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Abstract: Minimal compact hypersurface in the unit sphere Sn+1 having squared length of shape
operator ‖A‖2 < n are totally geodesic and with ‖A‖2 = n are Clifford hypersurfaces. Therefore,
classifying totally geodesic hypersurfaces and Clifford hypersurfaces has importance in geometry
of compact minimal hypersurfaces in Sn+1. One finds a naturally induced vector field w called the
associated vector field and a smooth function ρ called support function on the hypersurface M of
Sn+1. It is shown that a necessary and sufficient condition for a minimal compact hypersurface M
in S5 to be totally geodesic is that the support function ρ is a non-trivial solution of static perfect
fluid equation. Additionally, this result holds for minimal compact hypersurfaces in Sn+1, (n > 2),
provided the scalar curvature τ is a constant on integral curves of w. Yet other classification of
totally geodesic hypersurfaces among minimal compact hypersurfaces in Sn+1 is obtained using
the associated vector field w an eigenvector of rough Laplace operator. Finally, a characterization
of Clifford hypersurfaces is found using an upper bound on the integral of Ricci curvature in the
direction of the vector field Aw.

Keywords: minimal hypersurfaces; totally geodesic hypersurfaces; sphere; clifford hypersurfaces

1. Introduction

Minimal hypersurfaces in a unit sphere is a very important subject in differential
geometry that has been investigated by many researchers (cf. [1–11]). An important
property of these hypersurfaces is that, if the shape operator A of a minimal compact
hypersurface M of Sn+1 satisfies ‖A‖2 < n, then it is totally geodesic and if ‖A‖2 = n, then
it is a Clifford hypersurface (cf. [1]). Note that most simple and natural hypersurface of
Sn+1 is the totally geodesic sphere Sn. Moreover, important minimal hypersurfaces of of
Sn+1 are Clifford hypersurfaces. Characterizing totally geodesic hypersurfaces and Clifford
hypersurfaces among minimal compact hypersurfaces of Sn+1 is an important question in
geometry of minimal hypersurfaces of Sn+1.

The Ricci operator Q of a Riemannian manifold (M, g), is defined using Ricci tensor
Ric, namely Ric(X1, X2) = g(QX1, X2), X1, X2 ∈ X(M), where X(M) is the Lie algebra of
smooth vector fields. Moreover, the Laplace operator acting on vector fields, ∆ is defined
by

∆U = ∑
i

(
∇ei∇ei U −∇∇ei ei U

)
, U ∈ X(M), (1)

where ∇ is the covariant derivative operator and {e1, ..., en} is a local frame on M,
n = dimM. It is well known that this operator ∆ is used for characterizing spheres
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and Euclidean spaces (cf. [12]). Additionally, on a Riemannian manifold (M, g), the static
perfect fluid equation is (cf. [13–15])

f Ric− Hess( f ) =
1
n
( f τ − ∆ f )g, (2)

where τ is scalar curvature, Hess( f ) is the Hessian of the function f , ∆ is the Laplacian
that acts on smooth functions of M and n = dimM. This differential equation is known
for its importance in general relativity and differential geometry. It is interesting to note
that this differential equation plays an important role in characterizing totally geodesic
hypersurfaces in Sn+1 as observed in this paper.

Note that the unit sphere Sn+1 as an embedded surface in the Euclidean space En+2

having unit normal N has shape operator −I. For the vector field Z = ∂
∂u1 on En+2, where

u1, ..., un+2 are coordinates on En+2, we denote by v the projection of Z on the unit sphere
Sn+1. Then, it follows that

Z = v + ρN,

where ρ =
〈

Z, N
〉
, 〈, 〉 is the metric on En+2. For a vector field U on the unit sphere Sn+1,

using fundamental equations for the hypersurface Sn+1, we have

∇Uv = −ρU, gradρ = v, (3)

where ∇ is the induced connection on Sn+1 corresponding to the induced metric g and
gradρ is the gradient of ρ on Sn+1. Thus, v is a concircular vector field on Sn+1. Now,
consider the totally geodesic sphere Sn as hypersurface of Sn+1 with N the unit normal.
We denote the metric on Sn+1 and the induced metric on the hypersurface Sn by g and the
induced connection on Sn by ∇. Additionally, we denote by ρ, the restriction of ρ to Sn.
Let w be the projection of the vector v to Sn and f = g(v, N). Thus,

v = w + f N. (4)

We call w and ρ, the associated vector field of Sn and the support function of Sn,
respectively. As Sn is totally geodesic, for a vector field U on Sn, on using Equation (3),
we find U( f ) = Ug(v, N) = g(−ρU, N) = 0, that is, f is a constant c. Thus, using
Equations (3) and (4), we get

gradρ = (gradρ)T = w, (gradρ)⊥ = cN, (5)

where (gradρ)T , (gradρ)⊥ are tangential and normal components of gradρ to Sn. Using
Equation (3) and the fact that shape operator of Sn is zero, we have

∇Uw = −ρU, U ∈ X(Sn). (6)

Thus, using Equations (5) and (6), we observe that the function ρ on the hypersur-
face Sn satisfies ∆ρ = −nρ, Hess(ρ) = −ρg. Using the expressions Ric = (n− 1)g and
τ = n(n− 1) for the sphere Sn, we see that the support function ρ is solution of the static
perfect fluid Equation (2) on the totally geodesic sphere Sn.

Additionally, observe that using Equations (1), (5) and (6), we conclude

∆w = −w,

that is, the associated vector field w of Sn is the eigenvector of the Laplace operator
∆ corresponding to eigenvalue 1 (it is customary to call a constant λ eigenvalue of ∆
corresponding to eigenvector ξ if ∆ξ = −λξ).

These raise two questions: (i) Given a minimal compact hypersurface M of Sn+1 that
has support function ρ a non-trivial solution of static perfect fluid equation necessarily
totally geodesic? (ii) Given a compact hypersurface M of Sn+1 with associated vector field
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w an eigenvector of the Laplace operator corresponding to eigenvalue 1, is this hypersurface
necessarily totally geodesic? In this paper, we answer these questions (cf. results in Section 3).
We also find a characterization of a Clifford hypersurface of Sn+1 (cf. the result in Section 4).

2. Preliminaries

Let N be the unit normal and A be the shape operator of an orientable minimal
hypersurface M of Sn+1. We denote by g the canonical metric on Sn+1 and also for that is
induced on M. We denote the Riemannian connections on Sn+1 and the hypersurface M
by ∇ and ∇, respectively. Then the fundamental equations for M are (cf. [16])

∇X1 X2 = ∇X1 X2 + g(AX1, X2)N, ∇X1 N = −AX1, X1, X2 ∈ X(M). (7)

The curvature tensor field R, the Ricci tensor field Ric and the scalar curvature τ of
minimal hypersurface M are

R(X1, X2)X3 = g(X2, X3)X1 − g(X1, X3)X2 + g(AX2, X3)AX1 − g(AX1, X3)AX2, (8)

X1, X2, X3 ∈ X(M),

Ric(X1, X2) = (n− 1)g(X1, X2)− g(AX1, AX2), X1, X2 ∈ X(M), (9)

and
τ = n(n− 1)− ‖A‖2. (10)

The Codazzi equation of hypersurface gives

(∇A)(X1, X2) = (∇A)(X2, X1), X1, X2 ∈ X(M), (11)

where (∇A)(X1, X2) = ∇X1 AX2− A
(
∇X1 X2

)
. Taking a local frame {e1, ..., en}while using

Tr.A = 0 and Equation (11) we get

∑
i
(∇A)(ei, ei) = 0. (12)

Let v be the concircular vector field on Sn+1 considered in the introduction, which
satisfies Equation (3), where ρ is the function defined on Sn+1 by ρ =

〈
Z, N

〉
. We denote

the restriction of ρ to M by ρ and the tangential projection of v on M by w that gives

v = w + f N, f = g(v, N). (13)

We call w the associated vector field on M and call the functions ρ, f the support
function and the associated function, respectively, of M. It follows that gradρ = [gradρ]T

the tangential component of gradρ and the normal component [gradρ]⊥ = g(gradρ, N)N =
g(v, N)N = f N, that is, on using Equations (3) and (13), we have

gradρ = w. (14)

On differentiating Equation (13) and using Equations (3) and (7), we get on equating
tangential and normal components

∇X1 w = −ρX1 + f AX1, grad f = −Aw, X1 ∈ X(M). (15)

Taking divergence in Equations (14) and (15) and using Equations (12), we get

∆ρ = −nρ, ∆ f = − f ‖A‖2. (16)
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The Hessian operator Ah of a smooth function h on a Riemannian manifold (M, g) is
defined by

Ah(X1) = ∇X1 gradh, X1 ∈ X(M), (17)

and it is a symmetric operator. Furthermore, the Hessian Hess(h) of h and Ah are related by

Hess(h)(X1, X2) = g(Ah(X1), X2), X1, X2 ∈ X(M).

The Laplace operator ∆ is defined by ∆h = div(gradh), which is also related to the
operator Ah by

∆h = trAh. (18)

Well known Bochner’s formula states∫
M

Ric(gradh, gradh) =
∫

M

(
(∆h)2 − ‖Ah‖2

)
. (19)

Recall that for positive integers α, β, α + β = n, a Clifford hypersurface is defined by

M = Sα

(√
α

n

)
× Sβ

(√
β

n

)
=

{
(x, y) ∈ Eα+1 ×Eβ+1 : ‖x‖2 =

α

n
, ‖y‖2 =

β

n

}
,

and it is a minimal hypersurface of Sn+1 with ‖A‖2 = n. We denote by N the unit normal
vector to the Clifford hypersurface M in Sn+1 by N the unit normal vector of Sn+1 in the
Euclidean space En+2. Then, we have

N =

(√
β

n
ζ1,−

√
α

n
ζ2

)
, N =

(√
α

n
ζ1,

√
β

n
ζ2

)
,

where ζ1 is unit normal to Sα
(√

α
n

)
in Eα+1 and ζ2 is the unit normal to the hypersurface

Sβ

(√
β
n

)
in Eβ+1. It follows that the functions ρ and f satisfy

ρ =

√
α

β
f . (20)

3. Characterizations of Totally Geodesic Hypersurfaces

Here, we find characterizations of totally geodesic hypersurfaces among minimal
compact hypersurfaces of Sn+1. Let M be the minimal hypersurface of Sn+1 with support
function ρ a non-trivial solution of Equation (2). Then, Equations (2) and (9) imply

ρQ(X1)− Aρ(X1) =
ρτ

n
X1 −

∆ρ

n
X1, X1 ∈ X(M). (21)

Now, Equations (14) and (15) imply

Aρ(X1) = −ρX1 + f AX1. (22)

Using Equations (16) and (22) in Equation (21), we have

f AX1 = ρ
(

Q(X1)−
τ

n
X1

)
, X1 ∈ X(M).

Differentiating this equation, we get

X1( f )AX2 + f (∇A)(X1, X2) = X1(ρ)
(

Q(X2)−
τ

n
X2

)
+ ρ

(
(∇Q)(X1, X2)−

1
n

X1(τ)X2

)
.
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Choosing a local frame {e1, ..., en} and replacing X1 and X2 in above equation by ei
and taking sum, while using Equation (12), we conclude

A(grad f ) = Q(gradρ)− τ

n
gradρ +

1
2

ρgradτ − ρ

n
gradτ, (23)

where we have used the well known formula

∑
i
(∇Q)(ei, ei) =

1
2

gradτ.

Now, using Equations (14) and (15) and Q(X1) = (n− 1)X1− A2X1 (see Equation (9))
in Equation (23), we have

(n− 1)w− τ

n
w +

n− 2
2n

ρgradτ = 0,

that is, (
n− 1− τ

n

)
w +

n− 2
2n

ρgradτ = 0.

Using Equation (10) in above equation, we have

1
n
‖A‖2w +

n− 2
2n

ρgradτ = 0.

Taking divergence in above equation, while using divw = −nρ (outcome of
Equations (14)) and (15), we get

1
n

w
(
‖A‖2

)
− ρ‖A‖2 +

n− 2
2n

w(τ) +
n− 2

2n
ρ∆τ = 0,

that is, for n > 2, we have

1
2n

w
(

2‖A‖2 + (n− 2)τ
)
+

n− 2
2n

ρ

(
∆τ − 2n

n− 2
‖A‖2

)
= 0.

Using Equation (10), we get

n− 4
2n

w(τ) +
n− 2

2n
ρ

(
∆τ − 2n

n− 2
‖A‖2

)
= 0. (24)

Theorem 1. A compact and connected minimal hypersurface M of the unit sphere S5 has support
function ρ non-trivial solution of the static perfect fluid equation, if and only if, M is totally geodesic.

Proof. For a compact and connected minimal hypersurface M of S5 with support function
ρ a non-trivial solution of the static perfect fluid equation, using Equation (24), we have

1
4

ρ
(

∆τ − 4‖A‖2
)
= 0.

Since, ρ is non-trivial solution, ρ 6= 0, above equation on connected M implies

∆τ = 4‖A‖2.

Consequently, we get that M is totally geodesic.
Conversely, we have observed in the introduction that on totally geodesic sphere S4

in the unit sphere S5, the support function ρ is a solution of the static perfect equation. We
claim that ρ is non-trivial solution. If ρ is a constant, then Equation (6) implies divw = −4ρ,
which gives ρ = 0 and Equation (5) implies w = 0. As f is constant c (see introduction) for
totally geodesic hypersurface of S5, Equation (5) gives gradρ = cN. The sphere S5 being
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compact, there is a point p ∈ S5, with (gradρ)(p) = 0, that is, cNp = 0. With N being the
unit vector field, we must have c = 0. Thus, we get the constant vector field Z = 0, contrary
to our assumption that Z is a unit vector. This proves that, ρ is a non-trivial solution.

As consequence of Equation (24), same as in Theorem 1, we have:

Theorem 2. A compact and connected minimal hypersurface M of the unit sphere Sn+1, (n > 2),
with scalar curvature τ constant along the integral curves of the associated vector field w, has
support function ρ non-trivial solution of the static perfect fluid equation, if and only if, M is
totally geodesic.

Next, we use the associated vector w of M as an eigenvector of the Laplacian to get
yet other characterization of the totally geodesic hypersurface of Sn+1.

Theorem 3. A compact and connected minimal hypersurface M of the unit sphere Sn+1 is totally
geodesic, if and only if, the associated vector field w of M satisfies ∆w = −w.

Proof. Suppose the associated vector field w of M satisfies ∆w = −w. Using Equations (1)
and (15), we get

∆w = −w− A2w,

which implies A2w = 0. Consequently, we get Q(w) = (n− 1)w, that is,

Ric(w, w) = (n− 1)‖w‖2. (25)

Additionally, using Equation (15), we have

|£wg|2 = 4
(

nρ2 + f 2‖A‖2
)

, (26)

‖∇w‖2 = nρ2 + f 2‖A‖2 (27)

and divw = −nρ, where £wg is the Lie derivative of g. Using integral formula (cf. [17])∫
M

(
Ric(w, w) +

1
2
|£wg|2 − ‖∇w‖2 − (divw)2

)
= 0

and Equations (25)–(27), we get∫
M

(
(n− 1)‖w‖2 + f 2‖A‖2 − n(n− 1)ρ2

)
= 0. (28)

Now, using Equation (14) and divw = −nρ, we have div(ρw) = ‖w‖2 − nρ2 and
inserting it in Equation (28), we conclude∫

M
f 2‖A‖2 = 0.

Thus, we have f 2‖A‖2 = 0. If f 6= 0, we find M is totally geodesic. Furthermore, for
f = 0, we see that Equations (14) and (15) imply

∇X1 gradρ = −ρX1, X1 ∈ X(M). (29)

We proceed to show that ρ can not be a constant. If ρ is a constant, then integration of
divw = −nρ implies ρ = 0 and this in turn by virtue of Equation (14) implies w = 0. Thus,
we get the constant vector field Z = 0, that is a contradiction to the fact Z is a unit vector.
Thus, ρ is a non-constant function satisfying Equation (29). This shows that M is isometric
to Sn (cf. [18,19]) and therefore, M is totally geodesic.
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4. A Characterization of Clifford Hypersurfaces

In this section, we use an upper bound on the integral of Ricci curvature in the
direction of the vector Aw to obtain a characterization of Clifford hypersurfaces.

Theorem 4. A compact and connected non-totally geodesic minimal hypersurface M of the unit
sphere Sn+1 is a Clifford hypersurface, if and only if,∫

M
Ric(Aw, Aw) ≤

∫
M

(
n f 2
(

2‖A‖2 − n
)
−
∥∥∥A f

∥∥∥2
)

.

Proof. Let M be a compact and connected minimal hypersurface M of Sn+1 with∫
M

Ric(Aw, Aw) ≤
∫

M

(
n f 2
(

2‖A‖2 − n
)
−
∥∥∥A f

∥∥∥2
)

. (30)

We have on using Equation (16)

(∆ f + n f )2 = (∆ f )2 + n2 f 2 − 2n f 2‖A‖2.

Using Equations (15) and (19) in the integral of the above equation, we conclude∫
M
(∆ f + n f )2 =

∫
M

(
Ric(Aw, Aw) +

∥∥∥A f

∥∥∥2
+ n2 f 2 − 2n f 2‖A‖2

)
,

that is, ∫
M
(∆ f + n f )2 =

∫
M

(
Ric(Aw, Aw)−

(
n f 2
(

2‖A‖2 − n
)
−
∥∥∥A f

∥∥∥2
))

.

The above equation together with inequality (30) gives ∆ f + n f = 0. Thus, using
Equation (16), we conclude

f
(
‖A‖2 − n

)
= 0. (31)

If f = 0, then by Equations (14) and (15), we get

∇X1 gradρ = −ρX1, X1 ∈ X(M)

and similar the proof of Theorem 3, we conclude M is totally geodesic (see Equation (29)).
Since M is non-totally geodesic, we get f 6= 0. Thus, on connected M, Equation (31) implies
‖A‖2 = n. Hence, M is a Clifford hypersurface (cf. [1]).

Conversely, if M is a Clifford hypersurface in Sn+1, then, ‖A‖2 = n and using
Equations (14), (15) and (20), we have

f =

√
β

α
ρ, Aw = −

√
β

α
w, (32)

that is,

Ric(Aw, Aw) =
β

α
Ric(w, w) =

β

α

(
(n− 1)‖w‖2 − ‖Aw‖2

)
. (33)

Using Equation (16), we have

ρ∆ρ = −nρ2, f ∆ f = − f 2‖A‖2 = −n f 2

and integrating above equations by parts while using Equations (14) and (15), we conclude∫
M
‖w‖2 = n

∫
M

ρ2,
∫

M
‖Aw‖2 = n

∫
M

f 2. (34)
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Integrating the Equation (33) and using Equations (32) and (34), we get∫
M

Ric(Aw, Aw) =
nβ

α

(
n− 1− β

α

) ∫
M

ρ2. (35)

Additionally, using Equations (22) and (32), we have

A f (X1) =

√
β

α
Aρ(X1) =

√
β

α
(−ρX1 + f AX1) =

√
β

α
ρ

(
−X1 +

√
β

α
AX1

)
,

that is, ∥∥∥A f

∥∥∥2
=

β

α
ρ2
(

n + n
β

α

)
=

nβ

α
ρ2
(

1 +
β

α

)
.

Thus, using Equation (32) and the above equation, we have

∫
M

(
n f 2
(

2‖A‖2 − n
)
−
∥∥∥A f

∥∥∥2
)
=
∫

M

(
n2β

α
ρ2 − nβ

α
ρ2
(

1 +
β

α

))
,

that is, ∫
M

(
n f 2
(

2‖A‖2 − n
)
−
∥∥∥A f

∥∥∥2
)
=

nβ

α

(
n− 1− β

α

) ∫
M

ρ2.

Combining the above equation with Equation (35), we get∫
M

Ric(Aw, Aw) =
∫

M

(
n f 2
(

2‖A‖2 − n
)
−
∥∥∥A f

∥∥∥2
)

.

Hence, the required condition holds.

Remark 1. We have seen that the Theorem 1 holds for 4-dimensional minimal hypersurface of S5,
where it is shown that for a compact minimal hypersurface of S5 to be totally geodesic, it is necessary
and sufficient that the support function ρ is non-trivial solution of the differential Equation (2). In
order that this result to hold for hypersurfaces of S5 for n > 2, in Theorem 2, we had to impose an
additional restriction on the scalar curvature τ to satisfy w(τ) = 0. Therefore, the question whether
the result in Theorem 1 can be proved to dimension n 6= 4 is open.
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