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Abstract: The energy E(G) of a graph G is the sum of the absolute values of its adjacency matrix. In
contrast, the trace norm of a digraph Q, which is the sum of the singular values of the corresponding
adjacency matrix, is the oriented version of the energy of a graph. It is worth pointing out that one
of the main problems in this theory consists of determining appropriated bounds of these types of
energies for significant classes of graphs, digraphs and matrices, provided that, in general, finding
out their exact values is a problem of great difficulty. In this paper, the trace norm of a {0, 1}-Brauer
configuration is introduced. It is estimated and computed by associating suitable families of graphs
and posets to Brauer configuration algebras.

Keywords: brauer configuration algebra; graph energy; path algebra; poset; spectral radius; trace
norm; wild representation type

1. Introduction

Brauer configuration algebras (BCAs) were introduced recently by Green and Schroll [1].
These algebras are multiserial symmetric algebras whose theory of representation is based
on combinatorial data.

Since its introduction, BCAs have been a tool in the research of different fields of
mathematics. Its role in algebra, combinatorics, and cryptography is remarkable. For
instance, Malić and Schroll [2] associated a Brauer configuration algebra to some dessins
d’enfants used to study Riemann surfaces, Cañadas et al. investigated the structure of the
keys related to the Advanced Encryption Standard (AES) by using some so-called polygon-
mutations in BCAs. On the other hand, BCAs were a helpful tool for Espinosa et al. to
describe the number of perfect matchings in some snake graphs. We point out that Schiffler
et al. used perfect matchings of snake graphs to provide a formula for the cluster variables
associated with appropriated cluster algebras of surface type. In their doctoral dissertation,
Espinosa used the notion of the message of a Brauer configuration to obtain the results [3,4].
According to him, each polygon in a Brauer configuration has associated a word. The
concatenation of such words constitutes a message after applying a suitable specialization.

Perhaps, the message associated with a Brauer configuration is one of the most helpful
tools to obtain applications of BCAs. In this work, we use Brauer configuration messages,
some results of the theory of posets (partially ordered sets) and integer partitions to obtain
the trace norm of some {0, 1}-Brauer configurations, which are Brauer configurations
whose sets of vertices consist only of 0’s and 1’s.

It is worth pointing out that the research on trace norm has its roots in chemistry
within the Hückel molecular orbital theory (HMO) [5]. Afterwards, Gutman [6] founded
an independent line of investigation in spectral graph theory based on graph energy,
which is the sum E(G) = ∑

λ∈spect(MG)
|λ|, where spect(MG) is the set of eigenvalues of
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the adjacency matrix MG of a graph G. The trace norm associated with the adjacency
matrix of a digraph or quiver Q denoted ||Q||∗ is a generalization of the graph energy. It
is also called the Schatten 1-norm, Ky Fan n-norm or nuclear norm. If σ1, σ2, . . . , σn are
the singular values of the m × n- adjacency matrix MQ, with σ1 ≥ σ2 ≥ · · · ≥ σn then

||Q||∗ =
min{m,n}

∑
i=1

σi. Relationships between energy graph and trace norm were investigated

first by Nikiforov [7].
One of the main problems in graph energy theory is giving the extremal values of the

energy of significant classes of graphs. For instance, Gutman [6] proved that if Tn is a tree
with n vertices then the following identity holds:

E(Sn) ≤ E(Tn) ≤ E(An) (1)

where, Sn (An) denotes the star (the Dynkin diagram of type A) with n vertices.
Graph energy associated with digraphs was investigated first by Kharaghani–Tayfeh–

Rezaie [8], afterwards by Agudelo–Nikiforov [9], who found bounds of extremal values
of the trace norm for (0, 1)-matrices. It is worth noticing that if the adjacency matrix of
a graph G is normal, then the graph energy equals the trace norm. In particular, if the
adjacency matrix MG of a graph G is symmetric, then E(G) = ||MG||∗.

Contributions

In this paper, we introduce the notion of trace norm of a {0, 1}-Brauer configuration.
Bounds and explicit values of these trace norms are given for significant classes of graphs
induced by this kind of configuration. In particular, the dimension of the associated
algebras and their centers are obtained. These results give a relationship between Brauer
configuration algebras and graph energy theories with an open problem in the field of
integer partitions proposed by Andrews in 1986. Such a problem asks for sets of integer
numbers S, T for which P(S, n) = P(T, n + a), where P(X, n) denote the number of integer
partitions of n into parts within the set X with a being a fixed positive integer [10].

As a consequence of their investigations regarding Andrews’s problem,
Cañadas et al. [11,12] introduced and enumerated a particular class of integer com-
positions (i.e., partitions for which the order of the parts matter) of type Dn, for which
the Andrews’s problem holds if a = 1. For each n, compositions of type Dn constitute
a partially ordered set whose number of two-point antichains is given by the integer se-
quence encoded in the OEIS (On-Line Encyclopedia of Integer Sequences) A344791 [13].
The following identity (2) gives the nth term (A344791)n of this sequence:

(A344791)n =
n

∑
i=1

b i
2 c

∑
j=0

hij(ti − 2tj). (2)

where tk denotes the kth triangular number, and

hij =


n + 1− i, if i = 2j and 1 ≤ j ≤ b n

2 c,
0, if i = n and j = 0,
1, otherwise.

This paper uses this sequence to estimate eigenvalues sums of matrices associated
with polygons of some {0, 1}-Brauer configurations.

It is worth noting that the relationships introduced in this paper between the theory
of Brauer configuration algebras and the graph energy theory do not appear in the current
literature devoted to these topics.

This paper is distributed as follows; in Section 2, we recall definitions and notation
used throughout the document. In particular, we introduce the notion of trace norm of
a {0, 1}-Brauer configuration. In Section 3, we give our main results, we compute and
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estimate the trace norm and graph energy of some families of graphs defined by Brauer
configuration algebras. Concluding remarks are given in Section 4. Examples of trace norm
values associated with some Brauer configurations are given in Appendix A.

The following diagram (3) shows how the notions of Brauer configuration and trace
norm are related to some of the main results presented in this paper.

Path Algebras 2.2; Theorem 1, Theorem 2

��
Brauer Configuration Algebras 2.3

��Bollobás-Nikiforov Theorem 4

��
Trace Norm 6

��Posets 2.4
qq --

Corollary 2

��
--

Corollary 4

��
qq

Theorem 7

��Corollary 3 Theorem 6

Corollary 6

��
Corollary 8

(3)

2. Background and Related Work

In this section, we introduce some definitions and notations to be used throughout the
paper. In particular, it is given a brief overview regarding the development of the research
of graph energy theory, path algebras, and Brauer configuration algebras.

Henceforth, the symbol A∗ will denote the adjoint of a matrix A, and ‖A‖F the
Frobenius norm of a matrix A. Furthermore, F is a field, N+ is the set of positive integers,
and tn denotes the nth triangular number.

2.1. Graph Energy

The notion of graph energy as the sum of the absolute values of an adjacency matrix
was introduced in 1978 by Gutman based on a series of lectures held by them in Stift
Rein, Austria [6]. As we explained in the introduction, he was motivated by earlier results
regarding the Hückel orbital total π-electron energy. According to Gutman and Furtula [14],
the results were proposed at that time in good hope that the mathematical community
would recognize its significance. However, there was no interest in the subject despite
Gutman’s efforts, perhaps due to the restrictions imposed on the studied graphs.

The interest in graph energy was renewed at the earliest 2000 when a plethora of
results started appearing. Since then, more than one hundred variations of the initial
notion have been introduced with applications in different sciences fields. In the same
work, Gutman and Furtula claim that an average of two papers per week (more than one
hundred in 2017) are written regarding the subject.

Some of the graph energy variations are:

1. The Nikiforov energy of a matrix M, which is the sum of the singular values of a matrix.
2. The Laplacian energy of a graph G of order n and size m defined as the sum of the

absolute values of the eigenvalues of the matrix L(G)− 2m
n In, where In is the identity

matrix of order n, and L(G) is the Laplacian matrix associated with G whose entries
L(G)ij are given by the following identities:

(L(G))ij =


deg(vi) if i = j,
−1 if i 6= j and vi is adjacent to vj,
0 otherwise.

where deg(v) denotes the degree of a vertex v in G.
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3. The Randić energy, which is the sum of the absolute values of the Randić matrix
R(G) = (R(G)ij) of a graph G, with

(R(G))ij =


0 if i = j,

1√
deg(vi)deg(vj)

if vi is adjacent to vj,

0 otherwise.

Although the notion of graph energy was introduced only for theoretical purposes, cur-
rently, its applications embrace a broad class of sciences. The following Table 1 shows some
examples of different works devoted to the applications of graph energy and its variations.
The authors refer the reader to [14] for more examples of these types of applications.

Table 1. Works devoted to the applications of the graph energy theory. In the case of pattern
recognition, the applications deal with military purposes.

Subject Work

Chemistry [15]
Biology [16]

Crystallography [17]
Epidemics [18]

Pattern Recognition [19]
Computer Vision [20]

Satellite Communication [21]
Spacecrafts Construction [22]

Neural Networks [23]

2.2. Path Algebras

This section recalls some facts regarding quivers, their associated path algebras, and
corresponding module categories. It is worth noting that the quiver or pass graph technique
is used in representation theory, and it is an important tool to solve many ring problems, as
Belov-Kanel et al. report in [24].

A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of two sets Q0 whose elements
are called vertices and Q1 whose elements are called arrows, s and t are maps s, t : Q1 → Q0
such that if α is an arrow, then s(α) is called the source of α, whereas t(α) is called the target
of α [25]. The adjacency matrix MQ and the spectral radius ρ(Q) = ρ(MQ) = max|λ|
(where λ runs over all the eigenvalues of MQ) of a quiver Q are given by those defined by
its underlying graph Q.

Recall that the adjacency matrix MG associated with a graph G is defined by the
following identities:

(MG)ij =

{
number of edges between i and j, if i 6= j,
two times the number of loops at i, if i = j.

A path of length l ≥ 1 with source a and target b is a sequence (a | α1, α2, . . . , αl | b)
where t(αi) = s(αi+1) for any 1 ≤ i < l. Vertices are paths of length 0 [25–27].

If Q is a quiver and F is an algebraically closed field, then the path algebra FQ of Q is
the F-algebra whose underlying F-vector space has as basis the set of all paths of length
l ≥ 0 in Q, the natural graph concatenation is the product of two paths [25,26].

An F-algebra Λ is said to be basic if it has a complete set {e1, e2, . . . , el} of primitive
orthogonal idempotents such that ei A � ej A for all i 6= j.

A relation for a quiver Q is a linear combination of paths of length ≥ 2 with the same
starting points and same endpoints, not all coefficients being zero [25,26].

Let Q be a finite and connected quiver. The two-sided ideal of the path algebra FQ
generated by the arrows of Q is called the arrow ideal of FQ and is denoted by RQ, Rl

Q is
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the ideal of FQ generated as an F-vector space, by the set of all paths of length ≥ l. A two-
sided ideal I of the path algebra FQ is said to be admissible if there exists m ≥ 2 such that
Rm

Q ⊆ I ⊆ R2
Q.

If I is an admissible ideal of FQ, the pair (Q, I) is said to be a bound quiver. The
quotient algebra FQ/I is said to be a bound quiver algebra.

Gabriel [28] proved that any basic algebra is isomorphic to a bound quiver algebra.
He also showed the finiteness criterion for these algebras. Taking into account that one of
the main problems in the theory of representation of algebras consists of giving a complete
description of the indecomposable modules and irreducible morphisms of the category of
finitely generated modules mod Λ of a given algebra Λ.

According to the number of indecomposable modules an algebra Λ can be of finite,
tame or wild representation type. We recall that if C is a category of finitely generated
modules over an F-algebra Λ (in this case, F is an algebraically closed field). Then a
one-parameter family in C is a set of modules of the form:

M = {M/(x− a)M | a ∈ F} (4)

where M is a Λ− F[x]-bimodule, which is finitely generated and free over F[x] [29].
Category C is said to be of tame representation type or tame type, if C =

⋃
n
Cn, and for

every n, the indecomposable modules form a one-parameter family with maybe finitely many
exceptions equivalently in each dimension d, all but a finite number of indecomposable
Λ-modules of dimension d belong to a finite number of one-parameter families. On the
other hand, C is of wild representation type or wild type if it contains n-parameter families of
indecomposable modules for arbitrarily large n [29].

It is worth noting that Drozd in 1977 and Crawley-Boevey in 1988 proved the following
result known as the trichotomy theorem.

Theorem 1 ([30,31], Corollary C). Let Λ be a finite-dimensional algebra over an algebraically
closed field. Then Λ-mod has either tame type or wild type, and not both.

The following result proved by Smith establishes a relationship between the theory of
representation of algebras and the spectra graph theory.

Theorem 2 ([32]). Let G be a finite simple graph with the spectral radius (index) ρ(G). Then
ρ(G) = 2 if and only if each connected component of G is one of the extended Dynkin diagram
Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8. Moreover, ρ(G) < 2 if and only if each connected component of G is one of
Dynkin diagrams An, Dn, E6, E7, E8.

Remark 1. Note that if Q is a connected quiver without oriented cycles, then Theorem 2 allows
concluding that Q is of finite type (tame type) if and only if ρ(Q) < 2 (ρ(Q) = 2). Otherwise, Q is
of wild type. A quiver Q has one of these three properties means that the corresponding path algebra
FQ also does.

2.3. {0,1}-Brauer Configuration Algebras

In this section, we discuss some results regarding {0, 1}-Brauer configuration algebras,
we refer the reader to [1] for a more detailed study of general Brauer configuration algebras.

{0, 1}-Brauer configuration algebras are bound quiver algebras induced by a Brauer
configuration Γ = (Γ0, Γ1, µ,O) with the following characteristics:

• Γ0 = {0, 1} is said to be the set of vertices.
• Γ1 = {U1, U2, . . . , Un−1, Un ; n > 1} is a collection of multisets Ui consisting of vertices

called polygons.
• The word wi defined by the polygon Ui has the form;

wi = wi,1wi,2 . . . wi,δi .
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where wi,j ∈ {0, 1}, αi = occ(0, Ui) is the number of times that the vertex 0 occurs in
the polygon Ui, δi − αi = occ(1, Ui) is the number of times that the vertex 1 appears in
the same polygon with δi = |Ui| > 2.

• µ is a map µ : Γ0 → N+, such that µ(0) = µ(1) = 1. µ is said to be the multiplicity
function associated with Γ.

• Successor sequences S0 and S1 associated with the vertices are defined by an orienta-
tion O, which is an ordering on the polygons of the form:

S0 : U1 < · · · < U1︸ ︷︷ ︸
α1−times

< U2 < · · · < U2︸ ︷︷ ︸
α2−times

< · · · < Un−1 < · · · < Un−1︸ ︷︷ ︸
αn−1−times

< Un < · · · < Un︸ ︷︷ ︸
αn−times

S1 : U1 < · · · < U1︸ ︷︷ ︸
(δ1−α1)−times

< U2 < · · · < U2︸ ︷︷ ︸
(δ2−α2)−times

< · · · < Un−1 < · · · < Un−1︸ ︷︷ ︸
(δn−1−αn−1)−times

< Un < · · · < Un︸ ︷︷ ︸
(δn−αn)−times

Successor sequences is a way of recording how vertices appear in the polygons.

The construction of the quiver QΓ (or simply Q, if no confusion arises) goes as follows:

• Add a circular relation Un < U1, to each successor sequence S0 and S1. Ci = Si ∪
{Un < U1}, i ∈ {0, 1} is said to be a special cycle associated with i.

• Define Γ1 as the set of vertices Q0 of Q.
• Each cover Ui < Uj in a special cycle Ci defines an arrow Ui → Uj ∈ Q1.

Note that there are different special cycles associated with a vertex i ∈ {0, 1} in
a polygon Ui.

Figure 1 shows the Brauer quiver QΓ induced by a {0, 1}-Brauer configuration Γ.

Figure 1. Brauer quiver induced by a {0, 1}-Brauer configuration. Symbols li
j, i ∈ {0, 1},

j ∈ {1, 2, . . . , n} mean that the corresponding vertex Uj has associated li
j = occ(i, Uj) − 1

different loops.

The valency val(i) of a vertex i ∈ {0, 1} is given by the identity:

val(i) =
n

∑
j=1

occ(i, Uj). (5)

val(i) is the number of arrows in the i-cycles. A vertex i ∈ {0, 1} is said to be truncated
if val(i) = 1, otherwise i is non-truncated. Vertices 0 and 1 are non-truncated in a {0, 1}-
Brauer configuration algebra.

The Brauer configuration algebra ΛΓ (or Λ) defined by the quiver Q is the path algebra
FQ bounded by the admissible ideal IΓ (or I) generated by the following set of relations:

1. If a polygon Uk ∈ Γ1 contains vertices i, j and Ci, Cj are special cycles then Ci −Cj ∈ I.
2. If a is the first arrow of a special cycle Ci then Cia ∈ I.
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3. α0
i β1

j , β1
hα0

s , for all possible values of i, j, h, and s.

4. α0
i α0

i+1 β1
i β1

i+1, for all possible values of i.
5. α0

i l1
j , β1

i l0
j , for all possible values of i and j.

6. l0
i l1

i l0
j β1

i , l1
j α0

i for all possible values of i and j.
7. (l0

i )
2, (l1

j )
2, for all possible values of i and j.

If there exists a word-transformation T such that wi = T(wi−1)(Ri), for instance, if
wi = wi−1Ri with Ri a suitable {0,1}-word, then the cumulative message M(Γ) of Γ is defined
in such a way that M(Γ) = w1w2 . . . wn and the reduced message MR(Γ) is defined by the
concatenation word:

MR(Γ) = w1R2R3 . . . Rn

If MR(Γ) can be written as a m× n matrix, then ρ(MR(Γ)) denotes the spectral radius of the
Brauer configuration Γ and the trace norm of the Brauer configuration Γ is defined as:

||MR(Γ)||∗ =
min{m,n}

∑
k=1

σk(MR(Γ)). (6)

where σ1(MR(Γ)) > σ2(MR(Γ)) > · · · > σn(MR(Γ)) > 0 are the singular values of MR(Γ),
i.e., the square roots of the eigenvalues of MR(Γ)MR(Γ)∗.

The following Proposition 1 and Theorem 3 prove that the dimension and the center of
a Brauer configuration algebra can easily be computed from its Brauer configuration [1,33].

Proposition 1 ([1], Proposition 3.13). Let Λ be a Brauer configuration algebra associated with the
Brauer configuration Γ and let C = {C1, . . . , Ct} be a full set of equivalence class representatives
of special cycles. Assume that for i = 1, . . . , t, Ci is a special αi-cycle where αi is a non-truncated
vertex in Γ. Then

dimF Λ = 2|Q0|+ ∑
Ci∈C
|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of arrows in the αi-cycle
Ci and ni = µ(αi).

Theorem 3 ([33], Theorem 4.9). Let Γ be a reduced and connected Brauer configuration and let Q
be its induced quiver and let Λ be the induced Brauer configuration algebra such that rad2 Λ 6= 0
then the dimension of the center of Λ denoted dimF Z(Λ) is given by the formula:

dimF Z(Λ) = 1 + ∑
α∈Γ0

µ(α) + |Γ1| − |Γ0|+ #(Loops Q)− |CΓ|.

where |CΓ| = {α ∈ Γ0 | val(α) = 1, and µ(α) > 1}.

In this case, rad M denotes the radical of a module M, rad M is the intersection of all
the maximal submodules of M.

The following are properties of {0, 1}-Brauer configuration algebras based on Proposi-
tion 1 and Theorem 3.

Corollary 1. Let Λ be a Brauer configuration algebra induced by a {0,1}-Brauer configuration
Γ = (Γ0, Γ1, µ,O) with rad2 Λ 6= 0. Then the following statements hold:

1. Λ is reduced and connected.
2. dimF Λ = 2n + 2tval(0)−1 + 2tval(1)−1, where tj denotes the jth triangular number.
3. dimF Z(Λ) = 1 + n + ∑1

i=0 ∑n
j=1 li

j.
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2.4. Posets

A partially ordered set (or poset) is an ordered pair (P,≤) where P is a not empty
set, and ≤ is a partial order over the elements of P, i.e., ≤ is reflexive, antisymmetric, and
transitive. Henceforth, if no confusion arises we will write P instead of (P,≤) to denote a
partially ordered set.

For each x, y ∈ P, if x ≤ y or y ≤ x, we say that x and y are comparable points, whereas
if x � y and y � x, we say that x and y are incomparable points (the subset {x, y} is a
two-point antichain), this situation is denoted by x ‖ y. An ordered set C is called a chain (or
a totally ordered set or a linearly ordered set) if and only if for all x, y ∈ C we have x ≤ y or
y ≤ x (i.e., x and y are comparable points).

A relation x ≤ y in a poset P is said to be a covering, if for any z ∈ P such that
x ≤ z ≤ y it holds that x = z or y = z [34].

3. Applications

In this section, we give applications of {0, 1}-Brauer configuration algebras in graph
energy. We start by defining some suitable {0, 1}- Brauer configuration algebras, dimen-
sions of these algebras and corresponding centers are given as well. We also compute and
estimate eigenvalues and trace norm of their reduced messages MR(Γ).

1. For n > 2 fixed, let us consider the {0,1}-Brauer configuration ∆n = (∆n
0 , ∆n

1 , µ,O),
such that:

∆n
0 = {0, 1}.

∆n
1 = {D1, D2, . . . , Dn}, for 1 ≤ i ≤ n, |Di| = (ti+2 − 1)2.

µ(0) = µ(1) = 1.

(7)

The orientation O is defined in such a way that in successor sequences associated
with vertices 0 and 1, it holds that Di < Di+1, for 1 6 i 6 n.
Polygons Di can be seen as (ti+2 − 1) × (ti+2 − 1)-matrices over Z2 or as (ti+2 −
1)× 1-matrices over the vector space Pti+2−2 of polynomials of degree ≤ ti+2 − 2. Its
construction goes as follows:

(a) For any i, 1 ≤ i ≤ n, Di is a symmetric matrix,

(b) D1 =


1 1 0 1 1
1 1 1 0 1
0 1 1 1 1
1 0 1 1 1
1 1 1 1 1

 =


t4 + t3 + t + 1
t4 + t3 + t2 + 1
t3 + t2 + t + 1
t4 + t2 + t + 1

t4 + t3 + t2 + t + 1

,

(c) Di =



Bi+1
1

Di−1 Bi+1
2

∗
...

Bi+1
i

Bi+1
i+1


(d) Blocks Bi+k

j , with k > 1 are defined as follows:

i. Over Z2, Bj
j ∈ M(j+1)×(j+1), Bj+s

j ∈ M(j+1)×(j+s+1), 0 ≤ s ≤ j + 1,
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ii. Over Pj+s+2, Bi+k
j =


pi+k

1 (t)
pi+k

2 (t)
...

pi+k
j+1(t)

,

pi+k
h (t) =



j−h+1
∑

l=0
xl , if 1 ≤ h ≤ k,

j−h+1
∑

l=0
xl +

h−k−1
∑

j=0
xj+k−h+1, if h > k and 2 ≤ k ≤ i + 2,

pm
h (t), if m > i + 2.

Corollary 2. If Dn = FQn
∆n /In

∆n is the Brauer configuration algebra induced by the {0,1}-
Brauer configuration ∆n then the following statements hold:

dimF Dn = (en − dn)
2 + (en − 1)2 + (dn − 1),

dimF Z(Dn) = (tn+2)
2 + n + 3.

(8)

where

an =
1− (−1)n − 8n− 4n2 + 8n3 + 2n4

32
= (A344791)n,

bn+2 =
n+2

∑
i=1

t2
i − 10,

cn+2 = − (n + 2)(n + 3)(n + 4)
3

+ 8,

dn = bn+2 + cn+2 + n, n ≥ 1,

en = 2
n

∑
i=1

ai+1.

(9)

Proof. For n > 1 fixed, consider the following set:

Pn = {x1,1, x1,2, x2,1, x2,2, x2,3, . . . , xi,1, . . . , xi,i+1, . . . , xn,1, . . . , xn,n+1} (10)

Pn is endowed with a partial order E, which defines the following coverings:

xj,k E xj,k+1, 1 ≤ j ≤ n, 1 ≤ k ≤ j,

xj,k E xj+1,k+1, 1 ≤ j < n, 1 ≤ k ≤ j + 1,

xr,k E xr−1,k+1, 1 < r ≤ n, 1 ≤ k ≤ r.

(11)

(Pn,E) defines a matrix Mn whose entries mi,j are given by the following identities:

mi,j =

{
1, if xi,r E xj,s or xj,s E xi,r

0, otherwise.

Clearly Mn is a (tn+1 − 1)× (tn+1 − 1) symmetric matrix with Mn = Dn−1 ∈ ∆n
1 , that

is, Mn is the matrix associated with the polygon Dn−1 ∈ ∆n
1 . Thus, 1

2 occ(0, Dn) equals
the number of two-point antichains in (Pn,E). Therefore, occ(0, Dn) is twice the nth
term of the sequence A344791 (see (2), (9)), and occ(1, Dn) = (tn+1 − 1)2 − occ(0, Dn).
Since dimF Dn = 2n + val(0)(val(0) − 1) + val(1)(val(1) − 1). The result holds.
Since rad2 Dn 6= 0, then dimF Z(Dn) = 1 + n + #(Loops Q∆n) with #(Loops Q∆n) =
(tn+2)

2 + 2. We are done.
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Now we are interested in estimating the eigenvalues of Mn. Since the polygons
Dn ∈ ∆n

1 can be seen as (tn+1 − 1) square symmetric matrices described in the
previous proof as Dn−1 = Mn. We will assume that for each n, the real eigenvalues of
a matrix Mn are indexed in the following decreasing order:

µmax(Mn) = µ1(Mn) > µ2(Mn) > · · · > µtn+1−1(Mn) = µmin(Mn).

The next result, which derives two inequalities for the eigenvalues of Hermitian
matrices, was proved by Bollobás and Nikiforov [35].

Theorem 4 ([35], Theorem 2). Suppose that 2 6 k 6 n and let A = (aij) be a Hermitian
matrix of size n. For every partition {1, 2, . . . , n} = N1 ∪ · · · ∪ Nk we have

µ1(A) + · · ·+ µk(A) >
k

∑
r=1

1
|Nr| ∑

i,j∈Nr

aij

and

µk+1(A) + · · ·+ µn(A) 6
k

∑
r=1

1
|Nr| ∑

i,j∈Nr

aij −
1
n ∑

i,j∈1,2,...,n
aij.

The following result on the eigenvalues of Mn can be obtained by applying Theorem 4
to the matrix Mn associated with the polygon Dn−1 ∈ ∆n

1 .

Corollary 3. For n > 1 and k = n. Let Mn = (mij) be the matrix associated with the
polygon Dn−1 ∈ ∆n

1 . For partition {1, 2, . . . , tn+1 − 1} = N1 ∪ · · · ∪ Nn where Ni ={
i(i+1)

2 , . . . , i(i+3)
2

}
. We have

n

∑
i=1

µi(Mn) > tn+1 − 1 (12)

and
tn+1−1

∑
i=n+1

µi(Mn) ≤
2(A344791)n

tn+1 − 1
. (see (2)). (13)

Proof. Since Ni =
{

i(i+1)
2 , . . . , i(i+3)

2

}
, for each i = {1, 2, . . . , n} then |Ni| = i + 1,

besides each set Ni can be seen as a subset of the set Pn defined in (10) as follows:

Ni = {xi,1, . . . , xi,i+1}.

On the other hand, to compute ∑i,j∈Ni
aij, we will use the coverings defined in (11)

and the fact that Pn is a partial order, so we obtain:

∑
i,j∈Ni

mij = 2
i

∑
j=1

(xi,j E xi,j+1) +
i+1

∑
j=1

(xi,j E xi,j) + 2
i−1

∑
j=1

(xi,j E xi,j+2)

= 2i + (i + 1) + 2ti−1

= (i + 1)2

Therefore:

n
∑

i=1

1
|Ni | ∑

i,j∈Ni

mij = i + 1 and

1
tn+1−1 ∑

i,j∈{1,2,...,tn+1−1}
mi,j = 1

tn+1−1‖Mn‖2
F = 1

tn+1−1
(
(tn+1 − 1)2 − 2(A344791)n

)
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Hence, applying Theorem 4 we obtain (12) and (13).

2. For n > 1 fixed, let Γn = {Γn
0 , Γn

1 , µ,O} be a {0,1}-Brauer configuration such that:

Γn
0 = {0, 1}.

Γn
1 = {U1, U2, . . . , Un}, for 1 ≤ i ≤ n, |Ui| = 22n.

µ(0) = µ(1) = 1.

(14)

The orientation O is defined in such a way that in successor sequences associated
with vertices 0 and 1, it holds that Ui < Ui+1.
Polygons Ui can be seen as 2n × 2n-matrices over Z2 using the Kronecker product,
denoted by ⊗, as follows:

U1 =

[
1 0
1 1

]
U2 = U1 ⊗U1

...

Ui = U1 ⊗Ui−1.

(15)

Corollary 4. For n > 1, if Gn = FQn
Γn /In

Γn is the Brauer configuration algebra induced by
the {0,1}-Brauer configuration Γn then the following statements hold:

dimF Gn = 2n + 2rn(rn − 1) + 2sn(sn − 1)

dimF Z(Gn) =

{
6, i f n = 1
1− n + rn + sn, i f n > 2.

(16)

where rn and sn are the nth term of the OEIS sequences A016208 and A029858, respectively.

Proof. Given n ∈ N, let Pn = {A : A ⊆ {1, 2, . . . , n}}. For x, y ∈ Pn, define x < y
if x ⊆ y. In this case the poset (Pn,⊆) consists of all subsets of {1, 2, . . . , n} ordered
by inclusion.
We associate to each finite poset Pn of size n the following 2n × 2n-matrix:

[MPn ]ij =

{
1, i f i, j are comparable
0, i f i, j are incomparable.

Under appropriate labeling of poset points Pn, the matrix MPn can be viewed using
the Kronecker product as follows:

MP1 =

[
1 0
1 1

]
MP2 =

[
MP1 0
MP1 MP1

]
= MP1 ⊗MP1

MP3 =

[
MP2 0
MP2 MP2

]
= MP1 ⊗MP2

...

MPn =

[
MPn−1 0
MPn−1 MPn−1

]
= MP1 ⊗MPn−1

matrices MPn can be seen as pavements, cells with 1’s are colored black and those
with 0’s are colored white. Figure 2 shows examples of these types of matrices.
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Figure 2. Matrices MPn for n = 1, 2, 3 and 4.

MPn is the matrix associated with the polygon Un ∈ Γn
1 , thus occ(0, Un) can be

computed in the following fashion:

occ(0, U1) = 1

occ(0, Un) = 3(occ(0, Un−1)) + 22n−2 (17)

Therefore occ(0, Un) = ∑n
k=1 3n−k22(k−1) and occ(1, Un) = 3n thus the result holds.

Now we are interested in computing the trace norm of the {0,1}-Brauer configura-
tion Γn. For this, we recall the following theorem about the singular values of the
Kronecker product:

Theorem 5 ( [36], Theorem 4.2.15). Let A ∈ Mm,n and B ∈ Mp,q have singular value
decompositions A = V1Σ1W∗1 and B = V2Σ2W∗2 and let rankA = r1 and rankB = r2. Then
A⊗ B = (V1 ⊗V2)(Σ1 ⊗ Σ2)(W1 ⊗W2)

∗. The nonzero singular values of A⊗ B are the
r1r2 positive numbers {σi(A)σj(B) : 1 6 i 6 r1, 1 6 j 6 r2} (including multiplicities).

The following Lemma 1 is helpful to prove Theorem 6.

Lemma 1. Let A ∈ Mn(C) be a given matrix. If B =

[
A 0
A A

]
∈ M2n(C) then the

singular values of B are φσi(A) and φ−1σi(A) for i = 1, . . . , n, where φ =
1 +
√

5
2

is the
golden ratio.

Proof. Note that B =

[
A 0
A A

]
=

[
1 0
1 1

]
⊗ A. The singular values for[

1 0
1 1

]
are φ and φ−1, then by Theorem 5 the result holds.

Theorem 6. For each n > 1, if MR(Γn) = MPn is the matrix associated with the polygon
Un ∈ Γn

1 then
‖MPn‖∗ = 5n/2 (18)

Proof. By induction on n. For n = 1, ‖MP1‖∗ = φ + φ−1 =
√

5. Let us suppose
that ‖MPn‖∗ = (2φ− 1)n = 5n/2 and let us see that the result is fulfilled for n + 1, i.e.,

‖MPn‖∗ = (2φ− 1)n+1 = 5
n+1

2

Since MPn+1 = MP1 ⊗MPn , then for the Lemma 1 the singular values of MPn+1 are

φσi(MPn) and φ−1σi(MPn)

for i = 1, . . . , 2n. Thus,
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‖MPn+1‖∗ =
2n+1

∑
i=1

σi(MPn+1)

=
2n

∑
i=1

φσi(MPn) +
2n

∑
i=1

φ−1σi(MPn)

= φ‖MPn‖∗ + φ−1‖MPn‖∗
= ‖MPn‖∗

(
φ + φ−1

)
= ‖MPn‖∗(2φ− 1)

= (2φ− 1)n+1 = 5
n+1

2

Corollary 5.
∞

∑
n=2

1
‖MPn‖∗

=
1

2(3− φ)

Proof. By Theorem 6, we have:

∞

∑
n=2

1
‖MPn‖∗

=
∞

∑
n=2

1
(2φ− 1)n

which is a convergent geometric series with r = 1
(2φ−1) < 1 and a = 1

(2φ−1)2 , therefore:

∞

∑
n=2

1
‖MPn‖∗

=

1
(2φ− 1)2

1− 1
2φ− 1

=
1

2(3− φ)

3. For n > 1 fixed, let Φn = {Φn
0 , Φn

1 , µ,O} be a {0,1}-Brauer configuration such that:

Φn
0 = {0, 1}.

Φn
1 = {U1, U2, . . . , Un}, for1 ≤ i ≤ n, |Ui| = (i + 5)2.

µ(0) = µ(1) = 1.

(19)

For i ≥ 1, the word wi associated with the polygon Ui has the form wi = wi,1wi,2 . . . wi,δi ,
wi,j ∈ {0, 1}, occ(0, Ui) = (i + 5)(i + 3), occ(1, Ui) = 2(i + 5).
The orientation O is defined in such a way that for successor sequences associated
with vertices 0 and 1, it holds that Ui < Ui+1.
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Polygons Ui can be seen as (i+ 5)× (i+ 5)-matrices overZ2. Each row Rj is defined by
coefficients of a polynomial Pi

j (t) with the form Pi
j (t) = ui

j,1 + ui
j,2t + · · ·+ ui

j,i+4ti+4,

ui
j,k ∈ {0, 1}.

U1 =



0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
0 1 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0


ui

j,k = ui−1
j,k , 1 ≤ j, k ≤ i + 4,

ui
j,i+5 = 0, 1 ≤ j ≤ i + 3,

ui
i+4,i+5 = 1,

ui
i+5,i+4 = 1,

ui
i+5,i+5 = 0.

(20)

Theorem 7. For n > 1, if Fn = FQn
Φn /In

Φn is the Brauer configuration algebra induced by the
{0,1}-Brauer configuration Φn, αn = 2(tn+5 − 6), and βn = εn+5 − ε5, with εi =

i(i+1)(2i+6)
6 for

i ≥ 1 then the following statements hold:

1. dimF Fn = 2n + 2tαn−1 + 2tβn−1,
2. dimF Z(Fn) = 1 + n + εn+4 − 2n,

3. Lim
n→∞

ρ(MR(Φn)) =
√

2 + 2
√

2.

Proof. The Formulas (1) and (2). for the dimension of the algebra Fn and its center Z(Fn)
are consequences of the definition of a Brauer configuration Φn and Corollary 1.

Let us prove identity 3. Firstly, we note that the characteristic polynomials Pn(λ)
associated with matrices Un can be obtained recursively. They obey the following general
rules according to the size of the corresponding matrices.

P3(λ) = λ3 − 2λ,

P4(λ) = λ4 − 4λ2,

Pn(λ) =
n

∑
j=1

an
j λj, if n ≥ 5,

an
n = 1, an

n−1 = 0, an
1 = (−1)n+12,

an
s = an−1

s−1 − an−2
s , for the remaining vertices.

P3(λ), P4(λ) and P5(λ) are characteristic polynomials of the following matrices T3, T4, and
T5, respectively:

T3 =

 0 1 1
1 0 0
1 0 0

, T4 =


0 1 1 0
1 0 0 1
1 0 0 1
0 0 1 0

, T5 =


0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

.

For any k ≥ 6, Pk(λ) is the characteristic polynomial of Uk−5 ∈ Φn.
We note that for k ≥ 5, |

√
2 + 2

√
2− ρ(MR(Φ(2k−1)))| ≤ 1

10δk
, where

δk =

{
dsk
√

2Ln(2k − 1)e, if k is odd,
bsk
√

2Ln(2k − 1)c, if k is even.
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sk =

{
k− 4, if 5 ≤ k ≤ 7,
62k−8, if k ≥ 8.

Then Lim
k→∞
|
√

2 + 2
√

2 − ρ(MR(Φ(2k−1)))| = 0. Thus, ρ(MR(Φ(2k−1))) is a Cauchy

subsequence of the sequence ρ(MR(Φn), n ≥ 5 converging to
√

2 + 2
√

2.

Corollary 6. For any n ≥ 5, an n-vertex quiver Qn with underlying graph Qn of the form:

d d
d

d
d

�
�
�

�
�
�

@
@
@

@
@
@

c1 c2

c3c4

Qn =

...

is of wild type.

Proof. Since ρ(Q5) =

√√
17+5
2 , then the result holds as a consequence of Theorem 2,

Remark 1, and Theorem 7.

The following results [37] regarding some relationship between graph operations and
energy graph allow finding upper and lower bounds for ‖MR(Φn)‖∗.

Theorem 8 (Theorema 4.18 [37]). Let G, H, and G ◦ H be graphs as specified above. Then

‖G ◦ H‖∗ 6 ‖G‖∗ + ‖H‖∗

Equality is attained if and only if either u is an isolated vertex of G or v is an isolated vertex of H
or both.

Corollary 7 (Corollary 4.6 [37]). If {e} is a cut edge of a simple graph G, then
‖G− {e}‖∗ < ‖G‖∗.

As a consequence of these results, we obtain the following Corollary 8.

Corollary 8. For n > 6.

2
√

n− 1 < ‖MR(Φn−5)‖∗ < 2 +


2 csc( π

2(n−2) ), i f n− 3 ≡ 0(mod 2),

2 cot( π
2(n−2) ), i f n− 3 ≡ 1(mod 2).

(21)

Proof. The inequality at right hand holds as a consequence of Theorem 8 taking into
account that Qn is the coalescence [37] between the cycle C4 and An−3, and that:

‖C4‖∗ = 4 and ‖An−3‖∗ =


2 csc( π

2(n−2) )− 2, i f n− 3 ≡ 0(mod 2),

2 cot( π
2(n−2) )− 2, i f n− 3 ≡ 1(mod 2).

To prove the left hand inequality, we remove edges c1 and c2 in Qn, obtaining in this
fashion a connected tree. Since among all trees of order n, Sn attains the minimal energy.
The result holds as a consequence of Corollary 7.

4. Concluding Remarks

{0, 1}-Brauer configuration algebras give rise to the so-called trace norm of a Brauer
configuration. Such Brauer configurations are a source of a great variety of graphs and posets
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via its reduced message. The structure of the adjacency matrices associated with these graphs
allows estimating the corresponding trace norm or graph energy values. In line with the
main problem in the graph energy theory, we give explicit formulas for the trace norm of
some (0, 1)-matrices associated with these families of graphs and posets. On the other hand,
bounds for the energy of some families of graphs can be obtained via graph coalescence. It is
worth pointing out that some of these graphs underlying quivers of wild type.

An interesting task for the future will be to find the trace norms of a wide variety of
Brauer configuration algebras.

Author Contributions: Investigation, N.A.M., A.M.C., P.F.F.E. and I.D.M.G.; writing—review and
editing, N.A.M., A.M.C., P.F.F.E. and I.D.M.G. All authors have read and agreed to the published
version of the manuscript.

Funding: MinCiencias-Colombia and Seminar Alexander Zavadskij on Representation of Algebras
and their Applications, Universidad Nacional de Colombia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: N. Agudelo and A.M. Cañadas thanks to MinCiencias and Universidad Na-
cional de Colombia, sede Bogotá (Convocatoria 848- Programa de estancias Postdoctorales 2019) for
their support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

dimF ΛΓ (Dimension of a Brauer configuration algebra)
dimF Z(ΛΓ) (Dimension of the center of a Brauer configuration algebra)
Γ0 (Vertices in a Brauer configuration Γ)
M(Γ) (Message of a Brauer configuration Γ)
MR(Γ) (Reduced message of a Brauer configuration Γ)
occ(α, V) (Number of occurrences of a vertex α in a polygon V)

V(α)
i (Ordered sequence of polygons)

val(α) (Valency of a vertex α)
w(U) (Word associated with a polygon of a Brauer configuration)
‖M‖F (Frobenius norm of matrix M)
‖M‖∗ (Trace norm of matrix M)
⊗ (Kronecker product)
φ (Golden ratio)
µi(M) (Eigenvalues of matrix M)
ρ(G) (Spectral radius of a graph G)
σi(M) (Singular values of matrix M)
tj (The jth triangular number)
MPn (Matrix associated with the polygon Un)
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Appendix A

Table A1. This table shows the graphical representation of reduced messages of the Brauer configura-
tions Γ3 (14), ∆2 (7) and Φ1 (19). The dimension of the corresponding Brauer configuration algebras
and their centers together with trace norm values.

MR(Γ) n dimF Λ dimF Z(Λ) ‖MR(Λ)‖∗

b bb
b

�
�

�
�

@
@

@
@

b bb
b

�
�

�
�

@
@

@
@

MR (Γ3)

3 96,630 230
√

53 ≈ 11.1803

bb bb
b

bb
bb

�
�
�
�

@
@
�
�
�
�
�
�

@
@
@
@

MR (∆2)

2 7358 105

2
∑

i=1
µi(M3) ≥ 5

9
∑

i=3
µi(M3) ≤ 4

5

b bb
bb
b

�
�

�
�

@
@

@
@

MR (Φ1)

1 2942 80 4.4721 ≤ ‖MR(Φ1)‖∗ ≤ 6.8284
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