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Clitan, I.; Motorga, R.; Ceuca, E.;
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Abstract: In the paper, the comparison between the efficiency of using artificial intelligence meth-
ods and the efficiency of using classical methods in modelling the industrial processes is made,
considering as a case study the separation process of the 18O isotope. Firstly, the behavior of the
considered isotopic separation process is learned using neural networks. The comparison between
the efficiency of these methods is highlighted by the simulations of the process model, using the
mentioned modelling techniques. In this context, the final part of the paper presents the proposed
model being simulated in different scenarios that can occur in practice, thus resulting in some inter-
esting interpretations and conclusions. The paper proves the feasibility of using artificial intelligence
methods for industrial processes modeling; the obtained models being intended for use in designing
automatic control systems.

Keywords: separation cascade; modeling; efficiency; AI (artificial intelligence); neural network;
18O isotope

1. Introduction

Most of the elements in nature consist of several atomic species referred to as isotopes.
The isotopes have the same position in the periodic table, they have the same number
of electrons, but they have a different number of neutrons. The isotopes can be stable
when they are not disintegrating over time or radioactive when they are affected by the
radioactive disintegration process. A measure of the atom’s concentration of an isotope
for a given element is represented through its natural abundance in mixture with other
isotopes. For example, there are to be found three stable isotopes in nature for the oxygen
element: 16O (99.759%); 17O (0.037%), and 18O (0.204%). The stable isotopes that are
needed in different applications [1–6] can only be found in very small concentrations
in nature, so justifying the need for increasing their concentration. Starting from the
1960s, due to the peaceful use of nuclear energy, the necessity of new nuclear fuels, and
large-scale applications in different domains of tagged atoms, the implementation, at
industrial scale, of the stable isotopes (namely, oxygen, nitrogen, carbon, boron, lithium,
etc.) separation methods became an important target. Consequently, the stable isotopes
have presented a great interest in the last years. As tagging elements, the isotopes have
proved to be an extremely advantageous tool in several domains, such as: chemistry,
biology, medicine, agriculture, etc. The study of the natural isotope abundances offers
important information regarding the water circulation in the atmosphere or underground,
the origin of the underground distribution of the hydrocarbon or even the rocks’ age. The
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analysis of the isotopic composition of the meteorites represents a modern method for the
space exploration. The 18O isotope for the 18F production used in the positron emission
tomography, respectively, the 13C and 14C isotopes, which are used in the respiratory tests,
plays an important role in medicine nowadays. Another important domain in which the
stable isotopes of 18O, 15N, and 13C are used as tracer agents in agriculture [5], improving
the usage of the chemical fertilizer. The most frequent stable isotopes separation methods
use the distillation procedures of the compound that contains the followed isotope in liquid
or in gaseous phase, respectively, the isotopic exchange in countercurrent on columns
with packing. Isotopic separation methods are based on the existence of an elementary
separation process, which is due to differences in physicochemical properties (mass, density,
boiling temperature, etc.) of isotopic compounds and is numerically characterized by
the elementary separation factor α, which shows how many times the ratio of isotopic
equilibrium concentrations in one of the reactants is higher than that corresponding one to
the other reactant.

In the case of isotopic exchange reactions, the elementary separation factors have
slightly different values than that of the unit value, for most light elements, except hydrogen.
These results, after the elementary separation process, in an insufficient separation for
applications, which makes it necessary to multiply the elementary separation factor α. This
multiplication can be achieved by means of the separation columns with packing or plates,
in which the substances that change isotopes circulate in countercurrent or in uniflow,
usually one in the liquid phase and the other one in the gaseous phase.

In the separation column, due to a transversal isotope transport between the two
phases, an isotopic separation occurs at its ends; separation that depends on the flow
rates, on the height of the column, and on α [1–3]. The equilibrium constants of the
isotopic exchange reactions in which the isotopes of the light elements H, B, C, N, and
O participate are slightly different from the value 1. Usually, the isotope with the higher
mass is concentrated in the reactant molecules with higher molecular weight, and the
lower mass isotope in the molecules of the other reactant. The separation element is
the smallest cell in an isotopic separation plant that achieves a separation equal to the
elementary separation factor α. It divides the supply current, having natural abundance,
into two currents of different concentrations: the current, partially enriched, of the desired
isotope having a certain concentration, and the partially diluted current having a different
concentration. Since the separating element processes only a small amount of substance,
in order to increase the processed amount, several elements are connected in parallel,
which will be fed with material of the same isotopic concentration. Such a battery of
elements forms a separating stage. In order to obtain high isotopic concentrations of the
products extracted from the separation plant, several stages are connected in series forming
a separation cascade.

The separation of the isotopes is carried out using separation columns with specific
equipment having a complex structure and operation [7–14]. The separation columns are
operated as a refluxing system, the pipes being positioned at the columns two edges. The
refluxing systems are used to restore the separated isotope into the separation column
(the refluxing system from the base of the separation column converts the separated
isotope from the liquid phase to the gaseous phase and returns it into the separation
column; the reflux system from the separation column top converts the separated isotope
from the gaseous phase into the liquid phase and is also re-entered into the separation
column). The processes associated to the separation columns represent a distributed
parameter MIMO (Multiple Input Multiple Output) technological processes having a
nonlinear behavior. Consequently, the complexity of the separation processes explains the
fact that their modeling and control are challenging in the field of automation. Another
important aspect to be considered is the costs of the production of isotopes. In this
context, the improvement of the separation plants energy consumption efficiency becomes
a main objective.



Mathematics 2021, 9, 3088 3 of 31

In this paper, the usage of a separation cascade, containing on its structure two
separation columns, is considered for the practical implementation of the separation
procedure through the system NO, NO2-H2O, HNO3 [6,14–19]. This procedure is used for
the separation of the 18O isotope. In the case of using the system NO, NO2-H2O, HNO3 as
the separation procedure, the nitric oxides circulate in countercurrent with the nitric acid
solution, the isotopic exchange being made after the following equation:

N16O + H 18
2 O

HNO3↔ N18O + H 16
2 O, (1)

with a single stage separation factor of 1.018 at 25 ◦C atmospheric pressure and 8 M/L
nitric acid solution.

The main scope of the paper is to prove the higher accuracy obtained by using the
AI (Artificial Intelligence) [15–17] methods in modelling the operation of the separation
cascade, in comparison with the accuracy obtained by using classic methods. The problem
of modeling and controlling the separation processes is presented in several papers of
the technical literature for different types of isotopes: [20–24]. The 18O isotope is treated
in many scientific articles by presenting its direct applications [9,25–27]. In previous
papers [28–32], some solutions for modeling and controlling the separation process for the
18O isotope production are presented. By analyzing these solutions, in most of the cases,
some simplified linearized models with lumped parameters are proposed for the processes
associated to the separation columns, which operate independently (they are not included
in the separation cascades). Consequently, the proposed control strategies are designed
based on the simplified models. Based on a proposed structure of a nonlinear distributed
parameter model [33–37] for the separation cascade operation (model which can be used
for different predictions of the 18O isotope concentration dynamics), the aim of this paper is
to compare the efficiency of using AI methods versus classical methods to modelling some
important nonlinear components of the mentioned model. Another advantage of obtaining
an accurate model of the separation cascade is the possibility to include it in an original
future 18O isotope control strategy which will generate much better control performances
than the actual solutions.

A possible future application for the proposed model is the analysis of the separation
cascade energy consumption [38–41]. Based on this analysis solutions for the energy
consumption optimization will be proposed.

As a synthesis, the AI-based proposed modeling method is used due to some impor-
tant aspects which will be following presented.

One of the main aims of the article is to propose a highly accurate mathematical model
for the separation cascade, a model that will be used further in different applications, as: a
reference model in structures for automatic control of 18O isotope concentration; a reference
model in determining the influence of the parametric disturbance that occurs in the cascade
operation; a reference model in the energy consumption optimization strategy, etc. Another
important aim of the present research is to propose a mathematical model that describes the
complete dynamics of the separation cascade. Consequently, the two separation columns
from the cascade structure are modelled as distributed parameter processes, their dynamics
depending both on time and on the position in relation to their heights. Moreover, in
order to have the possibility to simulate and to use properly the proposed model in future
applications, the modelling has to be applied considering the entire domains of variation
of the signals that occur in the separation plant operation (the modelling of the considered
separation process near a steady-state working point is not enough due to the fact that
a simplified model will imply the consistent decrease in the performances of the 18O
isotope’s automatic control system in which it is used as a reference model; in some cases,
a simplified model cannot be used for designing a control system). In this context, all the
structure parameters of the proposed model are non-stationary ones; more exactly, they
present consistent variations in relation to the separation cascade operation regime and
intensity. Hence, the separation cascade time constants, “length” constants, separations,
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and other structure parameters are variable and depend on the columns feeding intensity.
This aspect implies a strong non-linear behavior of the separation cascade.

In [42–44], mathematical models are proposed for separation processes, but having
constant parameters. In this case, the usage of AI is not necessarily due to the absence
of the necessity to learn variable parameters. In [45,46], the authors propose distributed
parameter processes for separation processes, based on the Cohen equation [47]. The usage
of these type of models has the disadvantage that they cannot be used for highlighting
the effects of the parametric disturbances that occur in the separation plant operation.
In [48–51], the proposed models are designed for a simplified process, near a steady-state
working point. These types of models are not complex enough (they do not cover the entire
range of the variation domains of the input and output signals that occur in the separation
plant operation) for obtaining high-control performances in the case when they are included
in automatic control systems. In references [36,52], a modelling-simulation method for
distributed parameter processes is presented (the Matrix of Partial Derivatives of the
State Vector method, associated with Taylor series), considering as case study separation
processes. This method generates high accuracy but implies consistent processing resources.
This aspect represents a significant problem in including this type of model in automatic
control structures. In references [53,54], neural networks are used to learn some of the
structure parameters of separation processes, but only linear parameters. By comparison,
the usage of neural networks in the case of the mathematical model proposed in the paper
is more justified since they are used to learn nonlinear functions. In [55], some examples of
using neural networks for the direct learning of the separation processes behavior are given.
In the case of the approached 18O separation process, due to its complexity, the learning
of its behavior using only one neural network, even a high complexity one, is almost
impossible (it is possible only by interconnecting more neural networks). Moreover, in [55],
the premises of using “hybrid semi-parametric modeling” are introduced. Practically, the
proposed model is a hybrid one due to the combining of the analytical modelling with the
experimental identification of some of the structure parameters of the separation process
and with AI methods.

Consequently, the AI-based proposed modeling covers the following gaps: it gener-
ates high accuracy in comparison with other methods, an aspect which generates better
performances in further usage of the model in different practical applications; it generates
the possibility to adapt the proposed model when the parametric disturbances occur in
the operation of the separation plant; it allows the complete modelling of the process (as a
distributed parameter process with variable coefficients); and it generates the possibility to
avoid simplified models.

2. The 18O Isotope Production and the Experimental Results

2.1. The Separation Cascade Used for 18O Production

The 18O isotope separation cascade, which is used to obtain the experimental data,
is presented in Figure 1 [25]. By using this separation cascade, the 18O isotope separation
is made through isotopic exchange in the system NO, NO2-H2O, HNO3. The separation
cascade is composed of two separation columns: PSC—Primary Separation Column and
FSC—Final Separation Column. The dimensions of the columns are their height (h = 10 m),
the PSC diameter d1 = 5 cm and the FSC diameter d2 = 1.4 cm). Moreover, Figure 1
highlights the sections of the two columns, which are equal. In order to model the 18O
isotope concentration variation in relation to the two columns height, the pumps P1 and
P2 are used for the supply of the two columns with nitric oxides (NO, NO2) (the FSC is
supplied at its base with the nitric oxides, having an enriched 18O isotope concentration,
obtained at the top of the PSC). Furthermore, the waste (the nitric acid solution (HNO3)), is
evacuated from the PSC base using the pipe 2. The phenomenon of 18O isotope enrichment
occurs due to circulation in countercurrent of the nitric oxides and of the nitric acid inside
of the two columns. The product can be extracted from the top of FSC (using the pipe
figured with dashed line) under the form of nitric acid having an increased concentration
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of the 18O isotope. Using the r independent variable associated with the 0r axes, the 18O
isotope concentration in relation to the two separation columns heights can be highlighted.
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Figure 1. The 18O isotope separation cascade.

Additionally, in Figure 1, the equipment associated to the refluxing systems of the two
separation columns is presented: the arc-cracking reactors ACR1 and ACR2, the absorbers
A1 and A2, respectively, and the catalytic reactors CR1 and CR2.

2.2. Experimental Results

The experimental data obtained during the operation of the separation cascade in
total reflux regime [5,6] (regime in which the product is not extracted from the plant),
are centralized in Tables 1 and 2. The main difficulty in developing the experiments
is represented by the fact that the processes from the separation cascade structure are
extremely slow processes having time constants with the magnitude order of hundreds of
hours. As it results from Table 2, the experiment that generated the presented experimental
data went on for 1 month (but some experiments can run up to 8 months).
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Table 1. The parameters used for the separation cascade experimentation.

Separation Column Parameter Parameter Value

PSC

Input nitric oxides flow (Fi) 880 L/h
Column temperature (θ1) 25 ◦C

Concentration of nitric acid (HNO3) solution at the column top 6.6 mol/L
Experiment duration 750 h

FSC

18O Isotope concentration obtained at the end of experiment 0.7882%
Input nitric oxides flow (Ff) 80 L/h
Column temperature (θ2) 25 ◦C

Concentration of nitric acid (HNO3) solution at the column top 6.9 mol/L
Experiment duration 750 h

18O Isotope concentration obtained at the end of experiment 2.8008%

Table 2. The Separation Cascade Response, in Relation to Time.

Time and Response
Sample

1 2 3 4 5 6 7 8 9 10

Time [h] 0 150 233.92 309.653 375.742 451.785 531.617 619.117 702.941 727.573

PSC Response [%] 0.204 0.4549 0.4784 0.549 0.5804 0.6549 0.6902 0.7255 0.7725 0.7882

FSC Response [%] 0.204 0.7208 0.936 1.2462 1.408 1.728 2.0059 2.3294 2.608 2.8008

In addition to the long-term of the experiments, an important problem is referring to
the difficulty of maintaining the normal operation regime of all the auxiliary equipment
used for the appropriate operation of the separation cascade.

In Table 3, the experimental data resulted through the FSC operation in total reflux
regime, independently by the separation cascade, is presented. The data from Table 3 is
essential in determining the dynamic behavior of FSC, which is also, essential in modelling
the separation cascade dynamic behavior. The experimental data highlighted in Tables 1–3
are used in order to determine the structure parameters of the proposed mathematical
model that describes the cascade operation and is usable for the simulation of the separation
cascade dynamics in different operation scenarios of interest. The notations used in
Tables 1–3 are valid through the entire paper.

Table 3. The results obtained after FSC experimentation.

Experiment
Number Parameter Parameter Value Resulted Parameter Resulted Parameter

Value

1

Input nitric oxides flow (Ff) 80 L/h Elementary separation factor (α) 1.018 [-]
Column temperature (θ2) 25 ◦C Maximum obtained separation 3.7 [-]

Concentration of nitric acid
(HNO3) solution at the FSC top 6.9 mol/L Minimum obtained Height of

Equivalent Theoretical Plate (HETP) 13.4 cm

Experiment duration 800 h
18O Isotope concentration obtained at

the end of experiment
0.772%

2

Input nitric oxides flow (Ff) 140 L/h Elementary separation factor (α) 1.018 [-]
Column temperature (θ2) 25 ◦C Maximum obtained separation 7.3 [-]

Concentration of nitric acid
(HNO3) solution at the FSC top 7.85 mol/L Minimum obtained Height of

Equivalent Theoretical Plate (HETP) 8.6 cm

Experiment duration 600 h
18O Isotope concentration obtained at

the end of experiment
1.485%

3

Input nitric oxides flow (Ff) 185 L/h Elementary separation factor (α) 1.018 [-]
Column temperature (θ2) 25 ◦C Maximum obtained separation 5.4 [-]

Concentration of nitric acid
(HNO3) solution at the FSC top 7.85 mol/L Minimum obtained Height of

Equivalent Theoretical Plate (HETP) 10.1 cm

Experiment duration 200 h
18O Isotope concentration obtained at

the end of experiment
1.10%
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The separation columns were thermostated at 25 ◦C, having a double wall made of
stainless-steel pipe inside which water flows from a thermostat, which ensures the on-off
control of the temperature with a contact thermometer having an accuracy of 0.1 ◦C. The
temperature of the fluids that flow in countercurrent must be kept constant along the entire
length of the separation columns so as not to produce the variation of the elementary
separation factor and of the chemical composition of the liquid, respectively, of the gaseous
phase. The increase in the nitric acid concentration increases the rate of the isotopic
exchange reaction, but decreases the elementary separation factor separation, so that an
optimal concentration of it must be found, concentration which can lead to a maximum
isotopic separation and to an equivalent theoretical plate height (HETP) as low as possible.
These changes have a major influence on the separation achieved on each column and on
the 18O isotope production of the separation cascade [8,9,11,12].

3. Mathematical Modeling of the Separation Cascade Operation and the Associated
Simulation Structure

The mathematical model which describes the operation of the previously presented
separation cascade is given by the following system of equations:

• The Height of the Equivalent Theoretical Plate (HETP) for the FSC: HETP2

(
Ff

)
= HETP2c + KH1·

(
Ff − Ff c

)
, i f Ff ≤ Ff c

HETP2

(
Ff

)
= HETP2c + KH2·

(
Ff − Ff c

)
, i f Ff > Ff c

(2)

(the used notations, being: KH1 = −0.08 cm · h/L and KH2 = 0.0333 cm · h/L are
the gradients of the two linear intervals from the structure of the nonlinear HETP2
function; HETP2c = 8.6 cm is the critical value of HETP2 function; Ffc = 140 L/h is the
critical flow in which the transition from a linear interval to the other one is made);

• The Height of the Equivalent Theoretical Plate (HETP) for the PSC:{
HETP1(Fi) = HETP1c + KH10·(Fi − Fic), i f Fi ≤ Fic
HETP1(Fi) = HETP1c + KH20·(Fi − Fic), i f Fi > Fic

(3)

(the used notations, being: KH10 = KH1·A1/A2 and KH20 = KH2·A1/A2 are the gradi-
ents of the two linear intervals from the structure of the nonlinear HETP1 function
and A1, respectively, A2 are the sections areas of the two columns (PSC and FSC);
HETP1c = 6.7786 cm is the critical value of HETP1 function; Fic = 1785.71 L/h is the
critical flow in which the transition from a linear interval to the other one is made);

• The mathematical model of PSC identified near the steady-state operation point used
in the experimental procedure:{

XPS1(s) =
K10

T10·s+1 ·U(s)
xPS(t, r = h) = x0 + L−1(XPS1(s))

(4)

(the used notations, being: H1(s) = K10/(T10 · s + 1)—the transfer function which
models the PSC operation for the constant input signal Fi = 880 L/h; x0 = 0.204%—the
natural abundance of the 18O isotope; U(s)—the unit step signal; L−1—inverse Laplace
transform; K10 = 0.8358%—the PSC proportionality constant; T10 = 380.8 h—the PSC
time constant; XPS1(s)—intermediary signal; xPS(t, r = h)—the 18O isotope concentra-
tion at the output (top) of PSC).

• The separation of the PSC:
SP(Fi) = αnP(Fi) (5)

(where nP(Fi) is the number of the theoretical plates of PSC for Fi).
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• The number of the theoretical plates of PSC:

nP(Fi) =
h

HETP1(Fi)
(6)

• The output concentration of PSC, in steady-state regime (for r = h):

xPst = x0 · SP(Fi) (7)

• The output concentration of FSC (for r = h), in steady-state regime:

xFst = xPst · SF

(
Ff

)
(8)

where SF(Ff) represents the separation generated by the FSC (defined by a similar
equation with (5) but being adapted for the FSC case).

Subsequently in the paper, the following notations are used: SPST(Fi) = (SP(Fi) − 1)
and SFST(Ff) = (SF(Ff) − 1).

• The nonlinear differential equations, which model the two separation columns dy-
namics in relation to time:

◦ for PSC:

T1(Fi) ·
d(xPI(t))

dt
+ xPI(t) = SPST(Fi) · x0 (9)

◦ for FSC:

T2in

(
Ff

)
· d(xFI(t))

dt
+ xFI(t) = SFST

(
Ff

)
· xPst (10)

where xPI(t) and xFI(t) (for r = h) are the 18O isotope concentrations increases at
the two columns tops, in dynamic regime, over the input concentrations (x0 in
the case of PSC and xP(t) (the output concentration of the 18O isotope at the
PSC top) in the case of FSC). (9) and (10) are nonlinear differential equations
due to the fact that the time constants T1(Fi) (the time constant of PSC) and
T2in(Ff) (the intrinsic time constant of FSC) depend on Fi and Ff.

• The adjusted form of the FSC time constant:

T2

(
Ff

)
= KT1 · T2in

(
Ff

)
(11)

where KT1 is the proportionality constant between the two functions, more exactly
a correction parameter. After applying a specific identification algorithm, the value
KT1 = 3.1693 is determined.

• The mathematical connection between T1(Fi) and T2(Ff) is given by:

T1(Fi) = KT2 · T2

(
Ff

)
(12)

where KT2 is the proportionality constant between the time constants of the two
separation columns. After identification, the value KT2 = 0.8955 resulted. T1(Fi) and
T2(Ff) time constants present parabolic decreasing evolutions.

• The separation of each separation column depending on r independent variable
written as a natural exponential function:

S(F) = e
h

R(F) (13)
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• The “length constant” of the considered separation column, which is a function of the
nitric oxides input flow F (Fi in the case of PSC and Ff in the case of FSC):

R(F) =
h

ln(S(F))
(14)

can be singularized for both PSC and FSC.
• The length constant of the PSC in relation to Fi (R1(Fi)):{

R1(Fi) = R1c + KR10 · (Fi − Fic), i f Fi ≤ Fic
R1(Fi) = R1c + KR20 · (Fi − Fic), i f Fi > Fic

(15)

• The length constant of the FSC in relation to Ff (R2(Ff)): R2

(
Ff

)
= R2c + KR1 ·

(
Ff − Ff c

)
, i f Ff ≤ Ff c

R2

(
Ff

)
= R2c + KR2 ·

(
Ff − Ff c

)
, i f Ff > Ff c

(16)

The identified gradients of the ramps associated to the linear intervals of the curves from
(15) and (16), are: KR10 = −0.3516(cm · h)/L, KR20 = 0.1463 (cm · h)/L, KR1 = KR10 · A1/A2

and KR2 = KR20 · A1/A2 (where A1 = π · d2
1

4 = 19.635 cm2 is the section of PSC and

A2 = π · d2
2

4 = 1.5394 cm2 is the section of FSC).

• The final form of the two separation columns output concentrations:

xP(t, r) = xPI(t) ·
Fr1(r)− 1

Fr1(r = h)− 1
+ x0 (17)

xF(t, r) = xP(t, r = h) ·
(

SF

(
t, Ff (t)

)
− 1
)
· Fr2(r)− 1

Fr2(r = h)− 1
+ xP(t, r = h) (18)

where Fr1(r,Fi) = exp(r/R1(Fi)) for PSC, Fr2(r,Ff) = exp(r/R2(Ff)) for FSC, FrPSC(r) =
(Fr1(r) − 1)/(Fr1(r = h) − 1) and FrFSC(r) = (Fr2(r) − 1)/(Fr2(r = h) − 1). The FrPSC(r)
and FrFSC(r) functions highlight the proportions of the 18O isotope concentration in a
certain position of the columns’ height, in relation to the 18O isotope concentrations
at their top. Practically, the FrPSC(r) and FrFSC(r) functions model the concentration
dynamics on the columns’ height.

The following functions: HETP1(Fi), T1(Fi) and R1(Fi), respectively, the HEPT2(Ff),
T2(Ff) and R2(Ff), are nonlinear ones. The simulation of the previously presented separation
cascade model can be made only if the instantaneous values of the six mentioned functions
(in relation to the input flows Fi and Ff) are available.

The input–output datasets are obtained by sampling the signals used for training the
two neural networks (the input signal (Fi) and the output signals HETP1(Fi), T1(Fi) and
R1(Fi) in the case of NNPSC; the input signal (Ff) and the output signals HEPT2(Ff), T2(Ff)
and R2(Ff) in the case of NNFSC) considering, for each, the corresponding sample value
necessary to divide the entire variation domain in 1250 equidistant intervals. The testing
input datasets are obtained by sampling the input signals (Fi) and (Ff) considering, for
each, the corresponding sample value necessary to divide the entire variation domain in
2500 equidistant intervals (resulting 2501 samples). The MSE values presented in Table 4 are
arrived at using the two neural networks responses to the mentioned testing input datasets
and the analytical values of the HETP1(Fi), T1(Fi), R1(Fi), HEPT2(Ff), T2(Ff), respectively,
the R2(Ff) functions.
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Table 4. The Centralizer with the MSE Values Associated to the Obtained Neural Solutions.

Neural Network NNPSC NNFSC

Considered Output from NN SPST(Fi) T1(Fi) R1(Fi) SFST(Ff) T2(Ff) R2(Ff)

MSE between the NN output
values and the real

function values
7.91 × 10−4 7.20 × 10−5 h 0.81 × 10−2 cm 5.73 × 10−4 6.46 × 10−5 h 1.67 × 10−2 cm

The feed-forward neural architecture is used due to its universal approximation
property, and because this architecture is complex enough to learn the behavior of the
HETP1(Fi), T1(Fi), R1(Fi), HEPT2(Ff), T2(Ff), respectively, the R2(Ff) functions. The six
mentioned functions are not recursive functions, their instantaneous values not being
dependent by their past samples. In this context, the usage of a recurrent neural network is
not justified.

Regarding the Hyperparameters of the two neural structures, in each case, one hidden
layer was defined in order not to increase the computations complexity during their
training procedures. The increase in the number of the hidden layers implies the consistent
increase in the computation’s complexity during their training procedures, but it does not
guarantee higher performances (regarding to the generated accuracies). The number of
the neurons from the hidden layer was iteratively determined. The two neural networks
training was performed iteratively, starting with a number of three neurons in the hidden
layer, and increasing, from a training, to the next one, the hidden layer size with one
neuron. For each neural network, the algorithm was stopped when, from an iteration to
the next one, the obtained errors (MSEs between the approximated output signals and
their analytical values) started to increase. The used activation functions for the neurons
from the two neural networks hidden layers are the bipolar sigmoid functions (hyperbolic
tangent functions) since the mentioned neural networks learn the behavior of nonlinear
parameters. Moreover, in both cases, the size of the output layer is three (the number of
the output signals), all the output neurons are linear (in order to implement the linear
combination of the output signals of the neurons from the hidden layer).

The HETP1(Fi), T1(Fi), R1(Fi), HEPT2(Ff), T2(Ff), and R2(Ff) functions dynamics can be
learned with a more complex MIMO neural network, too. A more complex MIMO neural
network would have the (Fi) and (Ff) flows as input signals and all the six mentioned
functions as output signals. However, the implementation of two neural networks is
preferred instead of a more complex one due to the following aspect: the PSC is fed with
flows (Fi) higher with between 8 and 15 times more than the flows (Ff), which with FSC
is fed; this difference is consistently higher than that of the value differences between
the output functions (HETP1(Fi) and HEPT2(Ff), T1(Fi) and T2(Ff), respectively, R1(Fi)
and R2(Ff)); due to this aspect, the training, in the case of a more complex MIMO neural
network, is a little less efficient than in the case of training the proposed two neural
networks; consequently, using two different neural networks instead of a more complex
one, the obtained accuracy is slightly higher, a fact that implies the determining of more
accurate mathematical model for the separation process.

In this context, for the precise mathematical dependency between the input flows Fi
and Ff, respectively, the functions HETP1(Fi), T1(Fi), R1(Fi), HEPT2(Ff), T2(Ff) and R2(Ff),
two neural networks are used. The general structure of the two neural networks is pre-
sented in Figure 2.
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Figure 2. The general structure of the two neural networks.

In Figure 2, “j” is referring to PSC or FSC. For j = PSC, only the signals above the
arrows are considered and for j = FSC, only the signals below the arrows are considered. In
both cases, NNj is as a feed-forward fully connected neural network [56–58], containing in
the structure:

• A hidden layer with 21 nonlinear neurons having hyperbolic tangent transfer function.
• The output layer with 3 linear neurons.

The size of the hidden layer resulted after optimizing the learning precision of the two
neural networks. The training of the two neural networks is made using, for each function,
1251 pairs of input–output samples.

The training is accomplished by applying the Levenberg–Marquardt algorithm [59–61],
the maximum allowed number of epochs being set to 50,000. The target error (MSE) is set
at 10−10 (mu) ((mu) being the appropriate measurement unit for each output signal). After
the training process, the two obtained neural solutions are tested by computing each MSE
value corresponding to each output signal; the obtained values are centralized in Table 4.
The insignificant values of all MSE from Table 5 prove the high accuracy generated by the
two proposed neural models.

Table 5. The centralizer with the MSE values associated to the obtained polynomial solutions.

Degree of the Polynomial
Approximating Function 10th Degree 20th Degree 50th Degree 100th Degree

MSE 0.0744 0.0362 0.0220 0.0275
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The details of the proposed neural network’s structure and its parameters are pre-
sented in Figure 3.
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Considering the previously presented Equations (2)–(18), the proposed mathematical
model of the separation cascade can be implemented through the functional scheme
presented in Figure 4. In order to be simulated, the diagram from Figure 4 is implemented
in MATLAB/Simulink. As it is presented in Figure 4, the upper part of the scheme
implements the mathematical model of PSC, and the lower part of the scheme implements
the mathematical model of FSC. By connecting the two models as it is presented in Figure 4,
the separation cascade model, results. In Figure 4, all the signals which connect the elements
are highlighted over the corresponding arrows.

The
∫

()dt notation signifies the computation of the integral in relation to the time of
the input signal in the corresponding element. Moreover, the elements f (r,R1) and f (r,R2)
are used to compute the FrPSC(r) and FrFSC(r) functions.

The two neural networks previously trained, generate the following output signals:

YPSC = WHLj ·
[
tan sig

(
WILj · Fi(t) + BHLj

)]
+ BOLj (19)

YFSC = WHLj ·
[
tan sig

(
WILj · Ff (t) + BHLj

)]
+ BOLj (20)

The output column vector from NNPSC is YPSC = [ SPSC(Fi(t)) T1(Fi(t)) R1(Fi(t)) ]
τ,

and the output column vector from NNFSC is YFSC = [ SFSC(Ff (t)) T2(Ff (t)) R2(Ff (t)) ]
τ

(in both cases, the notation “τ” signifies the transpose operator application).
The functional scheme from Figure 4 can be used to simulate the separation cascade

behavior for any value of Fi(t) and Ff(t) input signals, both in open loop and in closed loop
regime. Moreover, by using this scheme, the separation cascade dynamics, both in relation
to (t) and (r) independent variables, can be highlighted.

The simulations of the separation cascade operation are made using the structure
presented in Figure 4 implemented in MATLAB/Simulink [62]. The simulations are focused
on highlighting the most important functional properties of the separation cascade.
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4. Proof through Simulation of the Neural Network’s Usage Necessity

The implementation of the neural networks for modeling the separation cascade
dynamics is justified due to the following three aspects:

1. The consistently higher accuracy generated by the neural models [63–65] com-
paring to the models obtained using other modeling procedures, for the same number
of parameters;

2. The possibility to implement an online adaption algorithm for some of the neural
network’s parameters, in order to adapt the proposed model at the physical variations of
the separation cascade structure parameters;

3. The possibility to use neural networks for the future intelligent control of the separa-
tion cascade and to apply the same training algorithm as in the case of the proposed model.

4.1. Proof of Neural Model Higher Accuracy

In order to highlight the mentioned advantages, two other types of models (the poly-
nomial models and the Spline type models) are comparatively studied with the proposed
neural model.

(1) The polynomial approximating functions.
The polynomial approximating function’s general form is given by:

P(z) =
n

∑
i=0

pi·zi = pn·zn + pn−1·zn−1 + . . . + p1·z + p0 (21)

where n is its degree and pi (i ∈ {0, 1, 2, 3, . . . , n}) are its coefficients. Moreover, the
polynomial approximating function variable is denoted by z. The approximation of a
certain function using the polynomial function consists of determining (identifying) the
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values of the pi (i ∈ {0, 1, 2, 3, . . . , n}) coefficients in order to obtain the best fit between the
two functions. The limitations of the polynomial approximation can be easily highlighted
in the cases of the SFST(Ff) and the SPST(Fi) functions. By varying the polynomial degree,
it its observed that the fitting quality of the results is varying too. Consequently, a study
regarding the polynomial degree influence over the approximation accuracy is carried
on. In the case of the SFST(Ff) function, 1251 samples were considered in order to be
processed with the purpose of obtaining the polynomial approximating functions. By using
these samples and applying the Least Square Method [66], three polynomial approximating
functions are determined, having the degrees: n1 = 10, n2 = 20 and n3 = 50. The comparative
graph between the real form of the SFST(Ff) function and the responses of the three obtained
polynomial approximating functions is presented in Figure 5.
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From Figure 5, a low accuracy of the polynomial approximating functions in modeling
the SFST(Ff) function, results.

This conclusion is obvious since between the three polynomial responses and the
SFST(Ff) function, a consistent difference in values on certain domains of Ff signal values
can be observed (the most consistent variations occur in the neighborhood of the Ffc value).
Another important aspect is referring to the fact that if we increase the degree of the polyno-
mial approximating function, in the domain of Ff high values (in the neighborhood of Ffmax;
this domain is highlighted on the right part of Figure 5 with a circle), the corresponding re-
sponse presents oscillations. The higher the polynomial approximating function degree, the
higher its response oscillations. Consequently, a lower fit between the polynomial function
response and the SFST(Ff) function will be obtained for high values of Ff and implicitly (as
error) for the entire range of Ff values. The low quality of the polynomial identification can
be also highlighted through the MSE values obtained between the responses of the three
polynomials presented in Figure 5 and the response of SFST(Ff) function, values centralized
in Table 5.

All the MSE values from Table 5 are computed on 1251 pairs of samples of SFST(Ff)
function response and of each polynomial response. In the last column of Table 5, the MSE
value associated to a 100th degree polynomial approximating function (for the SFST(Ff)
function) is presented. From Table 5, the result is that increasing the degree of the polyno-
mial approximating function until the value of 50, the approximation accuracy increases,
but after this value, the approximation accuracy starts to decrease. The explanation of this
phenomenon is given by the following: the oscillations occurrence in the domain of Ff
signal high values, for the polynomials with higher degrees; the oscillations’ amplitude
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increases at the polynomial degree increase. In this context, it can be remarked that the
MSE value is higher in the case of using the 100th degree polynomial than in the case
of the 50th degree polynomial. Consequently, the final solution for the SFST(Ff) function
approximation using polynomial functions is obtained using a 50th degree polynomial.

However, by comparing the neural approximation accuracy with the 50th degree polyno-
mial approximation accuracy, the neural model can be observed to be much more accurate.

The better performances generated by the proposed neural model are proven by
the MSE values: the value of MSE computed in the case of the neural model, presented
in Table 4 (MSE = 5.73·10−4) is much lower (of more than 100 times) than the lowest
value presented in Table 5 (MSE = 2.2·10−2; generated by the 50th degree polynomial
approximating function).

In the case of the SPST(Fi) function, the polynomial approximating functions are
determined, too. After applying the same procedure as in the case of SFST(Ff) function and
considering the same degrees for the polynomials (n1 = 10, n2 = 20 and n3 = 50), the same
conclusions as in the case of SFST(Ff) function, results.

The MSE values between the responses of the three polynomials and the real response
of SPST(Fi) function are computed on 1251 pairs of samples of SPST(Ff) function response
and of each polynomial response. These values are centralized in Table 6.

Table 6. The centralizer with the MSE values associated to the obtained polynomial approximating functions (case of
approximating the SPST(Fi) function).

Degree of the Polynomial Approximating Function 10th Degree 20th Degree 50th Degree

MSE 0.2059 0.1009 0.0605

Consequently, the same conclusion that the proposed neural model is much more
accurate, results. This conclusion is confirmed, also, by the consistent difference between
the MSE values (in the case of the neural model, the value MSE = 7.91·10−4 is obtained
(Table 5), which is lower (almost of 100 times) than the lowest value from Table 6 (MSE =
0.0605 obtained for the 50th degree polynomial).

In order to compare the effects of the two types of the approximations (neural and
polynomial) accuracies, the comparative graph from Figure 6 is presented. In Figure 6,
the most probable response of the separation cascade is comparatively presented with the
separation cascade models responses obtained by using the neural and the polynomial
approximation types (for the same simulation, both the SPST(Fi) and the SFST(Ff) functions
are approximated using the same approximation type).
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The simulations from Figure 6 are performed for the input flows Fi = Fic = 1785.71 L/h
(in the PSC) and Ff = Ffc = 140 L/h (in the FSC), for which the errors between the theoretical
forms of the SPST(Fi), respectively, the SFST(Ff) functions and the responses of the two
types of their approximations (neural and polynomial) are maximum. For the three cases,
the values of the SPST(Fic) and the SFST(Ffc) functions are centralized in Table 7. For
both functions, the values deviations of the neural approximations in relations to the
theoretical values (∆SPST(Fic) = 0.0265 and ∆SFST(Ffc) = 0.0166) are much smaller than the
values deviations of the polynomial approximations in relations to the theoretical values
(∆SPST(Fic) = 0.4332 and ∆SFST(Ffc) = 0.125).

Table 7. The values of SPST(Fic) and SFST(Ffc) functions.

Considered Function SPST(Fic) SFST(Ffc)

Model Type Theoretical Neural Polynomial Theoretical Neural Polynomial

Function Value 12.8988 12.8723 12.4656 6.96 6.9434 6.835

This aspect implies a much better accuracy generated by the neural model in com-
parison to the polynomial model. Analyzing Figure 6, a much better superposition of the
response generated by the separation process model (over the most probable response)
can be remarked in the case when the SPST(Fi) and the SFST(Ff) functions are approximated
using neural networks than in the case when they are approximated using polynomial
functions. The better accuracy obtained by using the neural approximations is proven
through the MSE values computed (on 3001 pairs of samples considering the sampling
time ∆TS = 1 h) between the responses from Figure 6. Consequently, using the values of
the red and of the blue curves from Figure 6, the error MSE = 0.0793% is computed. This
error is much smaller than the MSE = 0.9215% error computed between the values of the
green and of the blue curves from Figure 6.

In conclusion, by using the neural approximation of the SPST(Fi) and the SFST(Ff)
functions, we obtain an accurate model of the separation cascade operation, but in the
case of the polynomial approximation, we obtain an unacceptable accuracy (an MSE value
equal to 0.9215%, and a deviation of the cascade response in steady-state regime of 1% are
considered “huge” deviations for the isotope separation applications).

An interesting comparison between different types of approximations can be made
referring to their number of coefficients. In the case of the 50th degree polynomial ap-
proximation, 51 coefficients are used, according to (21) (pi (i ∈ {0, 1, 2, 3, . . . , 50})). In the
case of the neural approximation, a total of 108 weights and bias values are used, but
they are approximating 3 functions in the same time (for example, considering NNPSC, it
approximates the SPST(Fi), T1(Fi) and R1(Fi) functions).

Hence, the result is that for each function, an average of 36 (the third part from 108)
parameters are used.

For each obtained neural solution (having 21 nonlinear neurons in the hidden layer
and 3 linear neurons in the output layer), the total of 108 can be split in: 21 input
weights + 63 (3·21) weights between the hidden and the output layer + 21 bias values
of the neurons from the hidden layer + 3 bias values for the neurons of the output layer.
Taking in account all the conclusions above, using the neural approximation, we obtain a
better accuracy than in the case of using the polynomial approximation and, at the same
time, with less model parameters (36 < 51).

Another type of approximation that was considered is the interpolation Spline function.
In contrast to the polynomial approximation functions, in the case of the interpolation
Splines, the variation domain of the input variable (signal) is decomposed in a certain
number of subdomains, each subdomain being bounded by two consecutive interpolation
points. If we preserve the general notation of the variable from (21), then an example
of a subdomain is [zi, zi+1], where zi and zi+1 are two consecutive interpolation points
and i ∈ {1, 2, 3, . . . . . . , n − 1}, where n represents the total number of the considered
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interpolation points (the n value is restricted by the number of the available interpolation
points or, if there are available a consistent number of interpolation points, the n value can
be imposed in order to limit the total number of the interpolation Spline parameters). For
the considered technical application, the case of the Cubic interpolation Spline function
is considered. Consequently, the variation form of the approximated function, on each
resulted subdomain [zi, zi+1], is estimated using the Cubic interpolation Spline from (22):

Si(z) = ai·(z− zi)
3 + bi·(z− zi)

2 + ci·(z− zi) + di (22)

where i ∈ {1, 2, 3, . . . . . . , n− 1}. For each subdomain (subinterval) the ai, bi, ci and di can be
determined using the natural cubic spline method [53]. The notation fi = f (zi) is used for the
approximated function value for the input variable values zi (i ∈ {1, 2, 3, . . . . . . , n − 1}),
values which are known.

Then, the approximation of the SPST(Fi) and the SFST(Ff) functions, using the Cubic
interpolation Spline is presented. In order to obtain a similar number of parameters of
the interpolation Spline function (cumulated on all subintervals) with the parameters of
the proposed neural approximation, a number of 26 interpolation points are considered.
Consequently, 25 subintervals of the Fi and Ff input signals result. As a remark, the
considered interpolation points are considered equidistant. It results that the total number
of parameters of each from the two interpolation Spline functions, which are used for the
approximation of the SPST(Fi) and the SFST(Ff) functions, is 100 (4 parameters ai, bi, ci and
di for each of the 25 subintervals).

In the case of the Ff input signal, 26 interpolation points are considered, starting with
the lowest possible value of 60 L/h and maintaining the step ∆Ff = 5 L/h (hence, including
the highest possible value of 185 L/h). After applying the natural cubic spline method
and finding for all 25 intervals the ai, bi, ci, and di coefficients, the comparative graph from
Figure 7 can be presented.
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Figure 7. The comparative graph between the SFST(Ff) function and the responses of the determined
Cubic interpolation Spline, respectively, of the proposed neural approximation.

From Figure 7, we notice that the response generated by the Spline type approximating
solution presents visible deviations in relation to the other two responses, aspect which
implies its lower accuracy. The same conclusion is obtained as a result of the SPST(Fi)
function variation. In Figure 7, the interval of the responses in which the most consistent
deviation between the response of the Spline type approximation and the real form of
SFST(Ff) function, is highlighted using the circle. The lower quality of the Spline type
approximation can be also proven through the values of the Mean Square Errors between
the values of the SFST(Ff) respectively, of the SPST(Fi) functions and the values of the
responses of the associated Spline type, respectively, neural approximations. In Table 8,
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the centralizer containing the computed MSE values is presented. In order to compute the
MSE for 1251 pairs of values, the same samples of the SPST(Fi) and the SFST(Ff) functions
are used as in the case of the polynomial approximation. Consequently, the MSE values
associated to the neural approximation (computed for 1251 pairs of values) are presented in
Table 5, as well. In the case of computing the MSE for 25 pairs of values, the 25 subintervals
associated to the procedure of determining the Spline type approximation, are considered.

Table 8. Centralizer with MSE Values.

Considered Function SPST(Fi) SFST(Ff)

Model Type Spline Neural Spline Neural

Number of Considered Points 25 1251 25 1251 25 1251 25 1251

MSE value computed in relation
to the SPST(Fi) respectivelyto the

SFST(Ff) functions values
6.81 × 10−2 5.32 × 10−2 6.99 × 10−5 7.91 × 10−4 2.43 × 10−2 1.89 × 10−2 2.72 × 10−5 5.73 × 10−4

In the case of each function SPST(Fi), respectively, SFST(Ff) and in the case of all
associated approximating functions (neural and Spline types), for the MSE computation,
their values at the center of each subinterval are considered (the centers of the 25 intervals
are considered in relation to Fi and Ff input signals; in the case of the general notation, the
center of each subinterval is the average value zav = (zi + zi+1)/2). This aspect is due to the
fact that, for the Spline approximation, the accuracy cannot be highlighted by computing
the MSE in the interpolation points, because it would result in the value MSE = 0. This is
because in (22), di = fi (i ∈ {1, 2, 3, . . . . . . , n − 1}). Obviously, the MSE = 0 value is not a
realistic one after analyzing Figure 7.

From Table 8, it results that in both the SPST(Fi) and the SFST(Ff) functions and for
both two methods of computing MSE, the neural approximation generates a much better
accuracy. Moreover, from Figure 7, it results that the highest error between the SFST(Ff)
function and the associated Spline type approximation occurs for Ff = 141.9 L/h, having
the value E2 = 0.096 (absolute value). Considering these values of the input signals
(Fi = 1807.4 L/h and Ff = 141.9 L/h), the comparative graph between the most probable
response of the separation cascade and the responses of the separation cascade models
using the Neural Networks, respectively, the Spline types of approximation (simultaneously,
for both SPST(Fi) and SFST(Ff) functions, the same approximation type is used), is presented
in Figure 8. In Figure 8, it is obvious that, using the neural approximation for the SPST(Fi)
and for the SFST(Ff) functions, the mathematical model of the separation cascade is much
more precise than in the case of using the Spline type approximations (the dashed red
curve is almost perfectly superposed over the continuous blue one; at the same time the
green curve presents a consistent deviation in relation to the other two curves). This
happens because, for Fi = 1807.4 L/h and Ff = 141.9 L/h, the errors between the SPST(Fi),
respectively, the SFST(Ff) functions and the responses of their neural approximations are
proportional with 10−4. The better performance of the proposed neural models can be
proven through the MSE values, too. Hence, 3001 pairs of samples of the curves from
Figure 8 are considered, by applying the same sampling time ∆TS = 1 h as in the case of
the simulations from Figure 6. After computation, between the red and the blue curve
from Figure 8, the value MSE = 0.0035% is obtained, which is much lower than the value
MSE = 0.6294% computed between the green and the blue curves from Figure 8.
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Consequently, the MSE obtained in the case of using the neural approximations is more
than 100 times smaller than the MSE obtained in the case of Spline type approximations.
Moreover, the error value of 0.0035% is considered to be insignificant for the isotope
separation applications, but the error value of 0.6294% is a “huge” one for these types of
applications and it is considered unacceptable. Additionally, in a steady-state regime, the
deviation of the red curve in relation to the blue curve is only of 4× 10−3% (an insignificant
value), but the deviation of the green curve in relation to the blue curve is of 0.6631% (an
unacceptable deviation).

In contrast to the polynomial type of approximation, if, in the case of the Spline
function, the number of the interpolation points is consistently increased, the accuracy of the
approximation can be significantly increased. Hence, in order to obtain approximately the
same accuracy as in the case of using the neural solutions, the number of the interpolation
points must be increased to 187. The main problem in this case is the fact that a total
of 744 parameters of the Spline function result (4 parameters for each of 186 resulted
subintervals), a value much higher than 36 (the average number of parameters of the
neural solution used for modeling one of the 3 modeled functions).

Another important problem refers to the T1(Fi) and T2(Ff) functions approximation.
These functions do not present a monotony change, an aspect which implies the fact that the
approximation of their behavior is simpler than in the cases of the SPST(Fi) and the SFST(Ff)
functions. Consequently, the polynomial approximation is tested and the T2(Ff) function
is considered as a case study. In this context, a 25th degree polynomial with the structure
presented in (21) is used, and the same procedure for determining the polynomial coefficients
is applied.

The higher accuracy of the neural model is proven through the MSE values between
the resulted responses. Hence, considering 1251 samples of the curves, the MSE obtained
between the responses of the neural model and the identified function is 6.46·10−5 h, and
the MSE obtained between the responses of the polynomial model and the identified
function curve is 8.48 × 10−5 h. It results that the neural model generates a sensible
higher accuracy than the polynomial model. The same conclusion results in the case of
the approximation of T1(Fi) function (using a 25th degree polynomial and the NNPSC).
Consequently, in the cases of the T1(Fi) and T2(Ff) functions, considering the fact that
the neural solutions generate sensible better solutions than the polynomial ones, but the
polynomial approximations have a smaller number of parameters than the neural ones
(each polynomial presents 26 coefficients, a smaller number than 36 average parameters
of each neural solution), the usage of the two approximating models imply the same
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degree of advantage. In this context, the analysis of the Spline type approximation is no
longer necessary.

In the case of the R1(Fi) and the R2(Ff) functions approximation, the problem is more
complicated than in the case of the T1(Fi) and T2(Ff) functions approximation, because they
present a monotony variation. In this context, the usage of the polynomial approximation
is not efficient due to the same explanations as in the case of the SPST(Fi) and SFST(Ff)
functions. Using the same procedure as in the case of the SPST(Fi) and SFST(Ff) functions,
it can be proven that the neural approximation of the R1(Fi) and the R2(Ff) functions
generates a consistent higher accuracy than the Spline type approximation. Considering
the presented study, the following conclusions, which justify the neural network usage as
modeling solution, result:

1. NNPSC and NNFSC represent unitary models, which (each) learn the behavior of three
functions (simultaneously), by applying the Levenberg–Marquardt learning algorithm;

2. The accuracy generated by NNPSC and NNFSC is much higher in the case of learn-
ing the behavior of SPST(Fi), SFST(Ff), R1(Fi), and R2(Ff) functions, respectively, it is
sensibly higher in the case of learning the behavior of T1(Fi) and T2(Ff) functions; this
remark is valid comparing the two neural models with the polynomial, respectively,
the Spline models;

3. The higher accuracy generated by NNPSC and NNFSC is obtained using much fewer
parameters than in the cases of the polynomial and the Spline functions; hence,
NNPSC and NNFSC each use 108 weights and bias values; it results in an average
number of 36 parameters used for each function learning (both NNPSC and NNFSC
learn 3 functions simultaneously);

4. The best solution of using the polynomial approximations implies the use of 128 pa-
rameters for modeling the group of functions (SPST(Fi); T1(Fi); R1(Fi)) and of other
128 for modeling the group of functions (SFST(Ff); T2(Ff); R2(Ff)); for example, in the
case of the group of functions (SPST(Fi); T1(Fi); R1(Fi)), the polynomial that models
the SPST(Fi) function contains 51 coefficients, the polynomial that models the T2(Ff)
contains 26 coefficients, and the polynomial that models the R1(Fi) function contains
51 coefficients; the main problems of the polynomial models is the fact that they cannot
model with an acceptable accuracy the SPST(Fi), SFST(Ff), R1(Fi) and R2(Ff) functions;

5. The sufficient solution for using the Spline functions, which generate approximately
the same accuracy as NNPSC and NNFSC, imply the usage of 1644 parameters
for modeling the group of functions (SPST(Fi); T1(Fi); R1(Fi)) and of other 1644 for
modeling the group of functions (SFST(Ff); T2(Ff); R2(Ff)); for example, in the case
of the group of functions (SPST(Fi); T1(Fi); R1(Fi)), the Spline function that models
the SPST(Fi) function contains 744 coefficients, the Spline function that models the
T2(Ff) contains 208 coefficients, and the Spline function that models the R1(Fi) function
contains 692 coefficients; consequently, the main problem of the Spline functions is
the extremely high number of coefficients that have to be used in order to generate the
same accuracy as the neural models; hence, the numerical implementation of Spline
functions is very difficult due to the large number of parameters and consequently
the resulted large dimensions of the corresponding look-up tables;

6. The three types of approached methods of the approximation (neural, polynomial,
and Spline type) were tested in the most unfavorable conditions; both on the entire
range of input signals values and in the most unfavorable conditions, the neural
networks generated the highest accuracy;

7. The most consistent advantage of using the neural approximations, from the accuracy
perspective, is obtained for the learning of the SPST(Fi) and the SFST(Ff) functions;
these two functions have the most important influence over the separation cascade
model’s accuracy;

8. Considering all the above, we may conclude that the use of NNPSC and NNFSC is
recommended in the separation cascade model, giving us the possibility of using the
model in future control applications.
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4.2. Proof of Neural Model Practical Feasibility

The proposed model of the separation cascade operation can be used in future applica-
tions, for example, as a reference model in a complex control structure (which implements
for example the Internal Model Control strategy). In this context, better performances
of the future proposed control systems designed for controlling the product concentra-
tion (the extracted 18O isotope concentration) are obtained if the reference model is more
accurate. Initially, the proposed model, using the neural approximations, presented (as
it was previously proven) a high level of accuracy. However, during a long period of
operation, the structure parameters of the separation cascade, due to multiple technological
reasons, presented variations in relation to time. In this context, the necessity to implement
an adaption algorithm to modify the initial model by adapting it to describe with high
accuracy, where the instantaneous behavior of the separation cascade occurred. The most
feasible and efficient solution for the adaption algorithm implementation is to use the neu-
ral models (NNPSC and NNFSC) and to modify, after the online adaption law, the values
of the elements of the BOLj vectors from (30) and (31). For a consistent range of the physical
variations of the separation cascade structure parameters, the proposed model can be
adapted with high accuracy. Hence, the effects of the parametric disturbances are efficiently
rejected. As an important remark, the other types of the approached modeling solutions
(polynomial and Spline type) were not feasible to be integrated in an adaption mechanism.

4.3. Proof of Neural Model Feasibility in Future Applications

Due to the approached separation process complexity and due to the necessity of
the future implemented control systems (for controlling the 18O isotope concentration)
to gentableerate high control performances (both from technological and from economic
reasons), the intelligent control figure usage becomes feasible and necessary. In practice,
many intelligent control strategies are based on using the neural networks [67–70]. Conse-
quently, the necessity to train neural controllers occurs. For training the neural controllers,
the same learning algorithm (Levenberg–Marquardt), as is used in the case of training the
NNPSC and NNFSC, can be applied, resulting in the advantage of using the implemented
learning algorithm for obtaining the separation cascade model, for training future neural
controllers. The unitary approach for determining the parameters of the separation process
model and the parameters of the future controllers (using neural networks and using the
same learning algorithm) significantly reduces the data processing volume.

4.4. Strategies for the Adaptive Learning of the Separation Cascade Behavior

An important future research direction which will be approached soon is represented
by the online identification of the separation cascade instantaneous mathematical model.

(a) Prove the feasibility of online adapting the proposed model.

During the operation, some of the structure parameters of the separation cascade can
present variations in relation to time, resulting in the necessity of adapting the initial form
of the proposed model. Next, the case of the variation of the parameters of the HETP1(Fi)
function from (3) is presented (for example, HETP1C, KH10, or/and KH20), a variation that
has as an effect, the increase in this function and implicitly the decrease in the SPST(Fi)
function. The online adapting of the proposed model to these possible variations can be
made by using the Adaptive Mechanism from Figure 9.



Mathematics 2021, 9, 3088 22 of 31

Mathematics 2021, 9, x FOR PEER REVIEW 22 of 31 
 

 

4.3. Proof of Neural Model Feasibility in Future Applications 
Due to the approached separation process complexity and due to the necessity of the 

future implemented control systems (for controlling the 18O isotope concentration) to 
gentableerate high control performances (both from technological and from economic rea-
sons), the intelligent control figure usage becomes feasible and necessary. In practice, 
many intelligent control strategies are based on using the neural networks. [67–70] Con-
sequently, the necessity to train neural controllers occurs. For training the neural control-
lers, the same learning algorithm (Levenberg–Marquardt), as is used in the case of training 
the NNPSC and NNFSC, can be applied, resulting in the advantage of using the imple-
mented learning algorithm for obtaining the separation cascade model, for training future 
neural controllers. The unitary approach for determining the parameters of the separation 
process model and the parameters of the future controllers (using neural networks and 
using the same learning algorithm) significantly reduces the data processing volume. 

4.4. Strategies for the Adaptive Learning of the Separation Cascade Behavior 
An important future research direction which will be approached soon is represented 

by the online identification of the separation cascade instantaneous mathematical model.  
(a) Prove the feasibility of online adapting the proposed model. 

During the operation, some of the structure parameters of the separation cascade can 
present variations in relation to time, resulting in the necessity of adapting the initial form 
of the proposed model. Next, the case of the variation of the parameters of the HETP1(Fi) 
function from (3) is presented (for example, HETP1C, KH10, or/and KH20), a variation that 
has as an effect, the increase in this function and implicitly the decrease in the SPST(Fi) 
function. The online adapting of the proposed model to these possible variations can be 
made by using the Adaptive Mechanism from Figure 9.  

 
Figure 9. The usage of the Adaptive Mechanism. 

In Figure 9, the proposed model based on the usage of the neural networks is run in 
parallel with the real separation process, the same input signals (Fi) and (Ff) being applied 
to the input of both entities. In this figure, the notation xFR(t,r) is referring to the real con-
centration of the 18O isotope at the output from FSC, and the notation xFS(t,r) is referring 
to the simulated concentration of the 18O isotope at the output from FSC, obtained by sim-
ulating the proposed mathematical model. The difference between the two signals gives 
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In Figure 9, the proposed model based on the usage of the neural networks is run
in parallel with the real separation process, the same input signals (Fi) and (Ff) being
applied to the input of both entities. In this figure, the notation xFR(t,r) is referring to
the real concentration of the 18O isotope at the output from FSC, and the notation xFS(t,r)
is referring to the simulated concentration of the 18O isotope at the output from FSC,
obtained by simulating the proposed mathematical model. The difference between the two
signals gives the error signal e(t,r). The error signal is applied at the input of the Adaptive
Mechanism, which processes its value and generates the adaptation signal. Analyzing
Figure 2, the SPST(Fi) function approximation is generated by NNPSC at the output of
the NOPSC1 neuron, results. Consequently, a direct solution for adapting the proposed
model to the variation of the mentioned structure parameters is to adapt the bias value
of the NOPSC1 neuron (bOLPSC1). In this context, after processing the error value, the
Adaptive Mechanism generates the adaptation signal (∆bOLPSC1), which is added to the
initial (bOLPSC1) bias value.

In the approached particular case, the Adaptive Mechanism is implemented by using
a PI (Proportional Integral) controller.

In Figure 10, the effects of the variation of the mentioned structure parameters (which
are due to some parametric disturbances) and of the proposed adaptive strategy are
presented in a comparative manner.

The effect of the parametric disturbances occurrence is visible through the decrease
in the 18O isotope concentration at the FSC output due to the decrease in the SPST(Fi)
function. Additionally, due to the effect of the adaptation (visible after the moment
t = 2500 h when the parametric disturbances occur in the process), the model output signal
(the approximated 18O isotope concentration at the FSC output) tracks with precision the
most probable response of the separation cascade (in the case when it is affected by the
parametric disturbances).

An important stage in proving the validity of the proposed adaptive strategy is it
testing at the variation of the input flows. This aspect is highlighted in Figure 11.
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Figure 11. Testing the proposed adaptive strategy.

An important remark is the fact that the simulations presented in Figure 10 and the
simulations presented in the first 5000 h of Figure 11 are made using the same input flows
as in the case of Figure 8. In Figure 11, after the first 5000 h, a variation of the (Ff) input flow
with 40 L/h is considered. From this figure, the proposed adaptive strategy is an efficient
one, results, since after the moment t = 5000 h, the proposed mathematical model response
remains superposed over the most probable response of the separation cascade (in the case
of the parametric disturbances persistence).

The variation, in relation to time, of the (bOLPSC1) bias value is presented in Figure 12.
The adaptation effort is visible after the moment t = 2500 h. Further, after the moment
t = 5000 h, the (bOLPSC1) bias value remains constant because the 18O isotope concen-
tration at the output of FSC is due to the (Ff) input signal variation and not due to a
parametric disturbance.
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Figure 12. The variation, in relation to time, of the (bOLPSC1) bias value.

(b) The idea of the adaptive strategy generalization.

In near future, the problem of the proposed adaptive strategy generalization will be
approached. The generalized adaptive strategy will contain in the structure the follow-
ing elements:

• A Decision Element, which will have the purpose of identifying the structure param-
eters that present variations in relation to time; in the presented example, only the
variation of the SPST(Fi) function was considered as a consequence of the variation of
one or more HETP1(Fi) function parameters, but during the real operation of the plant,
other structure parameters can present variations, too (for example, the separation
process time constants T1(Fi) and T2(Ff) or “length constants” R1(Fi) and R2(Ff)); these
variations of the different separation process structure parameters can also occur, si-
multaneously; consequently, the identification of the process structure parameters that
are affected by the parametric disturbances become necessary in order to determine
which weights or bias values of the two used neural networks have to be modified as
result of the adaptation effect;

• The Adaptive Mechanism, which will have the same main purpose as in Figure 9, but
which will run more complex optimization algorithms (the Adaptive Mechanism will
have to generate more than one adaptation signals); the Adaptive Mechanism can be
implemented, also, by using AI specific methods;

• A Signal Distributor which will have the purpose to distribute the adaptation signals
generated by the Adaptive Mechanism to the two neural networks weights and bias
values; the identification of the weights and bias values of the two neural networks,
which must be modified to adapt the proposed mathematical model properly, is also
made by the Adaptive Mechanism.

(c) The real-time identification of the separation model.

Another future possibility for obtaining the adapted mathematical model of the
separation cascade is represented by the real-time learning of the process behavior. In this
case, the following stages must be passed through:

• The input and the output signals corresponding to the separation cascade, after their
measuring and sampling, are be saved as datasets;

• The resulting datasets are preprocessed;
• In the case of identifying deviations of the proposed model response from the real

response of the separation cascade, the two neural networks are trained again using
the mentioned datasets;

• The old neural solutions will be replaced with the new ones, obtained at the previ-
ous stage.
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As a conclusion, the mathematical model adaptation at the occurrence of the para-
metric disturbances is very important due to the necessity of using it with high precision
in different applications (as reference model in automatic control structure, as model for
approximating the separation cascade energy consumption, as decision support for the
operators, etc.)

4.5. Comparison of the Efficiency of Using Two SISO Neural Models and One MIMO
Neural Model

In Figure 2, the structure of the two SISO (Single Input Single Output) used neural
networks is presented (“j” referring to PSC or FSC). Consequently, the instantaneous values
of the SPST(Fi), T1(Fi), and R1(Fi) functions are generated by NNPSC, respectively, the
instantaneous values of SFST(Ff), T2(Ff), and R2(Ff) and functions are generated by NNFSC.

Another possibility to generate the six mentioned functions is based on using a MIMO
neural model, having the general structure from Figure 13.
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Figure 13 highlighted the fact that the considered MIMO Neural model has two input
signals (Fi and Ff), respectively, and six output signals (SPST(Fi), T1(Fi), R1(Fi), SFST(Ff),
T2(Ff), and R2(Ff)). The MIMO neural network from Figure 13 (MIMO NN) is, also, a feed-
forward fully connected one. In this context, the two input signals are applied through the
corresponding weights to each neuron from the hidden layer and the output layer contains
six linear neurons. The neurons from the hidden layer are, in this case too, nonlinear,
having hyperbolic tangent transfer function. The training procedure applied for training
the MIMO NN, the training parameters, the used training datasets, and the used testing
datasets were the same as in the cases of NNPSC and NNFSC (with the remark that the
input–output datasets were used properly for the sizes of the input and output layers). The
best results were obtained in the case of using 29 neurons in the hidden layer. After the
training process, the obtained MIMO neural solutions were tested by computing the MSE
value corresponding to each output signal; the obtained values are centralized in Table 9.

Table 9. Centralizer with MSE Values Associated to the MIMO NN Neural Model.

Neural Network NNPSC NNFSC

Considered Output from
MIMO NN SPST(Fi) T1(Fi) R1(Fi) SFST(Ff) T2(Ff) R2(Ff)

MSE between the MIMO NN
output values and the real

function values
9.78 × 10−4 1.17 × 10−4 1.04 × 10−2 2.5 × 10−3 2.72 × 10−4 1.85 × 10−2

After making the comparison between the results obtained in Table 9 and the results
obtained in Table 4, we note that the computed MSE values were higher in the case of
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using the MIMO NN structure. Consequently, the accuracy generated by the two SISO
neural structures is better than the accuracy generated the MIMO NN structure. However,
because, in both cases, the MSE values are very small ones (lower or much lower than
10−1), it is important to highlight the effective advantage introduced by the usage of two
SISO neural models.

The comparative graph between the most probable response of the separation cascade
and the response of the proposed model implemented by using a MIMO neural network,
is presented in Figure 14.
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The responses from Figure 14 are obtained using the same input flows as in the case of
Figure 8. Considering the same sampling time and the same number of pair of samples of
the curves from Figure 14, as in the case of Figure 8, the value MSE = 0.2152% is obtained.
This value is consistently higher than the value 0.0035%, obtained in the case of using
two SISO neural models (this error was computed above for the analysis of Figure 8).
Consequently, for the considered mathematical modelling application, the accuracy of
the separation cascade model implemented using two SISO neural networks generates a
consistently higher accuracy than the separation cascade model implemented using one
MIMO neural network (aspect visible directly in Figure 14). This aspect is due, mainly, to
the better approximation of the SPST(Fi) and SFST(Ff) functions by using two SISO neural
networks rather than in the case of using one MIMO neural network, which is a direct
consequence of a better approximation of the HETP1(Fi) and of the HETP2(Ff) functions.

On the other hand, the separation cascade model implemented based on usage of only
one MIMO neural network generates much better performances than in the case of using
the polynomial approximation or the Spline type functions. This conclusion results directly
by comparing the simulation from Figure 14 with the simulations presented in Figures 6
and 8, but, also, by comparing the MSE values obtained in Table 9 with the corresponding
values presented in Tables 6 and 8. Consequently, the better performances generated by
the neural models for the considered mathematical modelling application is proved again.

The high accuracy of the proposed mathematical model is vital for using it in future
applications of automatic control of the 18O isotope concentration and for reducing the
energy consumption of the separation plant. This remark is strengthened by the fact that
the separation cascade is an extremely slow process and small quantities of the product are
obtained in long periods of time.
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5. Conclusions

The usage of neural networks in learning the dynamic of the separation cascade
structure parameters, in relation to the input flows in the two separation columns, con-
tributes significantly to the model’s high accuracy, the neural networks generating a higher
precision than other modeling techniques.

Section 4 proves the necessity to use neural networks to obtain an accurate model of
the 18O isotope separation cascade operation.

There are two possibilities to connect two or more separation columns in order to
increase the concentration of the separated isotope. The first applicable possibility is the
serial connection of the separation columns. In this case, two or more separation columns
are used, having the same size (as height and section area) and all being supplied with the
same input flow of the chemical substance, which implies the occurrence of the separation
phenomenon (the input flow in the first column, which is also the input flow in the entire
serial separation structure, is equal to the input flows in each separation column from
the serial structure). Moreover, the input flow for each column from the serial structure
(except the first one) corresponds with the output flow from the immediate previous one.
Practically, the serial structure substitutes one equivalent separation column that has the
same section area as all the columns from the mentioned serial structure, having the height
equal to the sum of their heights. The advantage of using the serial connection of the
separation columns is the fact that the separation plant can operate in industrial halls of
usual height (in contrast to the case of one equivalent separation column which a consistent
higher height). The second applicable possibility is the cascade type connection of the
separation columns. The separation cascade represents a structure that contains two or
more separation columns, in general having the same height, but having different sections
areas. Moreover, the section area decreases from the first column from the cascade to the
last one. An important aspect is the fact that each column from the cascade (excepting
the last one) supplies the immediate consecutive column. Another important aspect is
represented by the fact that the supplying flow of each column from the cascade structure
decreases from the first column to the last one. Practically and physically, the next column
from the cascade structure separates the isotope already separated by the previous one.
Consequently, the cascade separation strategy is more efficient than the serial connection
strategy. In the case of the approached example, a particular case of a separation cascade,
containing two separation columns in its structure, is considered. Compared with the case
of the separation serial structure, the separation cascade generates a higher separation (and
implicitly the obtained separated isotope concentration is higher), but it is more difficult to
be implemented as sizing.

The paper approaches, as a case study, the problem of modeling and simulation
of the 18O isotope separation process. Basically, the proposed method for modeling the
operation of each separation column can be adapted for other separation processes (for
example, for the separation of the 13C, 10B, and 15N isotopes). In this context, there are
some common elements that allow the modeling procedure adaption from the case of 18O
isotope separation to the cases of other isotopes separation, elements such as:

• All the separation processes associated to the separation columns are distributed
parameter ones, the separated isotope concentration depending both on the time
independent variable and on the position in the separation column (especially in
relation to the column height);

• All separation processes are strong nonlinear ones;
• All separation processes are extremely slow processes and the corresponding time

constants present consistent variations in relation to the operation intensity of the
separation plant;

• The Separation parameter, in different forms, can be highlighted for any separa-
tion process;

• Based on consistent experimental data and applying specific or original modeling
methods for their processing, the functional variation of the process main structure pa-
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rameters, in relation to the input signal (in general, the input flow for the main chemical
substance that allows the separation phenomenon occurrence), can be determined.

Furthermore, there are some consistent differences between the technological proce-
dures used for the separation of different isotopes, differences which can imply complica-
tions in the model adaption. Some of these differences, are:

• In the cases of different separation processes, different chemical substances are used
(having different properties);

• The operation intensity of the used equipment can present consistent variations from
a separation phenomenon to other ones;

• In the cases of different separation processes, different equipment is used;
• The separation plant structure can differ very much from a separation procedure to

other ones;
• The Separation parameter, for different cases, can have completely different variation

forms than in the case of the presented model.

After adapting the model of each separation column from the separation plant struc-
ture, an important stage is the mathematical connection of the resulted models, depending
on the type of the columns connection (serial type connection or cascade type connection)
in the plant structure.

The processes of separation of stable isotopes on columns with packing differ from one
isotope to another by: the elementary separation factor, the speed with which the isotopic
exchange between the liquid and the gaseous phase takes place (kinetics of isotopic ex-
change), the size of fluid flows in countercurrent in the column, the chemical concentration
of the liquid phase in chemical equilibrium with the gaseous one, the column temperature
and the operating pressure. The proposed model can be successfully applied for other
stable isotopes (15N, 13C, and 10B) if the separation process parameters are known (flow
rates and nature of fluids in the column, their concentration, operating pressure of the
column, working temperature) leading to the determination of the constructive characteris-
tics of the separation cascade (number of columns to achieve a desired separation, height,
inside diameter, type of packing in the separation column (stainless steel wire Helipak,
Berl ceramic saddles, glass balls, copper wire mesh, and connection mode of columns in
series or parallel)).
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