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Abstract

:

The ridge regression estimator is a commonly used procedure to deal with multicollinear data. This paper proposes an estimation procedure for high-dimensional multicollinear data that can be alternatively used. This usage gives a continuous estimate, including the ridge estimator as a particular case. We study its asymptotic performance for the growing dimension, i.e.,   p → ∞   when n is fixed. Under some mild regularity conditions, we prove the proposed estimator’s consistency and derive its asymptotic properties. Some Monte Carlo simulation experiments are executed in their performance, and the implementation is considered to analyze a high-dimensional genetic dataset.
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1. Introduction


Consider the multiple regression model given by


  Y = X β + ϵ ,  



(1)




where   Y =   (  y 1  , … ,  y n  )  ⊤    is a vector of n responses,   X =   (  x 1  , … ,  x n  )  ⊤    is an   n × p   design matrix, with the ith predictor    x i  ∈  R p   ,   β =   (  β 1  , … ,  β p  )  ⊤    is the coefficients vector, and  ϵ  is an n-vector of unobserved errors. Further, we shall assume   E ( ϵ ) = 0  ,   E  ϵ  ϵ ⊤   =  σ 2   I n   ,    σ 2  > 0  .



When   p < n  , the ordinary least squares (LS) estimator of  β  is given by


     β ^    =      arg  min   β ∈  R p    S  ( β )  ,  S  ( β )  =   ( Y − X β )  ⊤   ( Y − X β )        =      (  X ⊤  X )   − 1    X ⊤  Y .     



(2)







However, for the high dimensional (HD) case,   p > n   the LS estimator cannot be obtained, because    X ⊤  X   is rank deficient. It is well known that the ridge regression (RR) estimator of [1], followed by [2] regularization, however, exists. The rationale is to add a positive value   k > 0   to the eigenvalues of    X ⊤  X   to efficiently estimate the parameters via     β ^  Ridge  =   (  X ⊤  X + k  I p  )   − 1    X ⊤  Y  . Refer to Saleh et al. [3] for theory and application of the RR approach. Using the projection of  β  onto the row space of  X  is a well-described remedy. Wang et al. [4] used this technique and proposed a high dimensional LS estimator as a limiting case of the RR, while Buhlmann [5] also used the projection method and developed a bias correction in the RR estimator to propose a bias-corrected RR estimator for the high dimensional setting. Shao and Deng [6] used the method and proposed to threshold the RR estimator when the projection vector is sparse, in the sense that many of its components are small and demonstrated consistency. Dicker [7] studied the minimum property of the RR estimator and derived its asymptotic risk for the growing dimension, i.e.,   p → ∞  . Although the RR estimator involves high dimensional problems, there exits a counterpart that has not been considered in high dimension.



An Existing Two-Parameter Biased Estimator


It is well known that the RR estimator is an efficient approach for multicollinear situations. Since then, many authors have developed ridge-type estimators to overcome the issue of multicollinearity. One drawback of the RR estimator is that it is a non-linear function of the tuning parameter. Hence, Liu [8] developed a similar estimator; however, it is linear for the tuning parameter via the following optimization problem, for the case   p < n  :


   min  β ∈  R p     S  ( β )  +   ( d  β ^  − β )  ⊤   ( d  β ^  − β )  .  



(3)







The solution to the optimization problem (3) has the form


    β ^   Liu   =   (  X ⊤  X +  I p  )   − 1    (  X ⊤  Y + d  β ^  )  ,  



(4)




where   d ∈ ( 0 , 1 )   is termed as the biasing parameter.



Combining the advantages of the RR and Liu estimators, Ozkale and Kaciranlar [9] proposed a two-parameter estimator by solving the following optimization problem:


   min  β ∈  R p     S  ( β )  + k    ( d  β ^  − β )  ⊤   ( d  β ^  − β )  − c  ,  



(5)




where c is a constant, and k is the Lagrangian multiplier. The resulting two-parameter ridge estimator has the form


      β ^   ( k , d )  =   (  X ⊤  X + k  I p  )   − 1    (  X ⊤  Y + k d  β ^  )      



(6)







The above estimator has several advantages and can be simplified to LS, RR, and Liu estimators as limiting cases (see Figure 1). It can be argued that this estimator can also be interpreted as a restricted estimator under stochastic prior information about  β .



With growing dimensions p,   p > n  , the LS estimator (2) cannot be obtained, so it is not possible to use the two-parameter ridge estimator in Equation (6). Hence, developing a high-dimensional two-parameter version of this estimator and studying its asymptotic performance is interesting and worthwhile. Therefore, in this paper, we propose a high-dimensional version of Ozkale and Kaciranlar’s estimator and give the asymptotic properties. The paper’s organization is as follows: In Section 2, a high-dimensional two-parameter estimator is proposed, and its asymptotic characteristics are discussed. Section 3 indicates the generalized cross validation for choosing the parameters. In Section 4, some simulation experiments are presented to assess the novel estimator’s statistical and computational performance, and an application to the AML data is illustrated in this section The conclusion is presented in the last section.





2. The Proposed Estimator


In this section, we develop an HD estimator and establish its asymptotic properties. To show a component is dependent to p, we shall use the subscript p and particularly consider the scenarios in which   p → ∞   and n is fixed. This is termed large p, fixed n, which is more general than scenarios with   p / n → ρ ∈ ( 0 , ∞ )  , a common assumption in high-dimensional settings.



Consider a diverging number of variables case, in which p is allowed to tend to infinity. This case fulfills the high-dimensional case   p > n  . Under this setting, the inverse of    X ⊤  X   does not exist; however, the RR estimator is still valid and applicable. Further, the Liu estimator cannot be obtained. As a remedy, one can use the Moore–Penrose inverse of    X ⊤  X  , a particular case of the generalized inverse. Wang and Leng [10] showed that     (  X ⊤  X )   − 1    X ⊤    can be seen as the Moore-Penrose inverse of  X  for   p < n  , and that    X ⊤    ( X  X ⊤  )   − 1     is the Moore–Penrose inverse of  X  when   p > n  . This gives, for any   p , n > 0  ,


       (  X ⊤  X + s  I p  )   − 1    X ⊤  =  X ⊤    ( X  X ⊤  + s  I n  )   − 1   ,     



(7)




where s is an arbitrary nonegative constant.



Multiplying both sides of (7) by  Y  reveals that the LS estimator can be represented as


     β ^    =     lim  s → ∞     (  X ⊤  X + s  I p  )   − 1    X ⊤  Y       =     lim  s → ∞    X ⊤    ( X  X ⊤  + s  I n  )   − 1   Y       =     X ⊤    ( X  X ⊤  )   − 1   Y .     



(8)







Now, for the HD case, substitute (8) in (6) to obtain


      β ^   HD     =      (  X ⊤  X +  k p   I p  )   − 1    (  X ⊤  Y +  k p   d p   X ⊤    ( X  X ⊤  )   − 1   Y )        =      (  X ⊤  X +  k p   I p  )   − 1    (  X ⊤  +  k p   d p   X ⊤    ( X  X ⊤  )   − 1   )  Y       =      (  X ⊤  X +  k p   I p  )   − 1    (  X ⊤  +  k p   d p   X +  )  Y ,     



(9)




where    X +  =  X ⊤    ( X  X ⊤  )   − 1     is the Moore–Penrose inverse of  X .



We impose the following regularity conditions for studying the asymptotic performance of the estimator.    β ^  HD   given by (9).



	(A1) 

	
  1 /  k p  = o  ( 1 )   . There exists a constant   0 ≤ δ < 0.5  , such that a component of  X  is   O   k p δ    .




	(A2) 

	
   d p  = o  ( 1 )   . There exists a constant   0 ≤ η < 0.5  , such that a component of   X +   is   O   d p  − η     .




	(A3) 

	
For sufficiently large p, there is a vector   b  p × 1   , such that   β =  X ⊤  X b  , and there exists a constant   ε > 0  , such that each component of the vector   b  p × 1    is   O ( 1 /  p  ε + 1.5   )  , and    k p  = o  (  p ε   a p  )   , with    a p  = o  ( 1 )   . (An example of such choice is    k p  =  p    and   ε = 0.5 + δ  ).




	(A4) 

	
For sufficiently large p, there exists a constant   δ > 0  , such that each component of  β  is   O (  p  − 2 − δ   )   and   1 /  d p  = o  (  p δ  )   . Further,    k p  δ − 1   = o  (  d p  )   .







Assumption (A3) is adopted from Luo [11]. Let     β ^   HD   =     β ^  1 HD  , … ,   β ^  p HD   ⊤   .



Theorem 1. 

Assume(A1)and(A2). Then,   var    β ^  i HD   = o  ( 1 )    for all   i = 1 , … , p  .





Proof. 

For the proof, refer to Appendix A. □





Theorem 2. 

Assume(A1)–(A3). Further, suppose    λ  i p   = O   k p    , where    λ  i p   > 0   is the ith eigenvalue of    X ⊤  X  . Then,   b i a s    β ^  i  HD    = o  ( 1 )    for all   i = 1 , 2 , … , p  .





Proof. 

For the proof, refer to Appendix A. □





Using Theorems 1 and 2, it can be verified that the HD estimator    β ^  HD   is a consistent estimator for  β  as   p → ∞  .



The following result reveals the asymptotic distribution of this estimator as   p → ∞  .



Theorem 3. 

Assume   1 /  k p  = o  ( 1 )   , and for sufficiently large p, there exists a constant   δ > 0  , such that each component of β is   O  1 /  p  2 + δ     . Let    k p  = o  (  p δ  )   ,    λ  i p   = o  (  k p  )   . Furthermore, suppose that   ϵ ∼  N n   0 ,  σ 2   I n    ,    σ 2  > 0  . Then,


    1  d p      β ^   HD   − β   → D  N  0 ,  σ 2   X +     X +   ⊤    a s  p → ∞ .   



(10)









Proof. 

For the proof, refer to Appendix A. □






3. Generalized cross Validation


As noted, the estimator    β ^  HD   depends on both the ridge parameter   k p   and Liu parameter   d p   that must be optimized in practice. To do this, we use the generalized cross-validation (GCV) criterion. The GCV uses to choose the ridge and Liu parameters by minimizing an estimate of the unobservable risk function


     R  β ;   β ^  HD      =     1 n    E  ( Y )  −   Y ^  HD   (  k p  ,  d p  )   ⊤   E  ( Y )  −   Y ^  HD   (  k p  ,  d p  )         =     1 n    E  ( Y )  − X   β ^  HD   (  k p  ,  d p  )   2  ,     








where


       Y ^  HD   (  k p  ,  d p  )     =    X   β ^  HD        =      (  X ⊤  X +  k p   I p  )   − 1    (  X ⊤  +  k p   d p   X +  )  Y       =    H (  k p  ,  d p  ) Y ,     



(11)




with   H  (  k p  ,  d p  )  = X   (  X ⊤  X +  k p   I p  )   − 1    (  X ⊤  +  k p   d p   X +  )   , termed as the hat matrix of  Y .



This is straightforward to demonstrate, as in [12].


     E  R  β ;   β ^  HD       =     1 n  ∥   I n  − H  (  k p  ,  d p  )   X β  ∥ 2  +   σ 2  n  tr  H   (  k p  ,  d p  )  ⊤  H  (  k p  ,  d p  )         =     ν 1 2   (  k p  ,  d p  )  +  σ 2   ν 2   (  k p  ,  d p  )  ,     








where    ν 1 2   (  k p  ,  d p  )  =  1 n  ∥   I n  − H  ( k , d )   X β  ∥ 2    and    ν 2   (  k p  ,  d p  )  =  1 n  tr  H   (  k p  ,  d p  )  ⊤   H (   k p  ,  d p    .



The GCV function is then defined as


     GCV    β ^  HD      =      1 n  ∥   I n  − H  (  k p  ,  d p  )   y  ∥ 2     1 −  1 n  tr  H (  k p  ,  d p  )   2        =       1 n  ∥   I n  − H  (  k p  ,  d p  )   y  ∥ 2     1 −  μ 1   (  k p  ,  d p  )   2   ,     



(12)




where    μ 1   (  k p  ,  d p  )  =  1 n  tr  H (  k p  ,  d p  )   .



The following theorem extends the GCV theorem proposed by Akdeniz and Roozbeh [13].



Theorem 4. 

According to the definition of GCV, we have


       E  R  β ;   β ^  HD    − E  GCV    β ^  HD    +  σ 2    E  R  β ;   β ^  HD        =    1 −   σ 2    1 −  μ 1   (  k p  ,  d p  )   2           +  1  D ( k , d )   ×    σ 2   μ 1    (  k p  ,  d p  )  2     1 −  μ 1   (  k p  ,  d p  )   2   ,      








where   D  ( k , d )  =  ν 1 2   (  k p  ,  d p  )  +  σ 2   ν 2   (  k p  ,  d p  )   , and consequently,


       E  R  β ;   β ^  HD    − E  GCV    β ^  HD    +  σ 2    E  R  β ;   β ^  HD        <     σ 2    1 −  μ 1   (  k p  ,  d p  )   2          ×  2  μ 1   (  k p  ,  d p  )  +    μ 1    (  k p  ,  d p  )  2     ν 2   (  k p  ,  d p  )     ,      








whenever   0 <  μ 1   (  k p  ,  d p  )  < 1  .





Proof. 

r For the proof, refer to Appendix A. □






4. Numerical Investigations


In this section, for performance assessment of the proposed HD estimator    β ^  HD  , we conduct a simulation study along with the analysis of real data.



4.1. Simulation


Here, we consider the multiple regression model with varying squared multiple correlation coefficient   R 2   and error distribution, given by the following relation:


  Y = c X β + σ ϵ ,  








where   β =   (  β 1  , 0 )  ⊤   ,   β 1   is the active set, and its dimension is    p 1  = 0.4 p  . The absolute values of a normal distribution with mean 0 and standard deviation 5 is considered   β 1  . The remaining   p −  p 1    components are zero.



In this example, motivated by McDonald and Galarneau [14], the explanatory variables are computed by


   x j  =   1 −  ρ 2     z j  + ρ  z  p 1   ,  j = 1 , … , p ,  








where the   z j  s are independent standard normal pseudo-random vectors, and  ρ  is specified such that the correlation between any two explanatory variables is given by   ρ 2  . Similarly to Zhu et al. [15], the variance is set to    σ 2  = 6.83  , and two different kinds of error distribution are taken for  ϵ : (1) the standard normal is    N n   ( 0 ,  I n  )   , and (2) standard t with 5 degrees of freedom    t n   ( 0 ,  I n  , 5 )   . The constant c is also varied to control the signal-to-noise ratio, and it is set to   0.5  , 1, and 2 with the corresponding    R 2  = 20 % , 50 %  and  80 %  .   R 2   represents the proportion of the variable for a dependent variable that is explained by an independent variable or variables in a regression model.



We consider   ρ ∈ { 0.8 , 0.95 }  ; the sample size and the number of covariates are set to   n ∈ { 30 , 50 , 100 }  ,   p ∈ { 256 , 512 , 1024 }  , respectively. Following regularity conditions (  A 1  )–(  A 4  ), we set    k p  =  p   . For   δ = 0.25 = 1 / 4  , we take    d p  =  p  − 1 / 5    , which guarantees (  A 4  ). We then simulate    β ^   HD    and    β ^   Ridge    100 times using Equation (9) and     β ^   Ridge   =   (  X ⊤  X +  k p   I p  )   − 1    X ⊤  Y  .



For comparison purposes, the quadratic bias (QB) and mean squared error (MSE) are computed according to


  QB  (   β ^  *  )  =  1 100   ∑  j = 1  100    (   β ^  j *  − β )  ⊤   (   β ^  j *  − β )  ,  and  MSE  (   β ^  *  )  =  1 100   ∑  j = 1  100    (   β ^  j *  − β )  ⊤   (   β ^  j *  − β )  ,  








respectively, where    β ^  *   is one of    β ^  HD   or    β ^  Ridge  .




4.2. Review of Results


In Theorem 2, the condition for which the proposed    β ^  HD   is unbiased is investigated based on the eigenvalues of    X ⊤  X  . Here, we numerically analyze the biasedness of this estimator by comparing the ridge estimator concerning the parameters of the model. For this purpose, the difference in QB is reported in Table 1 by evaluating


  diff = QB  (   β ^  HD  )  − QB  (   β ^  Ridge  )  .  











If diff is positive, then the quadratic bias of the proposed estimator is larger than that of the ridge estimator.



To comprise the MSEs, we use the relative mean square error (RMSE) given by


  RMSE =   MSE (   β ^  Ridge  )   MSE (   β ^  HD  )   .  











The results are reported in Table 2. If   RMSE > 1  , then the proposed estimator has a smaller MSE compared to the ridge.



Based on the results of Table 1 and Table 2, the following conclusions are made:




	(1)

	
The performance of the estimators is affected by the number of observations (n), the number of variables (p), the signal to noise ratio (c), and the degree of multicollinearity ( ρ ).




	(2)

	
By increasing the degree of multicollinearity,  ρ , although for both cases of error distributions, the QB of the proposed estimator increases for   c = 0.5   and 1, its MSE decreases dramatically since the RMSE increases.




	(3)

	
The signal-to-noise shows the effect of  β  in the model. Lower values (less than 1) are a sign of model sparsity, since, when c is small, the proposed estimator performs better than the ridge. This is evidence that our estimator is a better candidate as an alternative in sparse models in the MSE sense. However, the QB increases for large c values, which forces the model to overestimate the parameters.




	(4)

	
As p increases, although the proposed estimator is superior to the ridge in sparse models (small c values), the efficiency decreases. This is more evident when the ratio   p / n   becomes larger. This fact may come as poor performance of the proposed estimators, but our estimator is still preferred in high dimensions for sparse models.




	(5)

	
Obviously, as n increases, so does the RMSE; however, the QB becomes very large, and it is due to the nature of the proposed estimators because of its complicated form. It must be noted that this does not contradict the results of Theorem 2, since the simulation scheme does not obey the regularity condition.




	(6)

	
There is evidence of robustness for the distribution tail for sparse models, i.e., the QB and RMSE are the same for both normal and t distributions. However, as c increases, the QB of the proposed estimator explodes for the heavier tail distribution. This may be seen as a disadvantage of the proposed estimators, but even for large values of c, the RMSE stays the same, evidence of relatively small variance for the heavier tail distribution.










4.3. AML Data Analysis


This section assesses the performance of the proposed estimators using the mean prediction error (MPE) and MSE criteria of a data set adopted from Metzeler et al. [16], in which the information for 79 patients was collected. The data can be accessed from the Gene Expression Omnibus (GEO) data repository (http://www.ncbi.nlm.nih.gov/geo/ (accessed on 1 January 2021)) by the National Center for Biotechnology Information (NCBI), where the data is available under GEO accession number GSE12417. We only use the data set that was used as a test set. This contains gene expression data for 79 adult patients with cytogenetically normal acute myeloid leukemia (CN-AML), showing heterogeneous treatment outcomes. According to Sill et al. [17], we reduce the total number of 54,675 gene expression features that have been measured with the Affymetrix HG-U133 Plus 2.0 microarray technology to the top   p ∈ { 1000 , 2000 }   features with the largest variance across all 79 samples. We considered overall survival time based on month as the response variable. The condition number of the design matrix for the AML data set is approximately   1095.80  , evident of severe multicollinearity among columns of the design matrix ([18], see p. 298). To find the optimum values of k and d, denoted by   k opt   and   d opt   for practical purposes, we use the GCV given by Equation (12). Hence, we use the following formulas:


      β ^   HD*     =      (  X ⊤  X +  k opt   I p  )   − 1    (  X ⊤  Y +  k opt   d opt   X ⊤    ( X  X ⊤  )   − 1   Y )         β ^   Ridge*     =      (  X ⊤  X +  k opt   I p  )   − 1    X ⊤  Y .     











To compute the MPE and MSE, we divide the whole data set into two train (  T = (  X train  ,  Y trian  )  ) and validation (  V = (  X valid  ,  Y valid  )  ) sets, comprising   70 %   and   30 %  , respectively. Then, the measures are evaluated using


      MPE boot   (   β ^  *  )     =     1  N . boot    ∑  j = 1   N . boot     (  X valid    β ^  j  train *   −  Y valid  )  ⊤   (  X valid    β ^  j  train *   −  Y valid  )  ,        MSE boot   (   β ^  *  )     =     1  N . boot    ∑  j = 1   N . boot     (   β ^  j  train *   −  β  HD *   )  ⊤   (   β ^  j  train *   −  β  HD *   )  ,     








where   N . boot   stands for the number of bootstrapped sample,    β ^  *   is one of the proposed and ridge estimators, and    β ^   HD *    is the assumed true parameter obtained by Equation (9) from the whole data set.


      RMPE boot  =    MPE boot   (   β ^   Ridge *   )     MPE boot   (   β ^   HD *   )       RMSE boot  =    MSE boot   (   β ^   Ridge *   )     MSE boot   (   β ^   HD *   )        











The results are tabulated in Table 3 for the number of bootstrap    N . boot  = 200  . The following conclusions are obtained from Table 3:




	(1)

	
Using the GCV, the proposed estimator is shown to be consistently superior to the ridge estimator, relative to RMSE and RMPE criteria.




	(2)

	
Similarly to the results of simulations, with growing p, the MSE of the proposed estimator increases compared to the ridge estimator. However, as p gets larger the mean prediction error becomes smaller, which shows the superiority for prediction purposes.









Further, Figure 2 depicts the MSE and MPE values for both HD and ridge estimators, for the case   p = 1000  . It is obvious that the high-dimensional estimator performs better compared to the ridge. For the case   p = 2000  , we obtained similar results.





5. Conclusions


In this note, we propose a high-dimensional two-parameter ridge estimator to the conventional ridge and Liu estimators. Its asymptotic properties have also been discussed. This estimator, via simulation and real-life experiments, is efficient in high dimensional problems and can potentially overcome multicollinearity. Additionally, the proposed high-dimensional ridge estimator yields superior performance in the small mean squared error sense.
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Appendix A. Proof of the Main Results


Proof of Theorem 1. 

By definition, we have


     var    β ^  HD      =     σ 2     X ⊤  X +  k p   I p    − 1     X ⊤  +  k p   d p   X +      X ⊤  +  k p   d p   X +   ⊤     X ⊤  X +  k p   I p    − 1         =     σ 2       X ⊤  X   k p   +  I p    − 1      X ⊤   k p   +  d p   X +     X  k p   +  d p     X ⊤   +        X ⊤  X   k p   +  I p    − 1       



(A1)







By (A1),   X /  k p  = O  ( 1 )   k p  δ − 1   = o  ( 1 )    and    X ⊤  X /  k p  +  I p  →  I p   . By (A2),    d p   X +  = O  ( 1 )   d p  1 − η   = o  ( 1 )   . Hence,   var    β ^  i HD   → 0   as   p → ∞  , and the proof is complete. □





Proof of Theorem 2. 

By definition


     E    β ^   HD       =      (  X ⊤  X +  k p   I p  )   − 1    (  X ⊤  +  k p   d p   X +  )  X β       =         X ⊤  X   k p   +  I p    − 1       X ⊤  X   k p   +  d p   X +  X  β       =         X ⊤  X   k p   +  I p    − 1       X ⊤  X   k p    β +  d p   X +  X β .     



(A2)







Under (A2),    d p   X +  X = o  ( 1 )   . The proof is complete using Theorem 2 of Luo [11]. □





Proof of Theorem 3. 

We have


      1  d p    (   β ^   HD   − β )     =     1  d p      (  X ⊤  X +  k p   I p  )   − 1    (  X ⊤  +  k p   d p   X +  )   ( X β + ϵ )  − β        =         X ⊤  X   k p   +  I p    − 1      X ⊤    k p   d p    +  X +   ϵ         +  1  d p        X ⊤  X   k p   +  I p    − 1     d p   X +  X −  I p   β .     











By (A1),    X ⊤  X /  k p  +  I p  →  I p   , by (A2),    d p   X +  X = o  ( 1 )   , and by (A4),   X /  k p   d p  = o  ( 1 )   . Hence,


      1  d p    (   β ^   HD   − β )  →  X +  ϵ     











The proof is complete. □





Proof of Theorem 4. 

It is straightforward to verify that


  E  GCV    β ^  HD    =    ν 1 2   (  k p  ,  d p  )  +  σ 2   1 − 2  μ 1   (  k p  ,  d p  )  +  ν 2   (  k p  ,  d p  )      1 −  μ 1   (  k p  ,  d p  )   2   .  











Hence


     E  R  β ;   β ^  HD    − E  GCV    β ^  HD       =    E  R    β ^  HD   (  k p  ,  d p  )  ; β    1 −  1   1 −  μ 1   (  k p  ,  d p  )   2            −  σ 2    1 − 2  μ 1   (  k p  ,  d p  )     1 −  μ 1   (  k p  ,  d p  )   2   ,     








which leads to the required result. □
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Figure 1. Special limiting cases. 
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Figure 2. Box-plot of the MSE and MPE values for   p = 1000   in the AML data. 
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Table 1. The difference between quadratic biases of the high dimensional and ridge estimators.






Table 1. The difference between quadratic biases of the high dimensional and ridge estimators.





	

	

	

	
    ρ = 0.8    

	
    ρ = 0.95    






	

	

	

	
   N ( 0 ,  I n  )   

	
    t n   ( 0 ,  I n  , 5 )    

	
   N ( 0 ,  I n  )   

	
    t n   ( 0 ,  I n  , 5 )    




	
  p  

	
  c  

	
  n  

	
diff

	
diff

	
diff

	
diff




	
256

	
   0.5   

	
30

	
5.7657

	
5.7643

	
10.0535

	
10.1134




	
50

	
6.4911

	
6.4941

	
11.4722

	
11.5088




	
100

	
17.8314

	
17.8493

	
30.1008

	
30.4137




	
1

	
30

	
22.9671

	
487.4169

	
39.6556

	
459.3473




	
50

	
25.8621

	
522.6298

	
45.1138

	
480.5501




	
100

	
70.8693

	
798.6551

	
118.1326

	
676.1919




	
2

	
30

	
91.7526

	
2413.9746

	
158.0026

	
2256.1664




	
50

	
103.3996

	
2587.7382

	
179.8509

	
2357.4111




	
100

	
283.0549

	
3922.0057

	
470.4114

	
3259.2211




	
512

	
   0.5   

	
30

	
3.1943

	
3.2012

	
6.5528

	
6.6001




	
50

	
4.4800

	
4.4781

	
9.5861

	
9.6151




	
100

	
10.2121

	
10.2489

	
20.1828

	
20.3366




	
1

	
30

	
12.7657

	
926.7540

	
26.0911

	
916.2663




	
50

	
17.8861

	
1009.3595

	
38.0549

	
969.4353




	
100

	
40.7254

	
1192.4455

	
79.9094

	
1095.9628




	
2

	
30

	
51.0605

	
4621.0862

	
104.2892

	
4555.0569




	
50

	
71.5157

	
5029.3107

	
151.9461

	
4809.2595




	
100

	
162.7616

	
5920.6337

	
318.7343

	
5397.7878




	
1024

	
   0.5   

	
30

	
1.7594

	
1.7584

	
3.7384

	
3.7410




	
50

	
3.9188

	
3.9345

	
9.2523

	
9.3437




	
100

	
5.1236

	
5.1189

	
12.6469

	
12.6455




	
1

	
30

	
7.0318

	
1637.6798

	
14.8960

	
1636.5664




	
50

	
15.6758

	
1804.8548

	
36.9649

	
1763.7468




	
100

	
20.4564

	
1940.6091

	
50.2993

	
1856.0197




	
2

	
30

	
28.1221

	
8181.4255

	
59.5312

	
8167.9835




	
50

	
62.7157

	
9008.4246

	
147.8715

	
8781.1968




	
100

	
81.7756

	
9682.7404

	
147.8715

	
9229.7803
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Table 2. The relative MSE of the high dimensional and ridge estimators.






Table 2. The relative MSE of the high dimensional and ridge estimators.





	

	

	

	
    ρ = 0.8    

	
    ρ = 0.95    






	

	

	

	
   N ( 0 ,  I n  )   

	
    t n   ( 0 ,  I n  , 5 )    

	
   N ( 0 ,  I n  )   

	
    t n   ( 0 ,  I n  , 5 )    




	
  p  

	
  c  

	
  n  

	
RMSE

	
RMSE

	
RMSE

	
RMSE




	
256

	
   0.5   

	
30

	
1.0050

	
1.0050

	
1.0140

	
1.0139




	
50

	
1.0058

	
1.0058

	
1.0161

	
1.0160




	
100

	
1.0222

	
1.0222

	
1.0543

	
1.0539




	
1

	
30

	
1.0032

	
1.0032

	
1.0179

	
1.0178




	
50

	
1.0039

	
1.0039

	
1.0209

	
1.0209




	
100

	
1.0221

	
1.0220

	
1.0883

	
1.0876




	
2

	
30

	
0.9816

	
0.9816

	
0.9852

	
0.9851




	
50

	
0.9793

	
0.9793

	
0.9829

	
0.9829




	
100

	
0.9434

	
0.9435

	
0.9587

	
0.9584




	
512

	
   0.5   

	
30

	
1.0011

	
1.0011

	
1.0031

	
1.0031




	
50

	
1.0016

	
1.0016

	
1.0048

	
1.0048




	
100

	
1.0041

	
1.0041

	
1.0119

	
1.0119




	
1

	
30

	
1.0004

	
1.0004

	
1.0029

	
1.0029




	
50

	
1.0007

	
1.0007

	
1.0048

	
1.0048




	
100

	
1.0023

	
1.0023

	
1.0139

	
1.0139




	
2

	
30

	
0.9948

	
0.9948

	
0.9924

	
0.9924




	
50

	
0.9929

	
0.9929

	
0.9895

	
0.9895




	
100

	
0.9843

	
0.9843

	
0.9810

	
0.9809




	
1024

	
   0.5   

	
30

	
1.0003

	
1.0003

	
1.0009

	
1.0009




	
50

	
1.0007

	
1.0007

	
1.0022

	
1.0022




	
100

	
1.0009

	
1.0009

	
1.0031

	
1.0031




	
1

	
30

	
1.0001

	
1.0001

	
1.0006

	
1.0006




	
50

	
1.0002

	
1.0002

	
1.0017

	
1.0017




	
100

	
1.0003

	
1.0003

	
1.0025

	
1.0025




	
2

	
30

	
0.9984

	
0.9984

	
0.9973

	
0.9973




	
50

	
0.9964

	
0.9964

	
0.9933

	
0.9933




	
100

	
0.9954

	
0.9954

	
0.9910

	
0.9911
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Table 3. RMPE and RMSE values for 200 bootstrapped samples in the analysis of AML data.






Table 3. RMPE and RMSE values for 200 bootstrapped samples in the analysis of AML data.





	Criterion
	    p = 1000    
	    p = 2000    





	   RMPE boot   
	   1.001981   
	   1.002278   



	   RMSE boot   
	   1.046073   
	   1.039997   
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