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Abstract: The approximation of curvilinear profiles is very popular for processing digital images and
leads to numerous applications such as image segmentation, compression and recognition. In this
paper, we develop a novel semi-automatic method based on quasi-interpolation. The method consists
of three steps: a preprocessing step exploiting an edge detection algorithm; a splitting procedure to
break the just-obtained set of edge points into smaller subsets; and a final step involving the use of a
local curve approximation, the Weighted Quasi Interpolant Spline Approximation (wQISA), chosen
for its robustness to data perturbation. The proposed method builds a sequence of polynomial spline
curves, connected C0 in correspondence of cusps, G1 otherwise. To curb underfitting and overfitting,
the computation of local approximations exploits the supervised learning paradigm. The effectiveness
of the method is shown with simulation on real images from various application domains.

Keywords: spline functions; quasi-interpolation; image processing; G1 continuity

1. Introduction

Approximating curvilinear profiles in digital images with piecewise polynomials
is very attractive in many application domains, as it leads to more compact and less
wiggly representations of borders and contours. In this work, we study the applicability of
the quasi-interpolation paradigm for approximating open and closed curves that can be
modeled as 1-manifolds, that is, topological spaces wherein each point has a neighborhood
that is homeomorphic to the Euclidean space of dimension 1; an extension to piecewise
1-manifolds is straightforward by decomposing the curve in 1-manifolds and proceeding
one segment at a time [1].

The term quasi-interpolation has been interpreted differently by different authors,
depending on the context of application. We here call quasi-interpolant any linear operator
L of the form:

L f := ∑
j∈J

µj( f )gj, (1)

where f : Ω ⊂ Rn → R is a function being approximated, µj are linear functionals,
gj : Ω ⊂ Rn → R are functions at our disposal (see, for example [2,3]). The coefficients
µj( f ) are, in general, one of the following types: linear combinations of given values of the
function f to be approximated (discrete type); linear combinations of values of derivatives
of f , of order at most d (differential type); linear combinations of weighted mean values of f
(integral type). Equation (1) can be interpreted as a “reconstruction” formula: given some
input data sampled from the true function f , it creates a tentative reconstruction Q f .

The origin of quasi-interpolation is traditionally traced back to Bernstein’s approxima-
tion [4], where the functions gj are Bernstein polynomials. A rather simple generalization,
known as Variation Diminishing Spline Approximation (VDSA), generalizes this con-
struction to B-splines (see, for example [5,6]). Since its inception, quasi-interpolation
has been studied to obtain methods that apply to different domains and with the aim of
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increasing the order of convergence: recent developments include univariate and tensor-
product spaces [7–9], triangular meshes [10–13], quadrangulations [14] and tetrahedra
partitions [15], among others.

Unlike traditional quasi interpolation spline methods, which generally focus on the
approximation of functions with strong regularity conditions, Weighted Quasi Interpolant
Spline Approximations (wQISAs) [16,17] aims to provide local approximations of point
clouds which can be affected by artifacts such as noise and outliers. However, a paradigm
to compute global approximations was, so far, missing; indeed, the only two global ap-
proximations presented in [16] are obtained by manually processing the set of edge points,
thanks to the quite simple geometry of the studied profiles. In this paper, we introduce a
novel method that exploits wQISAs to construct global approximations of planar curvi-
linear profiles, with application to digital image processing. More specifically, the main
contributions of this paper are:

• The introduction of a novel algorithm, based on Weighted Quasi-Interpolant Spline
Approximations, to compute global approximations of planar curvilinear profiles;

• The validation of the method on real images from different application domains with
respect to different evaluation measures.

The smoothness of a curve is generally distinguished between parametric continuity
Cn and geometric continuity Gn [18,19]. A curve p(t) is said to be Cn continuous at t = t0
if it is continuous at t0 and if the first n left and right derivatives of p match at t0, that is,

lim
t→t−0

p(m)(t) = lim
t→t+0

p(m)(t), m = 0, . . . , n.

A curve p(t) is said to be Gn continuous at t = t0 if, up to regular re-parametrization, it
is Cn continuous at t = t0. Recently, the concept of fractional continuity has been proposed
for generalized fractional Bézier curves [20]. In our context, the global approximation of
a planar profile is computed by gluing together local approximations, by imposing a C0

continuity in correspondence of cusps, and a G1 continuity otherwise; while it is possible
to consider the more general case of Gn (or Cn) continuity, G1 continuity has proved to be
sufficient in many practical applications (see, for example [21,22]).

The remainder of the paper is organized as follows. In Section 2, we provide some
notation and background knowledge about the wQISA family. In Section 3, the core of
our paper, we introduce our reconstruction algorithm. To test the validity of the suggested
approach, Section 4 presents several experimental results on images from different applica-
tion domains and with respect to different evaluation measures. Concluding remarks end
the paper.

2. Preliminary Concepts

This section is meant to list some basic definitions regarding the wQISA family, as well
as to introduce the essential terminology and notation. Because in this paper we focus
on 1-manifolds, we restrict our attention to a univariate formulation of wQISA; for more
details on the more general multivariate setting and an extended analysis of the theoretical
properties, we refer the reader to [16].

Given a degree p, a knot vector is said to be (p + 1)-regular if no knot occurs more
than p + 1 times and each boundary knot occurs exactly p + 1 times.

Let P ⊂ R2 be a point cloud and p ∈ N∗. Let x be a (p + 1)-regular knot vector with
boundary knots x1 = · · · = xp+1 = a and xn+1 = · · · = xn+p+1 = b. A Weighted Quasi
Interpolant Spline Approximation of degree p to the point cloud P over the knot vector x is
defined by:

fw(x) :=
n

∑
i=1

ŷw(x∗i ) · B[xi](x), (2)
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where x∗i := (xi + . . . + xi+p)/p are the knot averages, the expression,

ŷw(u) :=

∑
(x,y)∈P

y · w(x, u)

∑
(x,y)∈P

w(x, u)
, (3)

gives the control polygon estimator with weight function w : R×R→ [0,+∞); B[xi] : R→
[0, 1] denotes the B-spline of degree p, which is uniquely determined by the local knot
vector xi = [xi, . . . , xi+p+1]. Note that, given a point cloud, its wQISA depends on the
following inputs: a spline space, uniquely defined by a degree and a (global) knot vector,
and a weight function (possibly, with free parameters to be tuned). An example of weight
function is given by the k-Nearest Neighbours (k-NN) average:

w(x, u) :=

{
1/k, if x ∈ Nk(u)
0, otherwise

, (4)

where k ∈ N∗; Nk(u) denotes the neighborhood of u defined by the k closest points of the
point cloud; here, k is the free parameter.

Figure 1 shows the approximation of a dataset of 250 points when a 5-NN weight is
considered. The point cloud is sampled from the analytic function F(x) = x sin (π/2x),
and is eventually perturbed with Gaussian noise ε ∼ N(0, s(x)), where

s(x) :=
1√

7(0.5 + e3x−1)
. (5)

The approximation is computed by a quadratic spline space containing n = 20 B-
splines over a uniform knot vector.
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Figure 1. Variable noise approximation. The analytic function F(x) = x sin (π/2x) is sampled
and then perturbed with (non-uniform) Gaussian noise of mean 0 and the standard deviation
of Equation (5). The resulting wQISA approximation, obtained by a 5-NN weight function, is
displayed red.
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3. Curvilinear Profile Approximation via a Quasi-Interpolation-Based Technique

In this section, we design an algorithm that piecewisely applies wQISA to the approxi-
mation and recognition of open and closed planar curvilinear profiles. The method consists
of three main steps:

• Pre-processing step (see Section 3.1);
• Point cloud split (see Section 3.2);
• Local approximation via wQISA (see Section 3.3).

3.1. Pre-Processing Step

Firstly, we run an edge detection algorithm to an input a (grayscale) image, hereinafter
denoted by I: in our case, we used the Canny edge detection [23], as it is considered among
the most effective edge detection techniques [24,25]. To give an example, when considering
the mushroom of Figure 2, we note that the Canny edge detection algorithm provides
a much better result than other popular methods, see Figure 2: indeed, the Canny edge
detection provides a much cleaner set of edge points, and is the only one able to identify
the whole curvilinear profile without wrongly decomposing it into subparts.

Canny Sobel Prewitt Roberts log

Figure 2. Different edge detection methods applied to an image presented in Section 4. Different
colors identify different 8-connected components.

The pixels identified as discontinuity points by the edge detection algorithm are then
processed to identify 8-connected components. Their centres are maintained in P . For the
sake of conciseness, we will hereinafter suppose that P consists of a single 8-connected
component; in case of more than one 8-connected component, the reconstruction method
will be applied as many times as their number.

For every point in P , the local discrete tangent vector is computed (for example,
by means of regionprops in MATLAB). All those points with a sharp change in the unit
tangent vector are stored in P0, and will be eventually used to impose a C0 continuity
instead of G1 continuity; to put it another way, the order of continuity will be only C0 in
correspondence with the identified cusps, as expected. A graphical illustration of the C0

and G1 continuities is given in Figure 3.

Figure 3. Graphical illustration of the C0 and G1 continuities: the curves in blue and red are connected
with G1 continuity; the curves in red and yellow are connected with C0 continuity.
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3.2. Point Cloud Split

Differently from the method in [26] that iteratively covered a curvilinear profile
with disks of fixed radius, in our pipeline the point cloud P is split into subsets, each of
which is meant to be approximated independently. The key idea behind our procedure is
loosely inspired by the concept of tubular neighborhoods—see, for example [27]. A graphical
illustration of two possible iterations is given in Figure 4.

(a) (b)

Figure 4. Graphical illustration for the computation of local tubular neighbourhoods for two iterations
of the algorithm. For the sake of clarity, we here consider an over-simplified situation, with a noise-
free point cloud represented in red. (a) First iteration; (b) Second iteration.

3.2.1. Constructing the k-th Local Tubular Neighborhood, k ≥ 1

Given an initial point Pk
0 , where k ≥ 1, and an input radius R1 > 0, let B(Pk

0 , R1)
denote the (2-)ball of center Pk

0 and radius R1. We build a sequence of points Pk
0 , . . . , Pk

Mk+1
such that:

• For any index 1 ≤ i ≤ Mk + 1, the point Pk
i is computed from Pk

i−1 as follows:

– Advance step. Set Qk
i to be the farthest point from Pk

i−1 inB(Pk
i−1, R1)∩P , among all

those points that were not contained in any previously-computed balls.
– Smoothing step. Set Pk

i to be the point in P which is the closest to the barycenter of
the points in B(Qk

i , R2)∩P , where R2 < R1 is an input value that should account
for the amount of noise.

• The index i = Mk is the first one for which either of the following criteria holds true:

– Angle criterion. The angle between the tangent vectors in Pk
0 and Pk

Mk+1 is above
the threshold α0.

– Point criterion. The ball B(Pk
Mk+1, R1)∩P does not contain new points (i.e., points

which were not contained in previously-computed balls).
– Loop criterion. The ball B(Pk

Mk
, R1) contains the initial point P1

0 .

When stopping because of the angle criterion, we define the k-th local tubular neigh-
bourhood as:

Pk :=

(Mk−1⋃
i=1

B(Pk
i , R1) ∩ P

)∖k−1⋃
j=1

Pj

. (6)

Its candidate edge points are Ek
0 := Pk

0 and Ek
1 := Pk

Mk
; finally, we set Pk+1

0 := Pk
Mk

to
be the initial point for the subsequent local tubular neighborhood. On the contrary, when
stopping because of either the point or loop criteria, the k-th local tubular neighbourhood
is defined as:

Pk :=

(Mk⋃
i=1

B(Pk
i , R1) ∩ P

)∖k−1⋃
j=1

Pj

, (7)

and its candidate edge points are Ek
0 := Pk

0 and Ek
1 := Pk

Mk+1, where Pk
Mk+1 := P1

0 in case
the loop criterion holds.
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When stopping because of the point criterion, a new search is conducted from the
initial point P1

0 backward, to take into account the possibility of open profiles.
Note that the whole splitting procedure merely relies on the following input: the

initial point P1
0 , the radii R1 and R2, and the threshold α0. A more detailed discussion on

the parameter setting is left to Section 3.4.

3.2.2. Updating the k-th Local Tubular Neighborhood, k ≥ 1

The local tubular neighbourhoods P1, . . . ,PN allow us to locally represent the curvi-
linear profile of interest. However, their construction does not take into account the points
in P0, that is, the points having a sharp change in the tangent vector.

Suppose that a cusp P̃ is inside the two balls B(Pk
i , R1) and B(Pk

i+1, R1). Then, we split
the k-th local tubular neighbourhood into two new local tubular neighbourhoods:

• One will contain all balls B(Pk
1 , R1), . . . ,B(Pk

i−1, R1), plus the reduced ball

B(Pk
i , min{R1, ||Pk

i − P̃||2}).

• The other one will contain all balls B(Pk
i+1, R1), . . . ,B(Pk

Mk−1, R1)—and B(Pk
Mk

, R1),
in case of Equation (7)—plus the reduced ball

B(Pk
i+1, min{R1, ||Pk

i+1 − P̃||2}).

The cusp P̃ will be set to be a common edge point of the two new local tubular neigh-
bourhoods.

3.3. Local Approximation via wQISA

For any Pk, the local parametrization is computed as follows:

1. Change of coordinates. Apply a roto-translation ρ : R2 → R2 to Pk, so that the line
segment

< ρ(Ek
0), ρ(Ek

1) >

lies on the x-axis. This corresponds to assuming that our local approximation can be
locally flattened onto the x-axis without any overlap; note that this assumption relies
on the parameter α0.

2. Local spline space. Define τk
j := [τ1, . . . , τj+6] as the j-th 3-regular knot vector where:

• For any j ∈ N, τ1 = τ3 = Ek,ρ,x
0 and τj+4 = τj+6 = Ek,ρ,x

1 , being Ek,ρ,x
i the abscissa

of the roto-translation of Ek
i with respect to the map ρ. Note that the map ρ can

be chosen so that Ek,ρ,x
0 < Ek,ρ,x

1 .

• The knots τ3, . . . , τj+4 are uniformly sampled in [Ek,ρ,x
0 , Ek,ρ,x

1 ].

3. Local wQISA approximation. Compute a local approximation for Pk by applying
Equation (2) with k-NN weight function; note that the parameter k in the weight
function does not necessarily equal the index k in the sequence of local tubular
neighborhoods.

A discussion on the tuning of the free parameters (i.e., knot vector length and k of the
k-NN weight function) is provided in Section 3.4.

Given that for any local tubular neighbourhood, the corresponding knot vector is
(p + 1)-regular, the final approximation will be automatically C0 continuous. To impose
G1 continuity, we exploit (p + 1)-regularity: the tangents to the curve at the boundaries are
determined by its 2nd and (n− 1)th control points; we project the 2nd and (n− 1)th onto
the straight lines determined by the tangent vectors. A similar reasoning can be applied to
interpolate the left and right derivatives at cusps, up to a multiplicative constant.
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3.4. Free Parameters and Tuning

The initial point P1
0 is set to be the cusp, which is the closest to the lower-left corner.

If the profile does not exhibit any cusps, we can consider the point of maximum (or
minimum) curvature—the closest to the lower-left corner if more than one exists .

The radii R1 and R2 depend on the profiles and the noise level, and are currently
empirically set by the user.

For each local approximation, the optimal global knot vector τk
opt and the optimal

kopt for the weight function can be found by a model assessment and selection proce-
dure, as in statistical learning; more precisely, we proceed by performing Leave-One-Out
Cross-Validation (LOO-CV, see [28]), by considering the Root Mean Square Error as a gen-
eralization error (see Section 4). This allows us to limit under- and overfitting; an example
is given in Figure 5 of a local tubular neighborhood exhibiting both noise and outliers.
The use of Cross-Validation for the estimation of the unknown coefficients allows us to
interpret the curve fitting problem as a supervised learning problem (see, for example [29]).

To generalize the method, one could select the continuity Gk at the segment edge
points by cross-validation; however, G1 continuity has proved to be sufficient for all the
examples given in Section 4.
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Figure 5. Three approximations for a local tubular neighborhood from Figure 6. In the left image, the local approximation
consists of an oversimplification of the input data. In the right image, the local approximation models the training data too
well, resulting in unwanted oscillations that reduce the prediction capability on new points. A good balance between under-
and over-fitting is displayed in the central image.

3.5. Computational Complexity

The computational complexity of the parametrization step is the sum of the single
wQISA iterations. On its turn, wQISA mainly depends on the k-NN weight, whose time
complexity for estimating a single coefficient is proportional to O(klog(N)), where N is the
number of points. To further reduce the computational complexity of the k-NN search, we
follow the k-d trees approach proposed in [30]. It is worth noting that, each coefficient and
each local approximation being computed independently, this task is embarrassingly parallel.

The splitting procedure can itself rely on a k-d tree, thus it has the same computational
complexity. On the other hand, it cannot be performed independently, and turns out to be
the most demanding part of the algorithm.

4. Experimental Results

We evaluate our method on photographic images, animation images and CT scans.
Although the approximation could theoretically make use of B-splines of any degree, we
here focus on quadratic spline approximations, as they provide a sufficient flexibility for
our purposes; nevertheless, one could consider the degree of each local approximation as
an additional parameter to be tuned.



Mathematics 2021, 9, 3084 8 of 16

4.1. Performance Measures

To evaluate the quality of an approximation against the input point clouds, the follow-
ing indicators are considered:

• The Root Mean Square Error (RMSE), that is, the square root of the Mean Square Error, is
defined by:

RMSE :=

√√√√ 1
N

N

∑
i=1

(Yi − Ŷi)2,

Yi being the abscissa of an input point with respect to its local coordinate system, Ŷi
its approximation, and N the cardinality of the input point cloud. Similarly, the Mean
Absolute Error (MAE) is given by:

MAE :=
1
N

N

∑
i=1
|Yi − Ŷi|.

• The (normalized) Directed Hausdorff Distance from the points of a ∈ A ⊂ R2 to the
points of b ∈ B ⊂ R2 is defined as:

ddHaus(A, B) :=
1
L

max
a∈A

min
b∈B

d(a, b),

where d is the Euclidean distance and L is the diameter of the input point cloud. In our
case, we set B to be the input point cloud P , while A is given by the points defining
our spline approximation.

• The Jaccard index, or Intersection over Union, measures how overlapping two sets A and
B are; it is computed as:

J(A, B) :=
|A ∩ B|
|A ∪ B| ,

| · | being the cardinality of a set. The Jaccard index has been intensively applied to
measure the performance of curve recognition methods for images (see, for exam-
ple [31]). Here, we compare the set of pixels corresponding to P with the set of pixels
crossed by the approximation and their 1-neighbours.

4.2. Photographic Images

We start by considering a 183× 183 image representing a flower (Image retrieved on
MathWorks®), see Figure 6. The use of the Canny edge detection algorithm and the subse-
quent study of the tangent vector of the profile allows us to identify all cusps, as shown
in Figure 6b. The set of edge points is then split into 13 local tubular neighborhoods,
see Figure 6c. The obtained approximation, superimposed to the original image, is dis-
played in Figure 6d. Given that plotting the local tubular neighborhoods is not particularly
informative, we just report their number for the remaining examples in Section 4.5.
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(a) original image (b) edge points and cusps

(c) local tubular neighborhoods (d) approximation

Figure 6. Recognition and approximation of a daffodil. The input image (a) is pre-processed to obtain
the edge points and detect the cusps (b). The point cloud is then split into local segments, see (c).
The approximated curve, superimposed to the original image, is given in (d).

Figure 7 shows a (not surprising) limitation of the method. The edge detection
algorithm, applied to the 481× 321 image displayed in Figure 7a, is not able to reveal the
whole stalk of the mushroom, see Figure 7b: this results in an accurate approximation of
the edge points, as displayed in Figure 7c which is nonetheless missing part of the original
object. The image for this test was selected from the Berkeley Segmentation Dataset and
Benchmark [32].

(a) original image (b) edge points and cusps (c) approximation

Figure 7. Recognition and approximation of a mushroom. From the original image (a), we extract (b)
and approximate the edge points (c).
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4.3. Animation Images

A composite example is exhibited in Figure 8. In Figure 8a, the input 984× 600 image
is shown. In Figure 8b, some sets of edge points and their cusps are displayed. Different
closed and open profiles are approximated and provided in Figure 8c: the circle logo and
the letter M therein, the eyebrows and the moustache. Note that all profiles have cusps.

(a) original image (b) edge points and cusps (c) approximations

Figure 8. Recognition and approximation of different profiles in Super Mario. From the original
image (a), we extract (b) and approximate the circle logo and the letter M therein, the eyebrows and
the moustache (c).

A single but more complex closed profile is provided in the 734× 670 image from
Figure 9a, obtained from the dataset used in [33]. The set of edge points and the detected
cusps are given in Figure 9b, while the final approximation is shown in Figure 9c.

(a) original image (b) edge points (c) approximation

Figure 9. Recognition and approximation of a cherry profile. From the original image (a), we extract
the edge points and identify cusps (b), and produce the final approximation given in (c).

4.4. Medical Images

Figure 10 presents the study undertaken on the 256 × 256 CT image of a head
(Image retrieved on https://vtk.org, accessed on 1 September 2021). For the external pro-
file in Figure 10a, the set of edge points Figure 10b does not exhibit any cusps. The approxi-
mation, superimposed to the original image in Figure 10c, shows an overall satisfying result.

(a) original image (b) edge points (c) approximation

Figure 10. Recognition and approximation of the external profile of a human head. The original
image (a) is treated to obtain the edge points (b), which do not contain cusps in this case; the
approximation of the external profile, superimposed to the image, is given in (c).

https://vtk.org
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We then consider a coronal slice obtained from the MedPix database (MedPix database,
https://medpix.nlm.nih.gov/, accessed on 1 September 2021), see Figure 11. For our
testing, we focus our attention on the lumbar spine, whose edge points are shown in
Figure 11b and approximated in Figure 11c.

(a) original image (b) edge points (c) approximation

Figure 11. Recognition and approximation of different profiles from a human lumbar spine. The orig-
inal image (a) is treated to obtain the edge points (b). The six approximations are given in (c).

For the last simulation, we consider a 512× 512 axial X-ray CT slice of a human lumbar
vertebra, see Figure 12. The image has been obtained by the repository [34]. In Figure 12b
we provide the three sets of edge points chosen to be approximated, and corresponding
to the external profile of the body section; the vertebra, where it is possible to distinguish
body, transverse process and spinous process; the abdominal aorta. In Figure 12c we show
the superimposition of three distinct approximations to the original image.

(a) original image (b) edge points (c) approximation

Figure 12. Recognition and approximation of different profiles in a CT slice. The original X-ray CT
axial image (a) is processed and three sets of edge points are selected (b), corresponding to the body
profile, the lumbar vertebra and the aorta; the three approximations obtained are then superimposed
in (c). Note the presence of outliers in (b).

4.5. Quantitative Evaluation and Discussions

The indicators computed on each profile of each image are provided in Tables 1–3.
When considering the RMSE, MAE and ddHaus, all approximations show a quite satisfying
performance. In particular, having normalized the directed Hausdorff distance, we can
conclude that the error is always below 3%, with the highest values coming from the lumbar
spine. Only a few profiles have a Jaccard index lower than 95%; the lowest possible is that
of the body in Figure 12 (61.41% ca.). However, one should consider that this indicator is
not reliable when applied to point sets containing a high number of outliers, which is the
case for this specific profile, see Figure 13b: the local approximation is able to capture the
underlying trend of the data and preserve the monotonicity, but due to the presence of
an excessive number of erroneous points, this indicator is not fully representative of the
situation. On the contrary, the edge points from Figure 9 are noisy but contain a limited
number of outliers; an example of a small local tubular neighborhood and its approximation
is given in Figure 13a.

https://medpix.nlm.nih.gov/
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Table 1. Indicators for the examples in Figures 6 and 7. For each profile, we report: the Root Mean
Squared Error (RMSE), the Mean Absolute Error (MAE), the normalized directed Hausdorff distance
ddHaus and the Jaccard index J. Here, fit1, fit2 and fit3 stand, respectively, for quadratic polynomial,
piecewise cubic and smoothing spline fitting. For each figure and each indicator, the best performance
is reported in bold.

Figure Profile Method RMSE MAE ddHaus J

Figure 6 -

us 0.001918 0.000007 0.005746 0.979417
fit1 0.002328 0.000009 0.006317 0.920266
fit2 0.006170 0.000010 0.007131 0.923588
fit3 0.003849 0.000009 0.006505 0.966777

Figure 7 -

us 0.001799 0.000005 0.003917 0.951165
fit1 0.001944 0.000005 0.004911 0.931188
fit2 0.022073 0.000006 0.004542 0.996670
fit3 0.016233 0.000007 0.004117 0.997780

Table 2. Indicators for the examples in Figures 8 and 9. For each profile we report: the Root Mean
Squared Error (RMSE), the Mean Absolute Error (MAE), the normalized directed Hausdorff distance
ddHaus and the Jaccard index J. Here, fit1, fit2 and fit3 stand, respectively, for quadratic polynomial,
piecewise cubic and smoothing spline fitting. For each figure and each indicator, the best performance
is reported in bold.

Figure Profile Method RMSE MAE ddHaus J

Figure 8

left eyebrow

us 0.002513 0.000011 0.008158 0.983471
fit1 0.005680 0.000022 0.013121 0.945946
fit2 0.027413 0.000040 0.021134 0.918919
fit3 0.008262 0.000026 0.015892 0.931831

right eyebrow

us 0.002535 0.000011 0.003136 0.984000
fit1 0.007125 0.000028 0.005068 0.945946
fit2 0.133256 0.000101 0.013090 0.972973
fit3 0.017209 0.000039 0.004811 0.972973

letter M

us 0.001805 0.000006 0.002263 0.973648
fit1 0.001873 0.000006 0.003513 0.986486
fit2 0.004236 0.000010 0.006810 0.959459
fit3 0.002108 0.000007 0.003962 1.000000

oval

us 0.001593 0.000006 0.002080 1.000000
fit1 0.006431 0.000017 0.003587 1.000000
fit2 0.008842 0.000022 0.004210 1.000000
fit3 0.005516 0.000016 0.003233 1.000000

moustache

us 0.001507 0.000005 0.005005 0.991398
fit1 0.010994 0.000020 0.010215 0.905263
fit2 0.023154 0.000022 0.023991 0.989474
fit3 0.006152 0.000015 0.010013 0.989474

Figure 9 -

us 0.000773 0.000001 0.001092 0.976051
fit1 0.002365 0.000002 0.001890 0.873673
fit2 0.068072 0.000004 0.003109 0.957537
fit3 0.001114 0.000001 0.001580 0.973503
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Table 3. Indicators for the examples in Figures 10–12. For each profile we report: the Root Mean
Squared Error (RMSE), the Mean Absolute Error (MAE), the normalized directed Hausdorff distance
ddHaus and the Jaccard index J. Here, fit1, fit2 and fit3 stand, respectively, for quadratic polynomial,
piecewise cubic and smoothing spline fitting. For each figure and each indicator, the best performance
is reported in bold.

Figure Profile Method RMSE MAE ddHaus J

Figure 10 -

us 0.001682 0.000005 0.003380 0.961276
fit1 0.008141 0.000023 0.004311 0.933333
fit2 0.010565 0.000022 0.004200 0.933333
fit3 0.008312 0.000022 0.003399 0.933333

Figure 11

1st

us 0.004673 0.000030 0.006878 0.955224
fit1 0.016557 0.000129 0.009897 0.800000
fit2 0.009030 0.000057 0.008621 0.931818
fit3 0.006711 0.000047 0.008533 0.909091

2nd

us 0.002620 0.000012 0.008201 0.988701
fit1 0.004431 0.000025 0.009130 0.864407
fit2 0.031993 0.000056 0.009287 0.881356
fit3 0.004191 0.000021 0.008666 0.915254

3rd

us 0.002664 0.000014 0.000268 0.984456
fit1 0.006681 0.000039 0.008065 0.777778
fit2 0.130043 0.000166 0.011406 0.888889
fit3 0.004274 0.000022 0.009983 0.920635

4th

us 0.003160 0.000016 0.018939 0.960784
fit1 0.006387 0.000040 0.020379 0.794118
fit2 0.072073 0.000163 0.022738 0.897059
fit3 0.017184 0.000036 0.021314 0.941176

5th

us 0.002852 0.000015 0.028267 0.986047
fit1 0.005998 0.000035 0.046147 0.763889
fit2 0.067032 0.000121 0.045282 0.916667
fit3 0.006559 0.000030 0.039010 0.930556

6th

us 0.005309 0.000032 0.018585 0.957627
fit1 0.008948 0.000065 0.042655 0.794872
fit2 0.154618 0.000278 0.058112 0.846154
fit3 0.005987 0.000045 0.039143 0.897436

Figure 12

body

us 0.004904 0.000009 0.001993 0.614137
fit1 0.023478 0.000046 0.003989 0.529583
fit2 0.010881 0.000016 0.002923 0.972222
fit3 0.005590 0.000011 0.002711 0.854167

aorta

us. 0.002837 0.000015 0.004369 0.939130
fit1 0.004833 0.000019 0.010610 0.869565
fit2 0.080569 0.000068 0.012113 0.920290
fit3 0.003674 0.000016 0.010002 0.971014

vertebra

us 0.002309 0.000009 0.010610 0.980344
fit1 0.008043 0.000063 0.022318 0.900000
fit2 0.029186 0.000136 0.029725 0.900000
fit3 0.009149 0.000072 0.021721 0.950000
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(a) (b)

Figure 13. Example of local tubular neighborhoods (in red) and their approximations (in green):
(a,b) are taken from Figures 9 and 13, respectively.

All in all, it might be concluded that the method can successfully reconstruct planar
curvilinear profiles, but its success is inevitably linked to the quality of the segmentation:
as observed in the qualitative discussion of Figure 7, the Canny edge detection algorithm
was unable to identify the stalk of the mushroom in its entirety.

We compared the generalization capability of wQISAs with that of other fitting meth-
ods implemented in MATLAB: quadratic polynomial, piecewise cubic and smoothing
spline fitting. When considering RMSE, MAE and ddHaus, our methods outperforms its
competitors; however, in a few cases the results are comparable. In terms of the Jaccard
index, the results are more fluid: as previously observed, this is partly justified by the pres-
ence of outliers in some point clouds, which makes this indicator not always trustworthy.

To provide a complete analysis of the experimental results, Table 4 provides the
number of tubular neighborhoods, the number of edge points and the execution times for
all the examples shown in the paper.

Table 4. Number of tubular neighbohoods, number of edge points and execution times (in seconds)
for the profiles presented in Figures 6–12.

Figure Profile # Tubular
Neighborhoods # Edge Points Execution

Times (s)

Figure 6 - 13 583 0.386935

Figure 7 - 11 901 0.700913

Figure 8

left eyebrow 5 363 0.530476
right eyebrow 4 375 0.539895

letter M 10 721 0.758750
oval 7 649 0.833938

moustache 9 930 1.038803

Figure 9 - 30 3758 6.910031

Figure 10 - 24 878 1.541078

Figure 11

1st 4 134 0.211553
2nd 7 177 0.238248
3rd 6 193 0.241169
4th 4 204 0.259886
5th 10 215 0.252587
6th 5 118 0.199001

Figure 12
body 4 1726 2.786343
aorta 5 422 0.426888

vertebra 13 42 0.195435



Mathematics 2021, 9, 3084 15 of 16

5. Conclusions

In this work, we have proposed a novel method to recognize and approximate closed
and open 1-manifolds in digital images. Based on the Weighted Quasi-Interpolant Spline
Approximation family, our approach can provide a sequence of parametrizations connected
G1 continuously, except in correspondence with the identified cusps, where we impose C0

continuity. For each local approximation, the number of knots in the knot vectors and the
free parameter k are tuned by cross-validation, to limit under- and overfitting. Being based
on the quasi-interpolation paradigm, the method is computationally efficient because it
does not involve least-square approximation routines. Experimental results on a set of real
digital images show a good performance on real data.

As a future development of the method, we intend to extend it to the case of space
curves, that is, to non planar profiles embedded into the Euclidean space, and to curves
with non-manifold configurations, such as knots and self-intersections. A typical solution
for dealing with complicated image borders is to consider arcs and line segments at the
same time [1]; in our case, our method can be iterated on the single 1-manifold arcs by
decomposing a general profile into segments.
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