–Eldredge concept [15], where evolution is represented
as a sequence of intermittent short bursts and longtime stasis periods, the evolution
bursts appear in response to stresses induced by environment. Let τ1, τ2, ..., τk, ... be an
infinite increasing sequence of time moments τj. These moments can be considered as
moments of environment shocks (stresses), when the environment suddenly changes. At
these moments, some system parameters can change. A well-known example is a heat
shock connected with temperature, which affects kinetic rates in biochemical systems and
produces mutations [16]. For cancer cells, these shocks can describe a therapy. Our aim is
to estimate the probability that a local attractor A is robust under all those environmental
shocks within a large (maybe, infinite) time interval.

Let us outline our results. The first result (Theorem 1) concerns a connection between
gene regulation complexity and uncertainty of environment. The important measure of
genetic regulation complexity is the number of equilibria of gene regulation network Nreg.
This question on the number of the equilibria has received the attention of many works;
in particular, it was studied for the famous NK model (pioneered in [17]). The NK model
is a mathematical model describing a “tunably rugged” fitness landscape, depending on
two parameters, N and K. The parameter N is the length of a Boolean genotype s length,
and K defines the topology of fitness landscape via the number of genes involved in the
trait control. The NK model has the main applications in evolutionary biology. First, it
was supposed that Nreg is a relatively small, Nreg ∝ Nκ , where an exponent κ > 0. In
particular, for the Hopfield model with symmetrical interaction [18], this relation holds
with κ = 1. However, later it was shown that in the NK model, Nreg can be exponentially
large [19]. A similar result is obtained for another simple model, which describes a
special class of Hopfield models with asymmetric interaction and a special interaction
topology [20]. Experimental data [21,22] show that in gene interaction networks there are
strongly connected nodes that can be named hubs, or centers. The hubs communications
go via a number of weakly connected nodes. This centralized connectivity has been found
in gene–gene and protein–protein interaction networks [21,22], and such networks can
support many equilibrium states.

To explain why they have a number of equilibria, we define an entropy Hext,δ of
environment uncertainty, depending on the robustness level δ and gene regulation. This
quantity is the Kolmogorov δ-entropy (see, for example, [23,24]) on the metric space of
perturbations ξ with a special metric. We show that if an attractor describing biosystem
functioning does not collapse under all perturbations (conserves its topological structure)
then there exists a connection between Nreg and the entropy Hext,δ:

log2 Nreg ≥ Hext,δ. (4)

This means that entropy of regulation must be no less than the environment uncertainty.
This result, in particular, shows that, to kill cancer cells, we should use a combined

therapy (for example, chemotherapy together with a heat therapy). Hyperthermia therapy
is heat treatment for cancer that can be a powerful tool when used in combination with
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chemotherapy or radiation. Chemotherapy resistance develops over time as the tumors
adapt (due to replicative stability). Chemoresistance against several anticancer drugs could
be reversed by the addition of heat therapy.

Our results show that before all, it is necessary to attack hubs of the gene regulation
network. In fact, Nreg critically depends on the gene interaction topology. Even a small
increase in the number of hubs in gene regulation networks leads to a sharp increase in
Nreg [20]. These results are consistent with the conclusions of [25,26], where it was shown
that network hubs buffer environmental variations and also make switches in regulatory
networks. Our results are supported by some experimental data, at least qualitatively [27].
A number of hub genes are identified in cancer cell regulation. According to these results,
drugs attacking the hub genes should be especially effective. A list of such candidate drugs
targeting hub genes can be found in Table 3 from [27].

There is also a connection with basic results of hard combinatorial problem theory.
Fundamental results [28] on Boolean functions and the K-SAT problem assert that to satisfy
many constraints, we should use a number of Boolean variables. Our result (4) can be
considered as an analog of these results. If we have a genotype s of the length N, then
log2 Nreg ≤ N; thus, for Boolean regulation models, (4) implies that the genome length N
should be more than the entropy Hext,δ.

Furthermore, we show that it is possible to provide stochastic attractor robustness by
an appropriate genotype choice at each environment shock τ1 < τ2 < .... If, in contrast, the
genotype is fixed, then the stochastic stability tends to zero as τ → +∞. For cancer these
results are confirmed by numerical simulations, where we use a model from [29] extended
to take into account the evolution of cancer cells. If the cancer cells do not evolve, immune
therapy may be effective, otherwise cancer wins sooner or later.

To conclude this introduction, let us note that the estimates of stochastic stability,
obtained in the paper (see Theorem 3), allows us to find the main factors, which determine
the organism fate under the stress stability: the sparsity of reaction network, the stress
sensitivity, the stress dimension (the number of perturbed external parameters affecting
the rates of biochemical reactions) and the size of gene regulation network.

The paper is organized as follows. In the next section, we describe models with ran-
dom perturbations and gene regulation. In Section 4, we state the model of environmental
shocks and formulate some assumptions needed for the mathematical tractability of the
problem. In Section 5, we formulate some definitions, and further, we find a necessary
condition for the attractor stability.

In Section 7, we consider attractor robustness under a sequence of environment shocks.
In this section, we apply DNN’s that finally give Theorem 3, which states an estimate of
replicative stability. The last section contains a discussion and conclusions. To simplify
reading, the technical parts of demonstrations are relegated into Appendix A.

2. Materials and Methods

We use standard methods of mathematical analysis and theory of differential equations.
Moreover, we apply the known results for approximations of Lipshitz smooth functions by
deep neural networks [3–5]. For numerical simulations, and to produce Figure 1, we used
Matlab and the standard Euler method.
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Figure 1. This plot shows dynamics of concentration of tumor cancer cells in three cases: no therapy
(the curve 1), therapy in the case when tumor cells do not evolve ( the curve 3) and therapy in the case
when tumor cells mutate with the probability pmut = 0.001 (the curve 2). The parameters are taken
from [30]: r0 = 1.3104, ρ = 0.1254, α = 2.02 · 10−7, c1 = 3.42 · 10−10, c2 = 1.1 · 10−7, d1 = 0.0412,
b = 2.010−9, r = 0.18. We have a suite of 20 shocks, which at the time moments t = 5, 10, ..., 100,
∆t = 5. For the increasing rate, the tumor cell rate increment is dr = 0.01. For the decreasing and
increasing curve, the infusion dose is η = 2 · 108.

3. Model with Random Parameters

We describe our models in two steps, first we formulate a model without gene regula-
tions and then with regulation.

We consider systems of differential equations with a dependence on a random process
ξ(t). They have the form

dv
dt

= f (v, ξ(t)) t ≥ 0, (5)

where v(t) = (v1(t), . . . , vn(t))tr ∈ D, where D is a compact domain in Rn with a smooth
boundary ∂D, vi(t) are biochemical species concentrations, f (v, ξ) = ( f1(v, ξ), . . . , fn(v, ξ))tr,
the reaction terms fi are sufficiently smooth functions of v, for example, multivariate
polynomials in v, and also smooth functions of ξ ∈ Rp. The functions ξ(t) are random
processes of a trajectory, which are piecewise constant in t and take values in a compact
subset Pext of Rp, where the quantity p is a positive integer (dimension of stress parameter
ξ). These processes ξ(t) describe multiplicative noise. The source of this noise is an
environment of a biosystem. Other assumptions of ξ(t) will be described later.

We complement the system of stochastic Equation (5) by initial conditions

v(0) = v(0). (6)

To define f we use the standard models of chemical kinetics and population dynamics.
The simplest choice is a polynomial model, which can be derived by the law of mass action:

fi(v, ξ) = ∑
a∈Ri

Ci,a(ξ)v
a1
1 va2

2 ...van
n , (7)

where a = (a1, ..., an) is a multi-index with integers ai ≥ 0, Ri are finite subsets of
In = {1, . . . , n} and Ci,a are coefficients that determine kinetic rates. Note that the well-
known Lotka–Volterra and generalized Lotka–Volterra systems (which have ecological
and economical applications, see [31,32]) are also included in the class of systems defined
by (7).

In real biochemical applications, we are often dealing with binary reactions, where
only two exponents ai 6= 0, and sparse fi, where, although the reagent number n may
be large, for each i, the number mi of non-zero coefficients Ci,a in each row is bounded,
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mi << n. In a more sophisticated case (which arises when in a slow-fast polynomial system
we express fast variables via slow ones) we have rational v nonlinearities, for example,

fi(v, ξ) = ∑
a∈Ri

Ci,a(ξ)
Pi,a(v)
Qi,a(v)

, (8)

where Pi,a(v) and Qi,a(v) are polynomials. We suppose that Qi,a(v) are separated from
zero:

|Qi,a(v)| > δ0 > 0, (9)

for all i, a and v ∈ D. Such systems appear in biochemical kinetics, population dynamics
and cancer modeling. As an example, let us consider the following model of cancer
immunotherapy [29,30]:

dv1

dt
= r0 +

ρv1v2

α + v1
− c1v1v2 − d1v1 + ξ(t), (10)

dv2

dt
= rv2(1− bv2)− c2v1v2, (11)

where v1 denotes the concentration of cells with antitumor activity in the tumor site
(CTL cells), and v2 is the concentration of tumor cells. This model thus concerns two cell
populations: normal cells and cancer ones. Parameters r0, c1, c2, b, r, d1, α, ρ are positive
coefficients, which can be explained as follows. The parameter r0 is the normal rate of
immune cell flow into the tumor site, c1 is the immune cells death rate due to interaction
with tumor cells, c2 is the fraction of tumor cells killed by immune cells, 1/b is the tumor
cells carrying capacity, r is the tumor cells growth rate, d1 is a natural death rate of immune
cells, α is the steepness coefficient of immune cell recruitment and ρ is the maximal immune
cells recruitment rate [29]. For ξ(t) ≡ 0 this model and its generalizations are investigated
in [30], the term ξ(t) describes a therapy by infusion of CTL cells (it is proposed in [29]).

To provide the existence and uniqueness of solutions to the Cauchy problem (5) and
(6) for all t ∈ (−∞, ∞), we assume the following. Let

f (v, ξ) · n(v) ≤ 0 ∀v ∈ ∂D ∀ξ ∈ Pext (12)

where n(v) is a unit normal vector directed outside D at the point v ∈ ∂D. Then solutions
of the Cauchy problem (5) and (6) exist and are unique for all t > 0.

It is worth noting that polynomial and rational functions fi may not satisfy conditions
(12). Since we further investigate a local stability of local attractors, we can restrict ourselves
to considering narrow neighborhoods of those attractors A. Therefore, we can truncate
nonlinearities in fi(v) setting for instance f̃i(v) = fi(v)χA(v), where χA(v) ≡ 0 outside of
an open neighborhood W of A.

3.1. Extended Model with Regulation

Different complicated models of gene regulation were proposed, for example, [33,34]
for Drosophila morphogenesis, however, we apply another approach using DNN’s and
inspired by recent biological works (for example, [6]).

Let s(t) = (s1(t), ...., sN(t)) be a time dependent gene expression vector. We have N
Boolean genes si, which take values in the set SN = {0, 1}N , si ∈ {0, 1}. The i-th gene may
be switch on (when si = 1), or switch off (when si = 0). The Boolean string s encodes
interconnections in the networks of gene regulation (see Section 7.2). We incorporate genes
s into system (5) using the following

Assumption GR Suppose that coefficients Ci,a depend on the genetic code s:

Ci,a = Ci,a(ξ, s) (13)

and they are Lipshitz in ξ for each s.
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This assumption means that regulation goes via a genetic control of kinetic rates.
Moreover, we assume that the network finds a genotype s, which produces an optimal
answer to stress, almost instantly. We obtain thus that s is involved in the vector field
f (v, ξ) via kinetic coefficients Ci,a: f = f (v, ξ, s).

Let us introduce vector fields describing perturbations. Consider, for example, a heat
shock. All kinetic rates depend on the temperature T: Ci,a = Ci,a(T), sometimes in a
complicated manner. However, typically we have a reference value T = T̄ corresponding
to an optimal functioning regime (for example, if T is the human body temperature, then T̄
is about 36 degrees). Let T = T̄ + ∆T, where ∆T is a temperature increment corresponding
to a heat shock. Then in the case (7) one obtains that the perturbations gi of the fi have the
form

gi(v, T, s) = ∑
a∈Ri

C̃i,a,sva1
1 va2

2 ...van
n , (14)

where
C̃i,a,s = Ci,a(T̄ + ∆T, s)− Ci,a(T̄, s).

In the general case, let ξ̄ be an optimal parameter value corresponding to a normal
system functioning. Then we denote by

g(v, ξ, s) = f (v, ξ, s)− f (v, ξ̄) (15)

the perturbation of f , which appears as a result of a parameter ξ variation. Let us denote
the non-perturbed field f (v, ξ̄) by f̄ (v). Then we have the two following systems: the
non-perturbed one

dv
dt

= f̄ (v), (16)

and the perturbed system:
dv
dt

= f̄ (v) + g(v, ξ̄, s) (17)

where, in general case, ξ and s can depend on t.

3.2. Attractors and Semiflows

Let us denote by As,ξ a compact invariant locally attracting set (a local attractor) of
semiflow St

s,ξ generated by the Cauchy problem for system (17) for given fixed s and ξ.
The semiflow generated by the non-perturbed system (16) will be denoted by St and the
corresponding attractors by A. We consider mainly two cases: A is a stable hyperbolic
equilibrium veq or a stable hyperbolic limit cycle V(t) with a period T0. (A reminder that
hyperbolicity for an equilibrium means that the spectrum of the corresponding linearized
operator does not intersect an imaginary axis, while for cycles it means that the correspond-
ing Floquet multiplicators do not lie on the unit circle of the complex plane. For the general
theory of hyperbolic sets, see [35,36]). We are going to estimate the probability that a local
attractor (or an invariant set) of our system is stable under those shocks. We define that
probability in the next subsection.

4. Stochastic Stability under Shocks
4.1. Environmental Shocks

To describe stresses, we use the model of subsequent environmental shocks. Let
τ1, τ2, ..., τk, ... be an infinite increasing sequence of time moments τj such that minj(τj+1 −
τj) >> ∆τ >> ∆t, where ∆t and ∆τ are characteristic times of gene regulation functioning
and biochemical model dynamics, respectively. At the moments τj we have environment
shocks, when an interaction between the environment and the biosystem changes. We
suppose that within interval [τj, τj+1) the parameter ξ = ξ j, where at each step j we choose
ξ j randomly as follows in two steps. The first step is a random choice of the set Pext,j of
perturbations affecting the system at j-th interval Ij = (τj, τj+1]. We choose the set Pext,j
randomly from a countable set E = {Pext,1,Pext,2, ..., }. The index k in Pext,k defines a kind



Mathematics 2021, 9, 3028 8 of 19

of interaction between the organism and its environment. Each set Pext,j is equipped with
a probabilistic measure µj.

The second step is a random choice of ξ j ∈ Pext,j. The shocks ξ j are independent, and
at each step j and each k, we sample ξ j according to the measure µj. Therefore, we obtain a
sequence of independent random variables ξ j, j = 1, ...,+∞, which describes subsequent
random changes of our stress environment.

4.2. Attractor Stochastic Stability

To formulate the stochastic stability problem, we use the viability approach [9]. Let A
be an attractor under consideration. For δ > 0 we introduce a small tubular neighborhood
of that attractor by

Wδ(A) = {v : dist(v,A) < δ}, (18)

where the distance between a state v and a subset B ⊂ D is defined as

dist(v, B) = inf
w∈B
|v− w|, (19)

where |v| is the standard Euclidean norm in Rn.
Let us introduce probability that the state of our system lies in Wδ(A) within the time

interval [0, τ]:
Pδ,A,τ = Prob{v(t) ∈Wδ(A) ∀t ∈ [0, τ]}. (20)

Naturally we suppose that the initial value v(0) ∈ Wδ(A). The probability Pδ,A,τ
depends on that initial value. Since our aim to obtain estimates of Pδ,A,τ uniform in
v(0) ∈ A we will omit dependence on v(0). The probability Pδ,A,τ can be considered as a
measure of attractor A stochastic stability.

5. Robustness with Gene Regulation
5.1. Definitions

Let us formulate certain definitions. We consider ergodic attractors A. The statement
of ergodic attractor’s theory can be found in [37]. For such attractors and sets, the time
average can be replaced by averages over the attractor taken by an invariant measure ρ
defined on the attractor. Let us introduce the time averages along trajectories

〈φ〉A = lim
T→+∞

T−1
∫ T

0
φ(v(t))dt (21)

where φ(v) is a smooth function, and v(t) is a trajectory on the attractor. For ergodic
attractors these averages exist and do not depend on the choice of the trajectory v(t, v(0))
on the attractor for almost all v(0) with respect to the measure ρ. Of course rest point and
limit cycle attractors are ergodic, but theory [37] also concerns the non-trivial situation,
where Amay be chaotic.

Let us denote by Φ the set of all smooth functions φ defined on D. We denote by
Lip(φ) the Lipshitz constant of φ:

|φ(v)− φ(ṽ)| ≤ Lip(φ)|v− ṽ|.

Definition 1. We say that a local attractor A of the semiflow St defined by Equation (17) with
ξ = ξ̄ is ε-robust with respect to the stress parameter ξ and the genotype s if∣∣〈φ〉A − 〈φ〉As,ξ

∣∣ < Lip(φ)ε, ∀φ ∈ Φ, (22)

i.e., the time averages over the perturbed and unperturbed attractors are ε-close.
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Note that if the attractor is hyperbolic and ε > 0 is small, then due to the persistence
of hyperbolic sets [35,36], the perturbed attractor is topologically equivalent to the non-
perturbed one.

Definition 2. A local attractor A of the non-perturbed flow St defined by system (16) is ε-robust
with gene regulation with respect to the stress environment Pext if for each ξ ∈ Pext there is an
appropriate genotype s̄(ξ) such that∣∣〈φ〉A − 〈φ〉As̄,ξ

∣∣ < Lip(φ)ε, ∀φ ∈ Φ (23)

where As̄,ξ is the local attractor As̄,ξ of the semiflow St
s̄,ξ .

Due to the definition of robustness under gene regulation for each field ξ ∈ Pext
we have a genotype s̄(ξ) such that trajectory averages over the perturbed attractor As̄,ξ
are ε -close to ones for non-perturbed attractor A of system (16). We have thus the map
S : ξ → s(ξ) ∈ SN from the set Pext into the set of all genotypes SN .

5.2. Robustness Condition

Let us formulate a claim.

Proposition 1. Let a local attractor A of a non-perturbed system (16) be ergodic and ε-robust with
respect to ξ ∈ Pext and s ∈ SN . Then

〈g(v, ξ, s)〉A < C1ε, (24)

where the constant C1 > 0 is uniform in ε > 0.

Proof. We take the averages of the right and left hand sides of Equations (16) and (17) that
gives

〈 f̄i〉A = 0, 〈 f̄i + gi〉As,ξ = 0 (25)

for all i. By Definition 1 of robustness one has∣∣∣〈 f̄i + gi〉A − 〈 f̄i + gi〉As,ξ

∣∣∣ < c0ε,

where c0 > 0 are uniform in ε > 0. Then (25) and the last estimate give (24).

6. Gene Regulation and Robustness

In this section, we describe a connection between robustness and the gene regulation.

Environment Uncertainty

In this subsection, we introduce a measure of external perturbation uncertainty. Let
δ > 0 be a number. Consider the set Pext of perturbations ξ. Let us introduce a special
distance between perturbations depending on the attractor and g:

distA,g(ξ, ξ̃) = min
s∈SN

sup
i=1,...,n

∣∣〈gi(·, ξ, s)− gi(·, ξ̃, s)〉A
∣∣,

where SN = {0, 1}N denotes the set of all genotypes.
By Cδ we denote a δ-covering of Pext consisting of the sets Bi,δ, i = 1, 2, ..., Ncover:

Pext =
Ncover⋃
j=1

Bj, diam(Bj) ≤ δ ∀j,
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where the diameter diam(B) of a bounded set B is defined by

diam(B) = sup
ξ,ξ̃∈B

distA,g(ξ, ξ̃).

The formula for the diameter can be rewritten as

diam(B) = min
s∈SN

max
i,ξ,ξ̃∈B

|
(
C̃i,a(ξ, s)− C̃i,a(ξ̃, s)

)
〈va〉A|. (26)

We define Hext,δ as the Kolmogorov δ-entropy of Pext:

Hext,δ = inf
Cδ

log2 Ncover, (27)

where we take the infimum over all δ-coverings.

Remark 1. The introduced entropy depends on the parameter δ, and decreases in δ > 0. Moreover,
Hext,δ depends on the unperturbed attractor A (we omit that dependence in our notation).

Remark 2. The Kolmogorov δ-entropy has numerous applications for coding, image processing
and neural networks, see [23,24].

It is difficult to compute Hext,δ; however, we can find a rough estimate of this entropy
via the dimension dstr = dimξ of the stress parameter. Suppose that the diameter of Pext is
bounded: diam(Pext) ≤ R0, where R0 is a positive constant, which can be interpreted as a
maximal absolute value of the stress parameter variations. Then we obtain

Hext,δ ≤ dstr log2(R0/δ). (28)

If the set Pext is not compact then Hext,δ = +∞.
There holds

Theorem 1. Let an ergodic attractor A of a non-perturbed system (16) be ε-robust with gene
regulation. Then for sufficiently small ε > 0 one has

log2 Nreg ≥ Hext,δ (29)

where δ = Cε, where C > 0 is a constant uniform in ε as ε→ 0.

For a proof, see Appendix A. The idea is simple: using Proposition 1 one can show
that if the same genotype provides the stability for all perturbations from a set B, then
diam(B) < C1ε.

By results of [20] we can find a connection between the number of centers (hubs) in
the gene regulation network and the entropy Hext,δ. To find a rough estimate, we suppose
that we have a starlike network with Nc centers and each center is connected to Ns satellites.
Then the equilibrium number Nreg has the order NNc

s = exp(Nc ln Ns) [20] and

log2 Nreg ≈ log2

(
exp(Nc ln Ns)

)
= c0Nc ln Ns. (30)

Equation (30) shows that the main factor determining the effectiveness of the gene
response to stresses is the number of hubs involved in the corresponding gene regulation,
and Nc ln Ns ≥ constHext,δ (we use here that ln is a very slow increasing function of its
argument). The estimate (28) then gives the following topological condition of the stability:

Nc > c−1
0 log2 R0(ln Ns)

−1dstr, (31)
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i.e., roughly speaking, to support stability, the number of the gene network hubs should be
proportional to the dimension of the stress parameter.

7. Stability under Many Shocks

In this section, we use the model of gene regulation from Section 4.1. We are going to
prove the Gromov–Carbone hypothesis and show that the complexity growth of the gene
regulation network can lead to a successful evolution, where attractors stay robust under
all shocks. First, in the coming subsection, we study the case when the gene regulation
does not work and the genotype s is fixed.

7.1. Instability for Systems with Fixed Parameters

Let us prove a claim. Remember that on the set Pext of possible perturbations ξ, a
probabilistic measure µ is defined.

Theorem 2. Let veq be a hyperbolic equilibrium for system (17) with ξ = ξ̄. Suppose that for each
s the range of the map ξ → g(veq, ξ, s) contains a closed ball BR of radius R > 0 centered at 0, and
the measure µ on Pext is continuous with respect to the Lebesgue measure on BR.

Then for sufficiently small δ > 0

Pδ,veq ,τ < (1− δ1)
τ , τ > 0 (32)

where δ1 > 0.

Proof. Using the theorem assumptions, we choose such a perturbation ξ such that

|g(veq, ξ, s)| = δ1/2. (33)

If δ > 0 is small enough then by implicit function theorem and using that our equilib-
rium veq is hyperbolic, one can show that the equation

f̄ (v) + g(v, ξ, s) = 0

has a solution veq,ξ close to veq: |veq,ξ − veq| < cδ1/2. This solution is a hyperbolic equilib-
rium attractor for system (17). If a trajectory v(t) stays inside the δ-neighborhood of veq for
all t > 0, this trajectory converges to veq,ξ :

|v(t)− veq,ξ | < C0 exp(−c0t), C, c0 > 0.

Therefore, |veq − veq,ξ | < 2δ. However, according to Proposition 1, one has

|〈g(veq, ξ, s)〉A| < c1δ

which creates a contradiction with (33) for sufficiently small δ > 0. Therefore, we have
a non-zero probability p0 to find a ξ such that all trajectories v(t), which start in a δ-
neighborhood Wδ of veq, leave that neighborhood within a sufficiently large interval [0, T0].
Now we use the fact that the parameters ξk are i.i.d. random variables. In fact, consider
the intervals [0, T0], [T0, 2T0], ..., [nT0, (n + 1)T0]. The probability to find ξk such that the
state leaves Wδ within [kT0, (k + 1)T0] is not less than p0. All these leaving events are
independent, because ξk are independent. Therefore, the probability of leaving Wδ within
[0, nT0] is not less than pn

0 , and as a result, we obtain (32).

This result confirms Gromov–Carbone’s hypothesis on the fundamental instability
of biosystems under large parameter variations. However, if we suppose that the gene
regulation system can evolve, it is possible that inequality (2) holds for a β > 0. Then,
evolution can continue within a large time frame, with a positive probability. We consider
that evolution in the coming subsection.
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7.2. Evolution and DNN’s

To investigate the evolution problem in more detail, we apply recent results of the
deep networks theory [4,24,38]. Recently, people started to apply ReLU networks to model
gene regulation [3,6,39]. The deep networks with ReLU activators allow us to overcome
the curse of dimensionality [38].

Let the gene regulation be defined by deep networks FNet with ReLU activator func-
tions. Remember that the depth L = Lnet of a network is the number of hidden layers, and
the size S = Snet is the total number of units. Let us denote by Nlayer the maximal number
of units in the network layers.

The following estimate follows from results [4]. Let G(u) be a Lipshitz function
defined on a compact set K ⊂ Rm. Then there is a network Fnet with Lnet > 3 layers and
NL units in each layer such that

sup
v∈K
|G(v)− Fnet(v)| < 2

√
2mNL

−2/mLip(G), (34)

where Lip(G) is the Lipshitz constant of G.
Note that this approximation is made by a network with real-valued synaptic weights,

for example, for a single hidden layer perceptron, we have

FNet(v) =
NL

∑
l=1

alσ(
n

∑
k=1

wlkvk + w0), (35)

where al , wlk are real valued coefficients. We however need a network whose parameters
depend on a binary string s. For ReLU sigmoids σ, this binary coding problem can
be resolved as follows. Consider for simplicity the case (35) (a multilayered case can
be considered in a similar way). We first find values of real valued coefficients al , wlk,
providing the needed approximation. Each wlk we approximate by M bits within a precision
εb << εk: ∣∣wlk − wb

lk
∣∣ < εb,

where

wb
lj = (1/2− s̄j)

M2

∑
l=−M1

sj,l2
−l , s̄j, sj,l ∈ {0, 1}.

The ReLU function is Lipshitz with the constant 1. Therefore,

sup
v∈D

∣∣Fnet(v)− Fnet,B(v)
∣∣ < C|w− wb| < C1εb

for bounded inputs u, v and some constants C, C1 > 0, and Fnet,B denotes the network of the
same structure as Fnet but with the weights wb. The same procedure with the replacement
of wl to wb

l can be performed for coefficients al .
Remark. If the network Fnet has the size Snet, then we use Ng = O(Snet) log2 εb genes

to construct the network Fnet,B encoded by a binary string s ∈ {0, 1}Ng .

7.3. Result on Replicative Stability

We assume that assumption GR holds and consider the non-perturbed system (16).
Let A be a local attractor of the semiflow St generated by this system. The following
theorem describes the probability of stochastic robustness of this attractor with gene
regulation under a sequence of shocks ξk, k = 1, ..., Ms. Together with (16) we consider the
same systems with gene regulation terms defined by DNN’s (which are considered in the
previous subsection):

dv
dt

= f (v, ξk, s(k)) t ∈ (τk, τk+1]. (36)



Mathematics 2021, 9, 3028 13 of 19

Within each interval Ik = (τk, τk+1], the system under an environmental shock is
defined by the parameter ξk ∈ Pext,k , k = 1, 2, . . ., where Pext,k is the k-th set of external
perturbations. The shocks ξk are independent and we choose the set Pext,k randomly
from a countable set {Pext,1,Pext,2, ..., }. The index k defines a kind of interaction between
the organism and its environment. At the k-th step the corresponding gene regulation
networks Fnet,k have the size Sk, the depth L > 3 and Nk units in each layer. The weights
of connections in that network are encoded by a genotype s(k) as it is explained in the
previous subsection. We suppose that this network finds the correct choice s(k) = s̄(ξk)
instantly. These networks Fi,net,k solve the following approximation problem:

Approximation problem AP For a given target function

gi(v, ξk, s) = ∑
a∈Ri

C̃i,a(ξk, s)

of v to find a deep network Fi,net,k such that the error

errk = supv∈D|gi(v, ξk, s)− Fi,net,k| (37)

is minimal.
Further, to formulate the next theorem, let us introduce important parameters per-

mitting to estimate the Lipshitz constants of the target functions gi. The first parameter
is the sparsity of the reaction network mi, which is the number of elements in Ri. We
introduce the sparsity of the whole biochemical system by Sparse( f ) = maxi mi. The
second parameter is a sensitivity of kinetic rates under the perturbation of k-th type defined
as follows. Let

Ysens,i,a,k = sup
ξ∈Pext,k

∣∣∇ξ ln C̃i,a|.

Then the k-th stress sensitivity Yk is

Yk = max
i,a∈Ri

Ysens,i,a,k.

The third parameter is the productivity of the network, or in other words, the maximal
(over all components and all reactions) reaction output

PA = max
i,a∈Ri ,v∈A

∣∣Ci,ava∣∣.
Then the Lipshitz constant Lipξ(g) of perturbation g as a function of ξ can be estimated

via the introduced quantities:

Lipξ(g) ≤ Sparse( f )YkPA. (38)

An estimate obtained in the next theorem is rough; nonetheless, it allows us to identify
the main factors, which determine the organism fate under the stress stability: the sparsity
of reaction network, the stress sensitivity, and the size of the gene regulation network.

Theorem 3. Suppose that A is either a stable hyperbolic equilibrium or a stable hyperbolic limit
cycle for the semiflow St defined by non-perturbed system (16), and we have stresses ξk at the
moments τ1, ..., τMs < τ.

Then there is a sequence of networks Fi,net,k, k = 1, 2, ..., Ms, i = 1, 2, ..., n such that for
sufficiently small positive δ < δ0( f ,A) the stochastic stability Pδ,A,τ satisfies

Pδ,A,τ > Ψ =
K

∏
k=1

Pk, (39)
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where
Pk = Pr

[
Sparse( f )YkPA < C0δN2/n

k

]
,

and C0 is a constant uniform in δ as δ→ 0.

Let us make some comments.
(i) The main idea is to provide stability as follows: at each time we choose Fi,net,k

resolving the approximation problem AP.
(ii) If the attractor A is chaotic, the attractor contains unstable trajectories and a priori

estimates from the proof fail. The standard ideas connected with hyperbolicity do not work
because our perturbation is not autonomous in time and moreover it is not sufficiently
smooth (Fnet,k are Lipshitz functions but they are not C1).

(iii) We suppose that the number of coding genes in the layer Nlayer may depend on
the evolution step k : Nlayer = Nk, where Nk is the number of genes in each layer at the k-th
evolution step. The dependence on k is very important: it determines the evolution of the
regulation network, and according to assertion 2, without that evolution, it is impossible to
reach the robustness for all times.

(iv) From the biological point of view, assumptions of the theorem are not quite
realistic because we suppose here that the gene regulation system instantly finds an optimal
genotype s(k), but it is hard to study a completely realistic model. If the time lag between
action of environmental stress and the system adaptive answer is sufficiently small with
respect to a characteristic time of biochemical evolution, then one can expect that our
results are still valid (although the mathematical analysis becomes more sophisticated).
However, if that time lag is not small, our results are not applicable and the biochemical
system can lose its adaptivity.

(v) For infinite sequences of perturbations ξk, the stability for all times is possible if
the series ∑k(− ln Pk) converges.

(vi) Due to results of Section 7.2 (see the remark at the end of that subsection), the
number Ng of genes needed to encode a deep gene regulations network can be estimated as
Nk log2 Nk, i.e., it is more than the network size up to a logarithmic factor. This is roughly
consistent with experimental data. For example, for the E. coli metabolic network includes
744 reactions catalyzed by 607 enzymes and the E. coli genome contains 4288 protein coding
genes [40].

Note that Theorems 1 and 3 lead to the following interesting corollary: if Hext,δ = +∞,
then, to provide eternal robustness (2), the size Nk of the gene regulation network cannot
be bounded as k→ ∞: supk Nk = +∞.

Proof. Note that Fnet,k(v) are non-smooth (although Lipshitz bounded) functions of v;
therefore, we cannot use ideas connected with ε-shadowing, hyperbolicity, etc. Instead of
this, we use rough straight forward estimates. Let us consider the Cauchy problems

dv̄
dt

= f̄ (v̄), v̄(0) = v̄0,

dv
dt

= f̄ (v) + g(v, ξk, s(k)), v(τk) = v̄0.

where v0 ∈ D and t ∈ Ik = (τk, τk+1]. Let w(t) = v− v̄. Then for w(t) one has

dw
dt

= D f̄ (v̄)w + h(w) + g(v, ξk, s(k)), w(0) = 0, (40)

where |h(w)| < Cw2 and D f̄ (v) denote the derivative of f̄ with respect to v.

Lemma 1. Let the errors of approximation problem AP satisfy

errk < ε0 (41)
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for each k. Then for sufficiently small ε0 > 0 one has

sup
t>0
|w(t)| < C0ε0, (42)

where C0 is uniform in ε0 > 0.

For the proof, which is quite standard, see Appendix A.
Using the lemma, at k-th evolution step we solve approximation problem AP. We use

the estimate (34). This estimate shows that the probability to satisfy condition (41) for each
k equals Ψ, which according to Lemma 1, gives the estimate of Pδ,A,τ from below. This
proves the theorem.

8. Numerical Simulations

To illustrate our analytical results on evolution, systems (10) and (11) are considered.
To describe the evolution of cancer cells, we extend the model in [29]. Note that among
all model parameters, r is a key parameter that defines the growth of the cancer cell. It is
natural thus to assume that mutations increasing this parameter play the main role, and
these mutations support replicative stability. We introduce a small mutation probability
pmut > 0. We solve systems (10) and (11) by the Euler method with a time step dt, and at
each time step positive mutations can occur, increasing the growth parameter r. At each
time step, the growth parameter either increases by a small quantity, or that parameter
stays the same. The growth event occurs with the probability pmut. We suppose that
at these mutation time moments, we change the growth parameter r by an increment
dr, where dr > 0 be a positive parameter. Therefore, r subsequently takes the values
r, r + dr, r + 2dr, ....

Following [29], we suppose that ξ(t) has the form of a sequence of periodical impulses:

ξ(t) = η
∞

∑
k=1

δ(t− k∆t), (43)

where η > 0 is a parameter (the therapy intensity), and δ stands for the Dirac delta function.
Such a choice corresponds to jumps in concentrations v1(t) at time moments ∆t, 2∆t, . . ..

We consider the three cases:

(i) No therapy and no evolution of cancer cells, η = 0;
(ii) Therapy and no evolution of cancer cells, η > 0 and dr = 0;
(iii) Therapy and evolution of cancer cells, η > 0 and dr > 0.

Results are shown in Figures 1 and 2.
We see that despite therapy, the cancer cell population starts to grow sooner or later,

and the increasing curve nicely describes such a growth.
One can conclude that it is necessary to take into account cancer cell adaptivity and

evolution, which allows us to describe cancer dormancy, an important effect in cancer
treatment [41]. Many patients relapse due to dormant cancer cells. These rare and elusive
cells can hide in specialized niches in distant organs before being reactivated to cause
disease relapse [41]. The cancer dormancy is a very complex problem, and we postpone
this issue for future articles.
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Figure 2. This plot shows how the replicative stability affects the abundance of cancer cells. The
quantity F on the graph is the fraction, where the numerator is the abundance of the cancer cells for
the replicative case and the denominator is the same abundance in the case when the mutations are
absent. We see that F is almost constant for a large therapy dosage η. The parameters are selected in
the same way as in the previous figure.

9. Discussion

In this paper, the idea of replicative stability proposed by M. Gromov and A. Carbone
is investigated for systems that are standard models for metabolic kinetics and population
dynamics. To this end, systems of ODE’s are considered, which involve terms describing
environmental shocks controlled by random parameters and gene regulation terms defined
by networks. As a model of gene regulation, we used deep neural networks (DNN) here
with ReLU activators. Since the deep networks overcome the curse of dimensionality, the
problem of existence of genetic response to environmental stress can be resolved effectively.

In a framework of such approach, a connection is found between the uncertainty
(entropy) of external stresses induced by a random environment and the topology of
regulation networks. To compensate for the stress impact, the gene regulation networks
should have a sufficient number of the hubs. Here the main result is an estimate of the hub
number in regulation networks via the stress parameter dimension. Roughly speaking, to
support stability, the number of the regulation network hubs should be not less than the
dimension of the stress impact (this dimension can be simply understood as the number of
different threats to the stability of the system). We think that this result is quite general and
it is applicable to many systems. In fact, biological, ecological and economic systems are
clearly becoming more complex in the process of evolution. However, it is not so easy to
formalize these intuitive ideas on the complexity growth in precise mathematical terms. In
this paper, using Kolmogorov’s entropy, deep networks, and the Gromov–Carbone idea
of replicative stability, we shed light on this hard problem. The main idea is that more
complex systems support homeostasis in a more effective manner. The fluctuations of
system internal parameters could be essentially less for systems having a regulation. For
example, the DNA replication in such systems can be performed in a more reliable way
and therefore more complicated systems stabilize their genetic code better, which give
them a selective advantage.

From the biological point of view, the main result of this paper is that replicative
stability provides a stability of populations within a large time period and even maybe an
eternal stability (a sufficiently unpleasant conclusion, COVID-19 forever!). We show that it
is possible due to gene regulation network evolution. We also present models that allow us
to estimate the fraction of cancer cells (viruses, bacteria) that still survive after many stages
of therapy.
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Appendix A

Appendix A.1. Proof of Lemma 1

Proof. Let us consider the Cauchy problem defined by the linear equation

du/dt = D f̄ (v̄(t))u(t), u(t̃) = w.

The solutions of this equation define the semigroup L(t, t̃) as follows:

u(t) = L(t, t̃)w.

Then we can rewrite (40) as an integral equation:

w(t) =
∫ t

0
L(t, t′)

(
h(w(t′)) + gk(v(t′), ξ(s(t′)), s(t′))

)
dt′. (A1)

Let us consider first the case when A is a hyperbolic equilibiria v̄. Then the semigroup
L(t, t′) = exp(L(t− t′)) induced by linear operator L : u→ D f (v̄)u. It satisfies

|L(t, t′)u| ≤ c0 exp(−κ(t− t′))|u|, t > t′, (A2)

where c0, κ are positive constants. Equation (A1) and that last estimate imply the integral
inequality

|w(t)| ≤ C̄
∫ t

0

(
|w(t′)|2 + ε0

)
exp

(
− κ(t− t′)

)
dt′, (A3)

where C̄ is a positive constant uniform in ε0. Let X(t) = |w(t)| and let us denote by Φ(X(·))
the integral operator defined by the right hand side of the last inequality:

Φ(X(·))(t) =
∫ t

0

(
X(t′)2 + ε0) exp(−κ(t− t′))

)
dt′.

We consider the operator Φ on the space of bounded non-negative functions X(t)
defined on [0,+∞) with the norm supt≥0 X(t) if ε0 is small enough then for an appropriate
C0 > 0 the operator Φ maps the subset {X(t) < C0ε0} into itself. This implies (42) for the
case of an equilibrium.

In order to obtain (42) in the case of the limit cycle v̄(t), we slightly modify our
arguments because then the semigroup |L(t, τ)| is not exponentially decreasing in |t− τ|.
We proceed as follows. Let v̄(t) be a cycle. At the cycle, we represent the solution as v(t) =
v̄(t + φ(t)) + w(t), where φ is defined by the condition that distance |v(t)− v̄(t + φ(t))|
between the cycle and the solution v(t) is minimal. For w(t), φ(t) we obtain two differential
equations, and when we restrict on the subspace of w such that (w, dv̄/dt) = 0 for all t the
semigroup |L(t, τ)| satisfies (A2).



Mathematics 2021, 9, 3028 18 of 19

Appendix A.2. Proof of Theorem 1

Appendix A.2.1. Auxiliary Lemma

Let us prove a preliminary Lemma.

Lemma A1. Let
in fs∈SN

∣∣〈g(·, ξ, s)− g(·, ξ̃, s)〉A
∣∣ > δ > 0 (A4)

where δ > Cε and C > 0 is an appropriate constant uniform in ε as ε→ 0. Then

s̄(ξ) 6= s̄(ξ̃). (A5)

Proof. Suppose that (A5) is not valid, i.e., s̄(ξ) = s̄(ξ̃) = s̄. Due to Proposition 1, one
obtains

|g(·, ξ, s̄)〉A| < C1ε, (A6)

|g(·, ξ̃, s̄)〉A| < C1ε. (A7)

These estimates imply

|〈g(·, ξ̃, s̄)− g(·, ξ, s̄)〉A| < 2C1ε.

Let C > 2C1. Then one has a contradiction with (A4) that completes the proof.

Appendix A.2.2. End of Demonstration

To conclude the proof of Theorem 1, we just use the definition of Hext,δ. The proof is
complete.
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