Weighted Quasi-Interpolant Spline Approximations of Planar Curvilinear Profiles in Digital Images
Abstract
:1. Introduction
- The introduction of a novel algorithm, based on Weighted Quasi-Interpolant Spline Approximations, to compute global approximations of planar curvilinear profiles;
- The validation of the method on real images from different application domains with respect to different evaluation measures.
2. Preliminary Concepts
3. Curvilinear Profile Approximation via a Quasi-Interpolation-Based Technique
- Pre-processing step (see Section 3.1);
- Point cloud split (see Section 3.2);
- Local approximation via wQISA (see Section 3.3).
3.1. Pre-Processing Step
3.2. Point Cloud Split
3.2.1. Constructing the k-th Local Tubular Neighborhood,
- For any index , the point is computed from as follows:
- –
- Advance step. Set to be the farthest point from in , among all those points that were not contained in any previously-computed balls.
- –
- Smoothing step. Set to be the point in which is the closest to the barycenter of the points in , where is an input value that should account for the amount of noise.
- The index is the first one for which either of the following criteria holds true:
- –
- Angle criterion. The angle between the tangent vectors in and is above the threshold .
- –
- Point criterion. The ball does not contain new points (i.e., points which were not contained in previously-computed balls).
- –
- Loop criterion. The ball contains the initial point .
3.2.2. Updating the k-th Local Tubular Neighborhood,
- One will contain all balls , plus the reduced ball
- The other one will contain all balls —and , in case of Equation (7)—plus the reduced ball
3.3. Local Approximation via wQISA
- Change of coordinates. Apply a roto-translation to , so that the line segment
- Local spline space. Define as the j-th 3-regular knot vector where:
- For any , and , being the abscissa of the roto-translation of with respect to the map . Note that the map can be chosen so that .
- The knots are uniformly sampled in .
- Local wQISA approximation. Compute a local approximation for by applying Equation (2) with k-NN weight function; note that the parameter k in the weight function does not necessarily equal the index k in the sequence of local tubular neighborhoods.
3.4. Free Parameters and Tuning
3.5. Computational Complexity
4. Experimental Results
4.1. Performance Measures
- The Root Mean Square Error (RMSE), that is, the square root of the Mean Square Error, is defined by:
- The (normalized) Directed Hausdorff Distance from the points of to the points of is defined as:
- The Jaccard index, or Intersection over Union, measures how overlapping two sets A and B are; it is computed as:
4.2. Photographic Images
4.3. Animation Images
4.4. Medical Images
4.5. Quantitative Evaluation and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.P.; Debled-Rennesson, I. Decomposition of a Curve into Arcs and Line Segments Based on Dominant Point Detection. In Image Analysis; Heyden, A., Kahl, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 794–805. [Google Scholar]
- Cheney, E.W. Approximation Theory, Wavelets and Applications; NATO Science Series; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995; Volume 454, pp. 37–45. [Google Scholar]
- Sablonnière, P. Univariate spline quasi-interpolants and applications to numerical analysis. In Rendiconti del Seminario Matematico; Università Degli Studi di Torino/Politecnico di Torino: Turin, Italy, 2005; Volume 63, pp. 211–222. [Google Scholar]
- Bernstein, S.N. Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Commun. Société Mathématique Kharkow 1912, 13, 1–2. [Google Scholar]
- Marsden, M.; Schoenberg, I.J. On Variation Diminishing Spline Approximation Methods; de Boor, C., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988; Volume 2, pp. 247–268. [Google Scholar] [CrossRef]
- Lyche, T.; Mørken, K. Spline Methods Draft; University of Oslo: Oslo, Norway, 2011. [Google Scholar]
- Barrera, D.; Ibáñez, M.J.; Sablonnière, P.; Sbibih, D. Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions. Constr. Approx. 2008, 28, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Remogna, S.; Sablonnière, P. On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains. Comput. Aided Geom. Des. 2011, 28, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, M.J.; Barrera, D.; Maldonado, D.; Yáñez, R.; Roldán, J.B. Non-Uniform Spline Quasi-Interpolation to Extract the Series Resistance in Resistive Switching Memristors for Compact Modeling Purposes. Mathematics 2021, 9, 2159. [Google Scholar] [CrossRef]
- Remogna, S. Bivariate C2 cubic spline quasi-interpolants on uniform Powell–Sabin triangulations of a rectangular domain. Adv. Comput. Math. 2012, 36, 39–65. [Google Scholar] [CrossRef]
- Sbibih, D.; Serghini, A.; Tijini, A.; Zidna, A. Superconvergent C1 cubic spline quasi-interpolants on Powell-Sabin partitions. BIT Numer. Math. 2015, 55, 797–821. [Google Scholar] [CrossRef]
- Sbibih, D.; Serghini, A.; Tijini, A. Superconvergent quadratic spline quasi-interpolants on Powell–Sabin partitions. Appl. Numer. Math. 2015, 87, 74–86. [Google Scholar] [CrossRef]
- Eddargani, S.; Ibáñez, M.J.; Lamnii, A.; Lamnii, M.; Barrera, D. Quasi-Interpolation in a Space of C2 Sextic Splines over Powell–Sabin Triangulations. Mathematics 2021, 9, 2276. [Google Scholar] [CrossRef]
- Sbibih, D.; Serghini, A.; Tijini, A. Superconvergent local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation. Appl. Math. Comput. 2015, 250, 145–156. [Google Scholar] [CrossRef]
- Barrera, D.; Ibáñez, M.; Remogna, S. On the Construction of Trivariate Near-Best Quasi-Interpolants Based on C2 Quartic Splines on Type-6 Tetrahedral Partitions. J. Comput. Appl. Math. 2017, 311, 252–261. [Google Scholar] [CrossRef]
- Raffo, A.; Biasotti, S. Weighted quasi-interpolant spline approximations: Properties and applications. Numer. Algorithms 2021, 87, 819–847. [Google Scholar] [CrossRef]
- Raffo, A.; Biasotti, S. Data-driven quasi-interpolant spline surfaces for point cloud approximation. Comput. Graph. 2020, 89, 144–155. [Google Scholar] [CrossRef]
- Barsky, B.A.; DeRose, A.D. Geometric Continuity of Parametric Curves; Technical Report UCB/CSD-84-205; EECS Department, University of California: Berkeley, CA, USA, 1984. [Google Scholar]
- DeRose, T.D.; Barsky, B.A. An Intuitive Approach to Geometric Continuity for Parametric Curves and Surfaces. In Computer-Generated Images; Magnenat-Thalmann, N., Thalmann, D., Eds.; Springer: Tokyo, Japan, 1985; pp. 159–175. [Google Scholar]
- Said Mad Zain, S.A.A.A.; Misro, M.Y.; Miura, K.T. Generalized Fractional Bézier Curve with Shape Parameters. Mathematics 2021, 9, 2141. [Google Scholar] [CrossRef]
- Farin, G. Curves and Surfaces for CAGD: A Practical Guide, 5th ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001. [Google Scholar]
- Mizutani, K.; Kawaguchi, K. Curve approximation by G1 arc splines with a limited number of types of curvature and length. Comput. Aided Geom. Des. 2021, 90, 102036. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Heath, M.; Sarkar, S.; Sanocki, T.; Bowyer, K. Comparison of Edge Detectors: A Methodology and Initial Study. Comput. Vis. Image Underst. 1998, 69, 38–54. [Google Scholar] [CrossRef]
- Williams, I.; Bowring, N.; Svoboda, D. A performance evaluation of statistical tests for edge detection in textured images. Comput. Vis. Image Underst. 2014, 122, 115–130. [Google Scholar] [CrossRef]
- Conti, C.; Romani, L.; Schenone, D. Semi-automatic spline fitting of planar curvilinear profiles in digital images using the Hough transform. Pattern Recognit. 2018, 74, 64–76. [Google Scholar] [CrossRef]
- Abate, M.; Francesca, T. Curves and Surfaces; Springer: Mailand, Italy, 2012. [Google Scholar] [CrossRef]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001. [Google Scholar]
- Giraudot, S.; Cohen-Steiner, D.; Alliez, P. Noise-Adaptive Shape Reconstruction from Raw Point Sets. Comput. Graph. Forum 2013, 32, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings of the Proceedings Eighth IEEE International Conference on Computer Vision—ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar]
- Hu, Y.; Schneider, T.; Gao, X.; Zhou, Q.; Jacobson, A.; Zorin, D.; Panozzo, D. TriWild: Robust Triangulation with Curve Constraints. ACM Trans. Graph. 2019, 38, 52:1–52:15. [Google Scholar] [CrossRef]
- Hazarika, H.J.; Handique, A.; Ravikumar, S. DICOM-based medical image repository using DSpace. Collect. Curation 2020, 39, 105–115. [Google Scholar] [CrossRef]
Figure | Profile | Method | RMSE | MAE | J | |
---|---|---|---|---|---|---|
Figure 6 | - | us | 0.001918 | 0.000007 | 0.005746 | 0.979417 |
fit1 | 0.002328 | 0.000009 | 0.006317 | 0.920266 | ||
fit2 | 0.006170 | 0.000010 | 0.007131 | 0.923588 | ||
fit3 | 0.003849 | 0.000009 | 0.006505 | 0.966777 | ||
Figure 7 | - | us | 0.001799 | 0.000005 | 0.003917 | 0.951165 |
fit1 | 0.001944 | 0.000005 | 0.004911 | 0.931188 | ||
fit2 | 0.022073 | 0.000006 | 0.004542 | 0.996670 | ||
fit3 | 0.016233 | 0.000007 | 0.004117 | 0.997780 |
Figure | Profile | Method | RMSE | MAE | J | |
---|---|---|---|---|---|---|
Figure 8 | left eyebrow | us | 0.002513 | 0.000011 | 0.008158 | 0.983471 |
fit1 | 0.005680 | 0.000022 | 0.013121 | 0.945946 | ||
fit2 | 0.027413 | 0.000040 | 0.021134 | 0.918919 | ||
fit3 | 0.008262 | 0.000026 | 0.015892 | 0.931831 | ||
right eyebrow | us | 0.002535 | 0.000011 | 0.003136 | 0.984000 | |
fit1 | 0.007125 | 0.000028 | 0.005068 | 0.945946 | ||
fit2 | 0.133256 | 0.000101 | 0.013090 | 0.972973 | ||
fit3 | 0.017209 | 0.000039 | 0.004811 | 0.972973 | ||
letter M | us | 0.001805 | 0.000006 | 0.002263 | 0.973648 | |
fit1 | 0.001873 | 0.000006 | 0.003513 | 0.986486 | ||
fit2 | 0.004236 | 0.000010 | 0.006810 | 0.959459 | ||
fit3 | 0.002108 | 0.000007 | 0.003962 | 1.000000 | ||
oval | us | 0.001593 | 0.000006 | 0.002080 | 1.000000 | |
fit1 | 0.006431 | 0.000017 | 0.003587 | 1.000000 | ||
fit2 | 0.008842 | 0.000022 | 0.004210 | 1.000000 | ||
fit3 | 0.005516 | 0.000016 | 0.003233 | 1.000000 | ||
moustache | us | 0.001507 | 0.000005 | 0.005005 | 0.991398 | |
fit1 | 0.010994 | 0.000020 | 0.010215 | 0.905263 | ||
fit2 | 0.023154 | 0.000022 | 0.023991 | 0.989474 | ||
fit3 | 0.006152 | 0.000015 | 0.010013 | 0.989474 | ||
Figure 9 | - | us | 0.000773 | 0.000001 | 0.001092 | 0.976051 |
fit1 | 0.002365 | 0.000002 | 0.001890 | 0.873673 | ||
fit2 | 0.068072 | 0.000004 | 0.003109 | 0.957537 | ||
fit3 | 0.001114 | 0.000001 | 0.001580 | 0.973503 |
Figure | Profile | Method | RMSE | MAE | J | |
---|---|---|---|---|---|---|
Figure 10 | - | us | 0.001682 | 0.000005 | 0.003380 | 0.961276 |
fit1 | 0.008141 | 0.000023 | 0.004311 | 0.933333 | ||
fit2 | 0.010565 | 0.000022 | 0.004200 | 0.933333 | ||
fit3 | 0.008312 | 0.000022 | 0.003399 | 0.933333 | ||
Figure 11 | 1st | us | 0.004673 | 0.000030 | 0.006878 | 0.955224 |
fit1 | 0.016557 | 0.000129 | 0.009897 | 0.800000 | ||
fit2 | 0.009030 | 0.000057 | 0.008621 | 0.931818 | ||
fit3 | 0.006711 | 0.000047 | 0.008533 | 0.909091 | ||
2nd | us | 0.002620 | 0.000012 | 0.008201 | 0.988701 | |
fit1 | 0.004431 | 0.000025 | 0.009130 | 0.864407 | ||
fit2 | 0.031993 | 0.000056 | 0.009287 | 0.881356 | ||
fit3 | 0.004191 | 0.000021 | 0.008666 | 0.915254 | ||
3rd | us | 0.002664 | 0.000014 | 0.000268 | 0.984456 | |
fit1 | 0.006681 | 0.000039 | 0.008065 | 0.777778 | ||
fit2 | 0.130043 | 0.000166 | 0.011406 | 0.888889 | ||
fit3 | 0.004274 | 0.000022 | 0.009983 | 0.920635 | ||
4th | us | 0.003160 | 0.000016 | 0.018939 | 0.960784 | |
fit1 | 0.006387 | 0.000040 | 0.020379 | 0.794118 | ||
fit2 | 0.072073 | 0.000163 | 0.022738 | 0.897059 | ||
fit3 | 0.017184 | 0.000036 | 0.021314 | 0.941176 | ||
5th | us | 0.002852 | 0.000015 | 0.028267 | 0.986047 | |
fit1 | 0.005998 | 0.000035 | 0.046147 | 0.763889 | ||
fit2 | 0.067032 | 0.000121 | 0.045282 | 0.916667 | ||
fit3 | 0.006559 | 0.000030 | 0.039010 | 0.930556 | ||
6th | us | 0.005309 | 0.000032 | 0.018585 | 0.957627 | |
fit1 | 0.008948 | 0.000065 | 0.042655 | 0.794872 | ||
fit2 | 0.154618 | 0.000278 | 0.058112 | 0.846154 | ||
fit3 | 0.005987 | 0.000045 | 0.039143 | 0.897436 | ||
Figure 12 | body | us | 0.004904 | 0.000009 | 0.001993 | 0.614137 |
fit1 | 0.023478 | 0.000046 | 0.003989 | 0.529583 | ||
fit2 | 0.010881 | 0.000016 | 0.002923 | 0.972222 | ||
fit3 | 0.005590 | 0.000011 | 0.002711 | 0.854167 | ||
aorta | us. | 0.002837 | 0.000015 | 0.004369 | 0.939130 | |
fit1 | 0.004833 | 0.000019 | 0.010610 | 0.869565 | ||
fit2 | 0.080569 | 0.000068 | 0.012113 | 0.920290 | ||
fit3 | 0.003674 | 0.000016 | 0.010002 | 0.971014 | ||
vertebra | us | 0.002309 | 0.000009 | 0.010610 | 0.980344 | |
fit1 | 0.008043 | 0.000063 | 0.022318 | 0.900000 | ||
fit2 | 0.029186 | 0.000136 | 0.029725 | 0.900000 | ||
fit3 | 0.009149 | 0.000072 | 0.021721 | 0.950000 |
Figure | Profile | # Tubular Neighborhoods | # Edge Points | Execution Times (s) |
---|---|---|---|---|
Figure 6 | - | 13 | 583 | 0.386935 |
Figure 7 | - | 11 | 901 | 0.700913 |
Figure 8 | left eyebrow | 5 | 363 | 0.530476 |
right eyebrow | 4 | 375 | 0.539895 | |
letter M | 10 | 721 | 0.758750 | |
oval | 7 | 649 | 0.833938 | |
moustache | 9 | 930 | 1.038803 | |
Figure 9 | - | 30 | 3758 | 6.910031 |
Figure 10 | - | 24 | 878 | 1.541078 |
Figure 11 | 1st | 4 | 134 | 0.211553 |
2nd | 7 | 177 | 0.238248 | |
3rd | 6 | 193 | 0.241169 | |
4th | 4 | 204 | 0.259886 | |
5th | 10 | 215 | 0.252587 | |
6th | 5 | 118 | 0.199001 | |
Figure 12 | body | 4 | 1726 | 2.786343 |
aorta | 5 | 422 | 0.426888 | |
vertebra | 13 | 42 | 0.195435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffo, A.; Biasotti, S. Weighted Quasi-Interpolant Spline Approximations of Planar Curvilinear Profiles in Digital Images. Mathematics 2021, 9, 3084. https://doi.org/10.3390/math9233084
Raffo A, Biasotti S. Weighted Quasi-Interpolant Spline Approximations of Planar Curvilinear Profiles in Digital Images. Mathematics. 2021; 9(23):3084. https://doi.org/10.3390/math9233084
Chicago/Turabian StyleRaffo, Andrea, and Silvia Biasotti. 2021. "Weighted Quasi-Interpolant Spline Approximations of Planar Curvilinear Profiles in Digital Images" Mathematics 9, no. 23: 3084. https://doi.org/10.3390/math9233084
APA StyleRaffo, A., & Biasotti, S. (2021). Weighted Quasi-Interpolant Spline Approximations of Planar Curvilinear Profiles in Digital Images. Mathematics, 9(23), 3084. https://doi.org/10.3390/math9233084