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Abstract: The parabolic-hyperbolic form of the constraints and superposed Kerr-Schild black holes
have already been used to provide a radically new initialization of binary black hole configurations.
The method generalizes straightforwardly to multiple black hole systems. This paper is to verify
that each of the global Arnowitt-Deser-Misner quantities of the constructed multiple black hole
initial data can always be prescribed, as desired, in advance of solving the constraints. These global
charges are shown to be uniquely determined by the physical parameters of the involved individual
Kerr-Schild black holes.
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1. Introduction

Binary black holes are considered to be the foremost vital sources for the emerging
field of gravitational-wave astrophysics. Multiple black hole systems, above obvious
curiosities, may also serve as natural gravitational waves sources. Investigation of the
dynamics of these systems starts with a careful initialization. This may be done by applying
the elliptic method [1,2] (see also [3,4]) or either of the evolutionary form of the constraints
introduced in [5].

In [6,7], the parabolic-hyperbolic formulation of Hamiltonian and momentum con-
straints, along with superposing individual Kerr-Schild black holes, was applied to con-
struct initial data for binary black hole configurations. The only technical restriction was
that each of the initial speeds is parallel to and each of the spin vectors is orthogonal to a
plane of some background Euclidean space, respectively. For this class, the existence and
uniqueness of (at least) C2 solutions to the parabolic-hyperbolic form of the constraints is
outlined in [6,7]. This new method has also been successfully applied to determine initial
data numerically for individual and binary black hole systems [8,9]. Notably, the very
same construction can also be used to initialize multiple black hole systems. There are
no restrictions on the masses, speeds, spins, and distances of the individual black holes;
thereby, this set contains many physically realistic initial data configurations.

This paper will focus on the Arnowitt-Deser-Misner (ADM) charges of multiple black
hole systems. Accordingly, this involves superposing individual Kerr-Schild black holes,
each located momentarily on a plane in some background Euclidean space with speeds
parallel to and spins orthogonal to the distinguished plane. By adopting constructive
elements of the proposal in [6,7], we shall choose the free data to the initial-boundary value
problem, derived from the parabolic-hyperbolic form of the constraints, using superposed
Kerr-Schild black holes. Clearly, if the individual Kerr-Schild black holes are widely
separated, the initial data, satisfying the constraints, will only slightly differ from the
superposed data induced on a t = const time-slice. Therefore, it is highly plausible that
the craved global solutions exist. Note, however, that the verification of the primary result
of the present paper refers only to the specific choice of the free data, and it does not
require detailed knowledge of solutions. Therefore, no attempt will be made to deal with
the global existence and uniqueness of solutions to the aforementioned initial-boundary
value problem. Instead, assuming that appropriate free data has been chosen, we will
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assume that the global existence of asymptotically flat solutions to the aforementioned
initial-boundary value problem to have an analogy to the arguments applied in [6,7].

Note that the metric (27) of superposed Kerr-Schild black holes—though not satisfying
Einstein’s equations—is asymptotically flat [6]. Therefore, it is plausible that solutions to
the specific initial-boundary value problem will also be asymptotically flat. The asymptotic
form of the metric (27), along with the geometric assumptions imposed in our construction,
guarantee that well-defined ADM mass, center of mass, linear and angular momenta can
always be associated with the corresponding multiple black hole system. The main point
in this paper is that all the ADM quantities of multiple black hole systems are determined
by the rest masses, positions, velocities, and spins of the involved individual black holes.

This result immediately raises the question as to whether any other formulation of the
constraints can provide an analogous determination of the ADM quantities. For instance,
the method proposed by Bowen and York [10], in principle, allows for the prescription of the
ADM linear and angular momenta by solving the momentum constraint explicitly [10,11].
However, to do so, they had to apply a restricted set of basic variables. In particular,
to guarantee that the Hamiltonian and momentum constraints decouple, the authors had to
assume the vanishing of the mean curvature, in addition to assuming the conformal flatness
of the Riemannian metric hij. One of the unfavorable consequences of these technical
assumptions is that they are known to be so strong that they exclude even the Kerr black
hole solution from the outset [12,13]. One should also mention here that, within the setup
proposed by Bowen and York [10], there is no way to get an analogous control on the ADM
mass or the center of mass.

In the context of the determinacy of the ADM quantities, one should also mention the
construction applied in [4], where, by combining the gluing techniques with Kerr-Schild
black holes, an interesting initialization of multiple black hole systems was proposed.
Indeed, as Kerr-Schild black holes were applied in [4] and our proposal also rests upon
using these types of black holes, one would expect that analogous determinacy of the
ADM quantities applies to both of these approaches. It is, however, not the case, as gluing
requires the use of the elliptic method that starts by a conformal rescaling of the basic
variables. In turn, gluing gets somewhat implicit, which does not allow—apart from the
extreme case with infinitely separated individual black holes—to have complete control
on the ADM quantities [4]. Yet another unfavorable consequence of using the conformal
method is that intermediate regions—where the gluing happens—have to be allocated to
each of the involved Kerr-Schild black holes. This, however, does not allow to set the initial
distances of these black holes to be arbitrary, and, as stated explicitly in [4], “they must be
separated by a distance above a certain threshold”.

It is important to emphasize that our proposal does not impose analogous restrictions
on the distances of individual black holes. Yet, it provides an unprecedented complete
control on the ADM parameters of multiple black hole systems. As this happens in advance
of solving the constraints, an unprecedented fine-tuning of the complete set of ADM
parameters of the to-be solutions is possible.

This paper is structured as follows. In Section 2, first a brief account on the parabolic-
hyperbolic form of the constraints is given. This is followed by recalling the notion of
asymptotic flatness, the definition of the ADM quantities and the superposition of Kerr-
Schild black holes in Sections 2.2 and 2.3. In Section 3, the choice of the freely specifiable
variables and the initial-boundary data, applied in determining multiple black hole initial
data, and the pertinent fall-off properties are discussed. Section 4 is to present our mane
result, containing a case by case verification of the statement that the ADM quantities of the
superposed Kerr-Schild black holes and the corresponding multiple black hole initial data
are pairwise equal to each other. The paper is closed, in Section 5, by our final remarks.
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2. Preliminaries

Initial data relevant for the vacuum Einstein’s equations is comprised of a Riemannian
metric hij and a symmetric tensor field Kij. Both of these fields are assumed to be given on a
three-dimensional manifold Σ. They are not arbitrary as they have to satisfy the constraints
which read as (see, e.g., [3])

(3)
R +

(
K j

j

)2
− KijKij = 0 (1)

DjK j
i − DiK j

j = 0 , (2)

where
(3)

R and Di denote the scalar curvature and the covariant derivative operator associ-
ated with hij, respectively.

2.1. The Parabolic-Hyperbolic Form of Constraints

The essential steps in deriving the parabolic-hyperbolic form of the constraints are as
follows: Assume, for simplicity, that there exists a smooth function ρ : Σ → R such that
the ρ = const surfaces (denoted also by Sρ) provide a foliation of Σ. We assume that the
Sρ surfaces are homologous to each other and the transversal one form Diρ to these level
surfaces does not vanish on Σ. The unite normal n̂i to the Sρ surfaces is given then as

n̂i =
[
he f (Deρ)(D f ρ)

]− 1
2 Diρ . (3)

Choosing then a vector field ρi on Σ such that ρi∂iρ = 1, and considering its parallel and
orthogonal parts we get

ρi = N̂ n̂i + N̂i , (4)

where N̂ and N̂i stand for the lapse and shift of ρi, respectively, and n̂i = hij n̂j.
Analogous decomposition of the metric hij and the symmetric tensor field Kij gives

hij = γ̂ij + n̂in̂j , and Kij = κ n̂in̂j +
[
n̂i kj + n̂j ki

]
+ Kij , (5)

where γ̂ij = γ̂e
iγ̂

f
jhe f is the induced metric on the ρ = const level surfaces, and

κ = n̂kn̂l Kkl , ki = γ̂k
i n̂l Kkl , Kij = γ̂k

iγ̂
l
j Kkl , (6)

where γ̂k
i denotes the projection operator

γ̂k
i = hk

i − n̂kn̂i . (7)

It is also rewarding to introduce the trace and trace-free part of Kij defined as

Kl
l = γ̂kl Kkl and

◦
Kij = Kij − 1

2 γ̂ij Kl
l . (8)

Using the new variables N̂, N̂i, γ̂ij, κ, ki,
◦
Kij, Kl

l the constraints can be seen to be
equivalent to the parabolic-hyperbolic system for N̂, ki and Kl

l [5]

?
K [ (∂ρN̂)− N̂l(D̂l N̂) ] = N̂2(D̂l D̂l N̂) +A N̂ + B N̂3 , (9)

Ln̂ki − 1
2 D̂i(Kl

l)− D̂iκ + D̂l ◦Kli + N̂
?
K ki + [ κ− 1

2 (K
l
l) ]

•

n̂i −
•

n̂l ◦Kli = 0 (10)

Ln̂(K
l
l)− D̂lkl − N̂

?
K [ κ− 1

2 (K
l
l) ] + N̂

◦
Kkl

?
Kkl + 2

•

n̂l kl = 0 . (11)
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In (9)–(11), D̂i denotes the covariant derivative operator associated with γ̂ij and

?
Kij =

1
2Lργ̂ij − D̂(i N̂j) , (12)

?
K = 1

2 γ̂ijLργ̂ij − D̂jN̂ j , (13)

A = (∂ρ
?
K)− N̂l(D̂l

?
K) + 1

2 [
?
K

2
+

?
Kkl

?
Kkl ] (14)

B = − 1
2
[
R̂ + 2 κ (Kl

l) +
1
2 (K

l
l)

2 − 2 klkl −
◦
Kkl

◦
Kkl ] (15)

•

n̂k = n̂l Dl n̂k = −D̂k(ln N̂) . (16)

The variables N̂i, γ̂ij, κ and
◦
Kij are unconstrained whence they are freely specifiable

throughout Σ. The well-posedness of the coupled system (9)–(11) is guaranteed if (9) is
uniformly parabolic. It was shown in [5] that this happens in those subregions of Σ where

?
K

is either strictly positive or negative. Note also that, as
?
K depends on the freely specifiable

fields γ̂ij and N̂i exclusively, the sign of
?
K (at least locally) is adjustable according to the

needs of specific problems to be solved [5,6].
Note that, in addition to the freely specifiable variables, on one of the ρ = const level

surfaces initial data has also to be chosen for the constrained variables [5]. Once this has
been done, i.e., smooth data has been chosen for N̂, ki and Kl

l , then a unique smooth
solution exists to (9)–(11) in the domain of dependence of that ρ = const level surface.
This, in general, can be seen to be global as the hyperbolic part of the system, see (10)
and (11), is linear in ki and Kl

l . It is also important that the fields hij and Kij that can be
reconstructed from such a solution, and from the freely specifiable fields, do satisfy the
Hamiltonian and momentum constraints (1) and (2).

2.2. Asymptotic Flattness and the ADM Quantities

Before turning to the specific class of solutions to the parabolic-hyperbolic system (9)–(11),
it is rewarding to have a glance at the generic notion of asymptotic flatness, along with the
conditions ensuring the existence of well-defined ADM charges.

Our model is based on the use of the superposed Kerr-Schild metric, whence, the sin-
gularities of the multiple black hole system will be arranged to be located in a finite ball B
in R3. Therefore it suffices to assume the existence of a single asymptotically flat end. (See
Section 3 below for further specifications.)

The initial data set (Σ, hij, Kij) is called strictly (Note that in Section 4—likewise in
many other analogous investigations (see, e.g., [14])—weaker fall-off conditions could also
be used. Nevertheless, hereafter, for convenience, and for definiteness, the above recalled
stronger fall-off conditions will be applied.) asymptotically Euclidean [4], to order `, if in
exterior to B i.e., in Σ \B, admissible asymptotically flat coordinates xi = (x, y, z) exist
such that ∣∣ ∂α

(
hij − δij

)
(~x)
∣∣ = O( |~x|−|α|−1 ),

∣∣ ∂βKij(~x)
∣∣ = O( |~x|−|β|−2 ), (17)

hold, where |~x| =
√

x2
1 + x2

2 + x2
3, and where ∂α, with multi index α = α1 + α2 + α3, stands

for the composition of partial derivative operators ∂ α1
x1 ∂ α2

x2 ∂ α3
x3 , and for the multi indices

α and β, for some value of `, the inequalities |α| ≤ ` + 1 and |β| ≤ ` hold. For the
arguments applied in this paper ` ≥ 1 will suffice. In most cases the operators ∂xi will also
be abbreviated as ∂i.

It is known that conditions in (17) can only guarantee the existence and finiteness of
the four-momentum, and to have, in addition, a well-defined center of mass and angular
momentum the so-called Regge-Teitelboim asymptotic parity conditions need to be used
which, in admissible coordinates, read as∣∣ ∂α
[

hij(~x)− hij(−~x)
] ∣∣ = O( |~x|−|α|−2 ),

∣∣ ∂β
[

Kij(~x)− Kij(−~x)
] ∣∣ = O( |~x|−|β|−3 ) . (18)



Mathematics 2021, 9, 3170 5 of 15

Assuming that both the asymptotic flatness and the Regge-Teitelboim conditions
hold, the ADM mass, center of mass, linear and angular momenta are given by the flux
integrals [4]

M ADM =
1

16π

∮
∞

[
∂ihij − ∂jhii

]
njdS (19)

M ADMdi =
1

16π

∮
∞

{
xi

[
∂khkj − ∂jhkk

]
−
[

hkj δk
i − hkk δij

]}
njdS (20)

P ADM
i =

1
8π

∮
∞

[
Kij − hkj Kl

l

]
njdS (21)

J ADM
i =

1
8π

∮
∞

[
Kkj − hkj Kl

l

]
εi

lkxl njdS , (22)

where the symbol
∮

∞ is meant to denote limits of integrals over spheres while their radii
tend to infinity, whereas ni and dS denote the outward pointing unit normal and the
volume element of the individual spheres of the sequences, respectively. Note that in (22)
εi

jkxj stands for the components of the three rotational Killing vector fields, defined with
respect to the applied admissible asymptotically Euclidean coordinates xi.

2.3. Superposed Kerr-Schild Black Holes

The Kerr solution [15] is known to take the Kerr-Schild form given as

gαβ = ηαβ + 2H`α`β , (23)

where

H =
r3M

r4 + a2z2 and `α =

(
1,

r x + a y
r2 + a2 ,

r y− a x
r2 + a2 ,

z
r

)
, (24)

and where the Boyer-Lindquist radial coordinate r is related to the spatial part of the inertial
coordinates xα = (t, x, y, z)—which are asymptotically flat admissible coordinates—via the
implicit relation

x2 + y2

r2 + a2 +
z2

r2 = 1 . (25)

It is well-known that generic displaced, boosted and spinning black holes can be
produced by performing suitable Poincaré transformations on a Kerr black hole. It is
also important that the Kerr-Schild metric is form-invariant under these transformations.
In particular, even if a Lorentz transformation x′α = Λα

β xβ is performed the metric g′αβ in
the new coordinates will retain the Kerr-Schild form g′αβ = ηαβ + 2H′`′α`′β, where

H′(x′α) = H
(
[Λα

β]
−1x′β

)
and `′β(x′ε) = Λα

β `α

(
[Λε

ϕ]
−1x′ϕ

)
. (26)

As boosts and spatial rotations are special Lorentz transformations, it is straightfor-
ward to construct models of moving black holes with preferably oriented speed and spin by
performing suitable combinations of boosts and rotations on a Kerr black hole that is in rest
and suitably oriented with respect to an auxiliary Minkowski background. Note also that
displacement of these boosted and spinning black holes may be represented by a straightfor-
ward change in the argument of H and `α whence all the displaced, boosted and spinning
individual black holes may be produced by applying the indicated transformations.

Now we are almost ready to combine the parabolic-hyperbolic form of the constraints
with superposed Kerr-Schild black holes. As indicated in the introduction solving the
constraints in their parabolic-hyperbolic form (9)–(11) requires specifications of the uncon-
strained variables N̂i, γ̂ij, κ and

◦
Kij everywhere on Σ, and, in addition, an initialization of

constrained variables N̂, ki and Kl
l on one of the ρ = const level surfaces.
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In virtue of the results in [6] it is rewarding to start with the auxiliary metric

gαβ = ηαβ +
N

∑
I=1

2 H[I]`α
[I]`β

[I] (27)

yielded by superposing the contributions of individual black holes represented by the
(H[I], `α

[I]), I = 1, . . . , N, pairs. This metric retains much of the algebraic simplicity of (23).
For instance, the vector fields `α [I] remain null with respect to the background Minkowski
metric, and they satisfy the geodesic equation `β [I]∂β `

α [I] = 0, the functions H[I] satisfy
the background wave equation ηαβ∂α∂βH[I] = 0 (see, e.g., [16]).

From now on, to distinguish the real physical quantities from the auxiliary ones
deduced from superimposed Kerr-Schild form (27), the latter will be labeled by the “pre
upper index”

(A)
. For instance,

(A)
hij will stand for the three-metric

(A)
hij = δij +

N

∑
I=1

2 H[I]`i
[I]`j

[I] (28)

induced by the superposed Kerr-Schild form (27) on t = const hypersurfaces, where t
is the time coordinate of the inertial system xα = (t, x, y, z). Clearly, such a t = const
hypersurface may be assumed to be a Kerr-Schild time slice for each of the individual black
holes, which implies that topologically it is simply the complement of the individual “ring”
singularities in R3 as it was indicated in Section 2.2.

Note that the metric (27) is not a solution to Einstein’s equations yet it is asymptotically
flat. This, in particular, means that the integrability of the scalar curvature of

(A)
hij (necessary

to have, for instance, well-defined ADM mass [17]) is guaranteed, and that conditions
in (17) and (18) hold for the metric in (27), and, in turn, the superposed Kerr-Schild black
holes can always be assigned with well-defined ADM charges. These quantities can
be determined either by evaluating the flux integrals given in (19)–(22) or by taking
into account the Poincaré transformations associated with displacements, boosts and
rotations performed on the individual black holes. In either way we get the remarkably
simple relations

M ADM =
N

∑
I=1

γ[I]M[I] , (29)

M ADM~d =
N

∑
I=1

γ[I]M[I]~d [I] (30)

~P ADM =
N

∑
I=1

γ[I]M[I]~v [I] , (31)

~J ADM =
N

∑
I=1

γ[I]
{

M[I]~d [I]×~v [I] + M[I]a[I]~s [I]
◦
}

, (32)

where ~v [I] and ~d [I] are the velocity and position vectors of the individual black holes with
respect to the background inertial frame, and ~s [I]

◦ denotes the unit vectors pointing to
directions of the individual spin vectors.

3. The Initial-Boundary Value Problem

In advance of determining the ADM quantities relevant for asymptotically flat multi-
ple black hole initial data configurations, one has to choose free data for the underlying
initial-boundary problem. As a preparation for the asymptotic case first, by a straightfor-
ward adaptation of the method applied in [6], considerations will be restricted to finite
cubical domains.
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Accordingly, the initial data surface Σ is chosen to be a cube, centered at the origin in
R3 (see Figure 1) with boundary comprised by six squares each with edges 2A.

x

y

z

(A, 0, 0)

(−A, 0, 0)

(0, A, 0)

(0,−A, 0)

(0, 0, A)

(0, 0,−A)

~s
[1]

~v
[1]

~d
[1]

~s
[2]

~v
[2] ~d

[2]

~s
[3]

~v
[3]

~d
[3]

Figure 1. The initial data surface Σ, with a triple black hole system, is chosen to be the cube
centered at the origin in R3 with edges 2A. The initial data, to the system (9)–(11), is supposed to be
specified on the horizontal squares, at z = ±A, bounding the cube from above and below, whereas
boundary values have to be given on the complementary part of the boundary comprised by four
vertical squares.

By choosing the value of A sufficiently large all the individual black holes will be
contained in this cubical domain with suitable margin. The parabolic-hyperbolic sys-
tem (9)–(11) has to be solved then as an initial-boundary value problem to which (local)
well-posedness is guaranteed (see, e.g., [18]) in those subregions of Σ where (9) is uni-
formly parabolic.

As in [6], the ring singularities of the individual black holes are assumed to be located
momentarily on the z = 0 plane in R3, and a foliation of Σ by z = const level surfaces will
be applied. By an argument, analogous to the one applied in [6], the principal coefficient

?
K

of the parabolic Equation (9) can be shown to vanish on the z = 0 plane dividing Σ into
two disjoint subsets. Accordingly, (9) is uniformly parabolic on the disjunct subregions of
Σ located above and below of the z = 0 surface, and one could also investigate the well-
posedness of the parabolic-hyperbolic system (9)–(11) in these subregions. Nevertheless,
as indicated in the introduction, instead of attempting to do so we shall simply assume
that the global existence and uniqueness of solutions, along with their proper matching,
is guaranteed. Note that the pertinent initial values are supposed to be specified on the
horizontal z = ±A squares, whereas the boundary values have to be given on the four
vertical sides of the cube (see Figure 1).

The Asymptotic Properties of the Initial-Boundary Data

The model of multiple black hole configurations, as introduced in the previous section,
makes use of finite cubical domains. Therefore, to investigate the asymptotic properties of
the corresponding initial-boundary data configurations, one has to consider sequences of
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solutions to the initial-boundary value problem such that the edges tend to infinity. The
individual members of such a sequence will differ slightly from global (up to spacelike
infinity) solutions to the constraints. Nevertheless, due to the asymptotic flatness of the
auxiliary metric (27), the deviations are expected to be smaller and smaller as the boundary
is pushed further and further towards spacelike infinity.

Next we fix the freely specifiable fields N̂i, γ̂ij, κ and
◦
Kij to coincide with the auxiliary

fields
(A)

N̂i,
(A)

γ̂ij,
(A)

κ and
(A) ◦

Kij, respectively. The proper fall off property of this part of
the data is guaranteed by the fact that (27) is asymptotically flat. As indicated in the
previous sections, the initialization of the constrained variables N̂, Kl

l and ki also happens
by utilizing the auxiliary metric (27).

In proceeding, let us sum up what we already have by hand. Taking into account
that the solution is assumed to be asymptotically flat and the Regge-Teitelboim parity
conditions also hold, the fields N̂, Kl

l and ki are expected to satisfy∣∣∂α
(

N̂ − 1
)
(~x)
∣∣ = O(|~x|−|α|−1) ,

∣∣∂βKl
l(~x)

∣∣ = O(|~x|−|β|−2) ,
∣∣∂βki(~x)

∣∣ = O(|~x|−|β|−2) , (33)

and the parity conditions ∣∣ ∂α
(

N̂(~x)− N̂(−~x)
) ∣∣ = O( |~x|−|α|−2 ) (34)∣∣ ∂β

(
Kl

l(~x)−Kl
l(−~x)

) ∣∣ = O( |~x|−|β|−3 ) (35)∣∣ ∂β
(

ki(~x)− ki(−~x)
) ∣∣ = O( |~x|−|β|−3 ) . (36)

Since all the ADM quantities are well-defined for the superposed Kerr-Schild con-
figurations, the auxiliary fields

(A)
N̂,

(A)
Kl

l and
(A)

ki do also satisfy conditions analogous
to (33)–(36).

Consider now the asymptotic expansions of the constrained fields N̂, Kl
l and ki and

those of the corresponding auxiliary fields
(A)

N̂,
(A)

Kl
l and

(A)
ki given in terms of various

powers of 1/|~x|n, with integer n > 0. Referring to what we have inferred concerning
sequences of solutions defined on finite cubical domains, it is plausible to assume that
as the boundaries of these domains are pushed further and further towards spacelike
infinity higher than the leading order terms of the asymptotic expansion play less and less
important role. Therefore, as the only sensible asymptotic behavior of the fields N̂, Kl

l and
ki associated with the pertinent asymptotically flat solution, the leading order terms in their
asymptotic expansions are assumed to be equal to those of

(A)
N̂,

(A)
Kl

l and
(A)

ki, respectively.
Obviously, all the higher order contributions may—and, in general, do indeed—differ
from each other. Nevertheless, as the fields N̂, Kl

l , ki and
(A)

N̂,
(A)

Kl
l ,

(A)
ki are assumed to

agree at leading order, respectively, their deviations (These deviations will be denoted by
∆ followed by the pertinent quantities in square brackets, as they are spelled out explicitly
in the first two terms of (37)–(39)) are expected to satisfy the following relations∣∣ ∂α∆[N̂](~x)

∣∣ = ∣∣ ∂α
(

N̂ −(A)
N̂
)
(~x)
∣∣ = O( |~x|−|α|−2 ) (37)∣∣ ∂β∆[Kl

l ](~x)
∣∣ = ∣∣ ∂β

(
Kl

l −
(A)

Kl
l
)
(~x)
∣∣ = O( |~x|−|β|−3 ) (38)∣∣ ∂β∆[ki](~x)

∣∣ = ∣∣ ∂β
(

ki −
(A)

ki
)
(~x)
∣∣ = O( |~x|−|β|−3 ) (39)

and ∣∣ ∂α
{

∆[N̂](~x)− ∆[N̂](−~x)
} ∣∣ = O( |~x|−|α|−3 ) (40)∣∣ ∂β

{
∆[Kl

l ](~x)− ∆[Kl
l ](−~x)

} ∣∣ = O( |~x|−|β|−4 ) (41)∣∣ ∂β
{

∆[ki](~x)− ∆[ki](−~x)
} ∣∣ = O( |~x|−|β|−4 ) . (42)
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4. The Determination of the ADM Quantities

Now we are in the position to compare the ADM quantities of the superposed Kerr-
Schild metric with those of the corresponding multiple black hole initial data. In particular,
we shall show that conditions (37)–(42), along with the choices we made for the other
auxiliary variables, guarantee that the two sets of ADM quantities are pairwise equal
to each other. In the following subsections a case by case verification of this claim will
be provided.

4.1. The ADM Mass

Consider first the ADM mass. Start by replacing the flux integral applied in (19) by a
slightly different flux integral

M ADM =
1

16π
�
∫

∞

[
∂ihij − ∂jhii

]
njdC , (43)

where the symbol �
∫

∞ denotes the limit of integrals over the boundary of a sequence of
co-centered cubes while the length of their edges tend to infinity, whereas ni and dC denote
the outward pointing unit normal vector and the volume element on the squares bounding
individual cubes in this sequence.

At the first glance it may not be obvious that the flux integrals over concentric spheres
can be replaced by flux integrals over boundaries of co-centered cubical regions. Note,
however, that to any individual member of these cubes there always exists a minimal
radius sphere that contains the cube, and a maximal radius sphere that is contained by the
cube. Clearly, either the minimal or maximal radius of spheres are applied to construct a
sequence, the flux integrals defined with respect to them tend to the ADM mass. Thereby,
the flux integrals evaluated on the boundaries of the cubes have to tend to the ADM mass as
well. Accordingly, the limits of the integrals in (19) and (44) have to be equal to each other.

Returning to the main line of the argument, note that our aim here is to show that
the difference ∆[M ADM] = M ADM − (A)

M ADM between the ADM mass of the physical
solution and that of the superposed Kerr-Schild black holes is zero. To see that this is
indeed the case, note first that by virtue of (43)

∆[M ADM] =
1

16π
�
∫

∞

[
∂i (hij −

(A)
hij)− ∂j (hii −

(A)
hii)

]
nj dC . (44)

To evaluate the integrands we need to determine first the involved derivatives. In doing so
note that the difference hij −

(A)
hij, in virtue of the relations

γ̂ij =
(A)

γ̂ij, n̂i = N̂ δiz and
(A)

n̂i =
(A)

N̂ δiz , (45)

reads as
hij −

(A)
hij = n̂i n̂j −

(A)
n̂i

(A)
n̂j = δizδjz (N̂2 −(A)

N̂2) = δizδjz ∆[N̂2] . (46)

(46) implies then that

∂k (hij −
(A)

hij) = δizδjz∂k (∆[N̂2]) , (47)

and also that

∂i (hij −
(A)

hij) = δjz∂z (∆[N̂2]) and ∂j (hii −
(A)

hii) = ∂j (∆[N̂2]) . (48)

By combining (43), (44) and (48) we get then that

∆[M ADM] =
1

16π
�
∫

∞

[
δjz∂z (∆[N̂2])− ∂j (∆[N̂2])

]
nj dC

= − 1
16π

�
∫

∞

[
∂x (∆[N̂2])~n x

± + ∂y (∆[N̂2])~n y
±

]
dC , (49)
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where~n x
± and~n y

± denote the outward pointing unit normal vectors to the squares in the
x = ±A and y = ±A plains, bounding the cubical region on Figure 1. Since~n x

− = −~n x
+ and

~n y
− = −~n y

+, the two terms given explicitly in the integrands stand indeed for four terms.
By applying then the replacements y → x υ and z → x ζ in the first term of (49)

evaluated on the squares in the x = ±A plains, and also the replacements x → y ξ and
z→ y ζ in the second term of (49) evaluated on the squares in the y = ±A plains we get

∆[M ADM] = − 1
16π

[
�
∫ 1,1

−1,−1
lim

x→∞

(
x2 ∂x (∆[N̂2]) nx

±

)
dυ dζ

+ �
∫ 1,1

−1,−1
lim

y→∞

(
y2 ∂y (∆[N̂2]) ny

±

)
dξ dζ

]
, (50)

where n x
± and n y

± are scalars taking the values n x
± = ±1 and n y

± = ±1 on the squares
in the x = ±A and y = ±A plains, respectively. Note that the replacements applied in
the above integral transformations are analogous to the ones used in case of sequences of
spheres, where the integrals formally are given over a unit sphere with angular coordinates
θ and φ ranging through their usual intervals. In both cases with the help of these integral
transformations the limits of integrals can be evaluated by inspecting the limits of the
yielded integrands.

Using then

∆[N̂2] = (∆[N̂])2 + 2
(A)

N̂ ∆[N̂] , (51)

along with (37), applied for ∆[N̂], and (34), applied for
(A)

N̂, respectively, we get that each
of the terms xi ∆[N̂], x2

i (∂xi ∆[N̂]) and xi (∂xi

(A)
N̂) appearing in the integrand of (50) is at

most of order O(|~x|−1). Here the relations xi = (xi/|~x|) |~x| =
◦xi |~x| and | ◦xi| ≤ 1 were also

used. This, in turn, implies that the limits exist and they all vanish which verifies that
∆[M ADM] = 0.

4.2. The Center of Mass

Rephrasing (Section 4.2), by using integrals over cubical domains, we get that the
center of mass can be given by the flux integral

M ADMdl =
1

16π
�
∫

∞

{
xl

[
∂khkj − ∂jhkk

]
−
[

hkj δk
l − hkk δl j

]}
njdC . (52)

Taking now into account the consequences of (46) we get

∆[ hkj ] = δkzδjz ∆[N̂2] and ∆[ hkk ] = ∆[N̂2] . (53)

A straightforward calculation, consisting of steps analogous to the ones applied in the
previous subsection, yields then

∆[M ADMdl ] =
1

16π
�
∫

∞

{
xl

[
∂k(hkj −

(A)
hkj)− ∂j(hkk −

(A)
hkk)

]
−
[
(hkj −

(A)
hkj) δk

l − (hkk −
(A)

hkk) δl j

]}
njdC

=
1

16π
�
∫

∞

{
xl

[
∂k(∆[hkj])− ∂j(∆[hkk])

]
−
[

∆[hkj] δk
l − ∆[hkk] δl j

]}
njdC

=
1

16π
�
∫

∞

{
−xl

[
∂x (∆[N̂2])~n x

± + ∂y (∆[N̂2])~n y
±

]
+
[

δlx~n x
± + δly~n

y
±

]
∆[N̂2]

}
dC

= − 1
16π

�
∫

∞

{[
xl ∂x(∆[N̂2])− δlx ∆[N̂2]

]
~n x
±

+
[

xl ∂y(∆[N̂2])− δly ∆[N̂2]
]
~n y
±

}
dC . (54)
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Accordingly, for the x-component of the deviation ∆[M ADMdl ]

∆[M ADMdx] = −
1

16π
�
∫

∞

{[
x ∂x(∆[N̂2])− ∆[N̂2]

]
~n x
± +

[
x ∂y(∆[N̂2])]

]
~n y
±

}
dC

= − 1
16π

[
�
∫ 1,1

−1,−1
lim

x→∞

{ [
x3 ∂x(∆[N̂2])− x2 ∆[N̂2]

]
nx
±

}
dυ dζ

+�
∫ 1,1

−1,−1
lim

y→∞

{ [
y3 ∂y(∆[N̂2])

]
ny
±

}
ξ dξ dζ

]
(55)

hold.
Taking into account (51), along with the relations nx

+ = −nx
− = 1 and ny

+ = −ny
− = 1,

in virtue of (34), (37) and the Regge-Teitelboim condition (40), it follows that either of the
terms x2∆[N̂2], x3(∂x∆[N̂2]), y3(∂y∆[N̂2]) and x2

i (∂xi

(A)
N̂) in the integrands, is at most of

order O(|~x|−1). This, in turn, implies, as above, that the pertinent limits exist and they
vanish as we intended to show.

In virtue of the relations,

∆[M ADMdy] = −
1

16π

[
�
∫ 1,1

−1,−1
lim

x→∞

{ [
x3 ∂x(∆[N̂2])

]
nx
±

}
υ dυ dζ

+�
∫ 1,1

−1,−1
lim

y→∞

{ [
y3 ∂y(∆[N̂2])− y2 ∆[N̂2]

]
ny
±

}
dξ dζ

]
(56)

and

∆[M ADMdz] = −
1

16π

[
�
∫ 1,1

−1,−1
lim

x→∞

{
x3 ∂x(∆[N̂2]) nx

±

}
ζ dυ dζ

+�
∫ 1,1

−1,−1
lim

y→∞

{
y3 ∂y(∆[N̂2]) ny

±

}
ζ dξ dζ

]
, (57)

arguments, analogous to the one applied above, can be used to show the vanishing of the
y- and z-components of the deviation ∆[M ADMdl ].

4.3. The Linear Momentum

Consider now the linear momentum determined by the flux integral

P ADM
i =

1
8π

�
∫

∞

[
Kij − hkj Kl

l

]
njdC . (58)

In verifying that the individual components of ∆[P ADM
i ] vanish, respectively, it is

rewarding to rephrase first the term Kij − hij Kl
l in (58) in terms of the new variables we

introduced. In doing so we get, in virtue of (5)–(8), that

Kij = κ n̂in̂j +
[
n̂i kj + n̂j ki

]
+
( ◦

Kij +
1
2 γ̂ij Kl

l

)
, (59)

and
Kl

l = κ + Kl
l . (60)

It is straightforward to see then that

Kij − hij Kl
l =

[
n̂i kj + n̂j ki

]
+
( ◦

Kij +
1
2 γ̂ij Kl

l

)
−
{

γ̂ij κ + (γ̂ij + n̂in̂j)Kl
l

}
, (61)

and, by applying (45), that

∆[Kij − hij Kl
l ] = δiz ∆[N̂ kj] + δjz ∆[N̂ ki]− 1

2 γ̂ij ∆[Kl
l ]− δizδjz ∆[N̂2 Kl

l ] . (62)
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It follows then that for the individual components of ∆[P ADM
i ] the relations

∆[P ADM
x ] =

1
8π

�
∫

∞

{
− 1

2 γ̂xx ∆[Kl
l ]~nx
± − 1

2 γ̂xy ∆[Kl
l ]~n

y
± + ∆[N̂ kx]~nz

±

}
dC (63)

∆[P ADM
y ] =

1
8π

�
∫

∞

{
− 1

2 γ̂yx ∆[Kl
l ]~nx
± − 1

2 γ̂yy ∆[Kl
l ]~n

y
± + ∆[N̂ ky]~nz

±

}
dC (64)

∆[P ADM
z ] =

1
8π

�
∫

∞

{
∆[N̂ kx]~nx

± + ∆[N̂ ky]~n
y
± − ∆[N̂2 Kl

l ]~nz
±

}
dC (65)

hold, where ki n̂i = 0 and γ̂ij n̂i = 0 had also been used.
In verifying that each of the components of ∆[~P ADM] vanish—besides the replace-

ments y → x υ z → x ζ, and x → y ξ z → y ζ on the x = ±A and y = ±A surfaces,
respectively—the transformations x → z ξ and y → z υ have also to be performed on
the z = ±A surfaces since the integrands there, as opposed to the previous two cases,
are not identically zero. By applying the corresponding integral transformations we get
from (63) that

∆[P ADM
x ] = − 1

16π

[
�
∫ 1,1

−1,−1
lim

x→∞

(
γ̂xx nx

±

{
x2∆[Kl

l ]
} )

dυ dζ (66)

+ �
∫ 1,1

−1,−1
lim

y→∞

(
γ̂xy ny

±

{
y2∆[Kl

l ]
} )

dξ dζ

− 2 �
∫ 1,1

−1,−1
lim

z→∞

(
nz
±

[{
z2 ∆[N̂]

(A)
kx

}
+

(A)
N̂
{

z2 ∆[kx]
} ] )

dξ dυ

]
.

The fall off conditions in (37) and (39), along with the one satisfied, in virtue of (33),
by

(A)
kx, imply that all the terms in braces are at most of order O(|~x|−1) which, in turn,

verifies that ∆[P ADM
x ] vanishes.

As the terms in (64) are similar to those in (63), a completely analogous argument
applies to the y-component of ∆[P ADM

i ].
To show that z-component, ∆[P ADM

z ], does also vanish note first that (65) can be
given as

∆[P ADM
z ] =

1
8π

[
�
∫ 1,1

−1,−1
lim

x→∞

(
nx
±

[{
x2 ∆[N̂]

(A)
kx

}
+

(A)
N̂
{

x2 ∆[kx]
} ] )

dυ dζ

+ �
∫ 1,1

−1,−1
lim

y→∞

(
ny
±

[{
y2 ∆[N̂]

(A)
ky

}
+

(A)
N̂
{

y2 ∆[ky]
} ] )

dξ dζ

− �
∫ 1,1

−1,−1
lim

z→∞

(
nz
±

[ {
z2 ∆[N̂2]

(A)
Kl

l

}
+

(A)
N̂2
{

z2 ∆[Kl
l ]
} ] )

dξ dυ

]
. (67)

The fall off conditions listed in relations (37)–(39), along with those satisfied, in virtue
of (33), by

(A)
kx,

(A)
ky and

(A)
Kl

l , imply again that all the terms in braces are at most of order
O(|~x|−1) which verifies that ∆[P ADM

z ] vanishes as we desired to show.
Note that, as expected, in verifying that the physical ADM mass and linear momentum

are equal to the ADM mass and linear momentum of the superposed Kerr-Schild black
holes, no use of the Regge-Teitelboim conditions had to be made.

4.4. The Angular Momentum

Consider, finally, the angular momentum determined by the flux integral

J ADM
i =

1
8π

�
∫

∞
[Kkl − hkl Km

m ] εi
jkxj nldC . (68)

Thus we have
∆[J ADM

i ] = J ADM
i −(A)

J ADM
i =

1
8π

�
∫

∞
∆[ J̃il ] nl dC , (69)
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where ∆[ J̃il ] = ∆[Kkl − hkl Km
m ] εi

jkxj.
By a direct calculation, consisting of steps analogous to the ones applied in the previous

subsection in evaluating ∆[Kij − hij Kl
l ] in (62), the relations

∆[ J̃xl ] = y
[

∆[N̂ kl ]− δlz ∆[N̂2 Km
m]
]
− z
[

δlz ∆[N̂ ky]− 1
2 γ̂ly ∆[Km

m]
]

(70)

∆[ J̃yl ] = z
[

δlz ∆[N̂ kx]− 1
2 γ̂lx ∆[Km

m]
]
− x
[

∆[N̂ kl ]− δlz ∆[N̂2 Km
m]
]

(71)

∆[ J̃zl ] = x
[

δlz ∆[N̂ ky]− 1
2 γ̂ly ∆[Km

m]
]
− y
[

δlz ∆[N̂ kx]− 1
2 γ̂lx ∆[Km

m]
]

(72)

can be seen to hold.
It is then straightforward to verify that

∆[J ADM
x ] =

1
8π

�
∫

∞

{ [
y ∆[N̂ kl ] +

1
2 z γ̂xy ∆[Km

m]
]
~n x
±

+
[

y ∆[N̂ ky] +
1
2 z γ̂yy ∆[Km

m]
]
~n y
±

−
[

y ∆[N̂2 Km
m] + z ∆[N̂ ky]

]
~n z
±

}
dC (73)

from which—by applying the integral transformations already used several times in the
previous subsections, on the individual xi = ±A plains—we get

∆[J ADM
x ] =

1
8π

[
�
∫ 1,1

−1,−1
lim

x→∞

{
x3
[

υ ∆[N̂ kl ] +
1
2 ζ γ̂xy ∆[Km

m]
]
n x
±

}
dυ dζ

+ �
∫ 1,1

−1,−1
lim

y→∞

{
y3
[

∆[N̂ ky] +
1
2 ζ γ̂yy ∆[Km

m]
]
n y
±

}
dξ dζ

− �
∫ 1,1

−1,−1
lim

z→∞

{
z3
[

υ ∆[N̂2 Km
m] + ∆[N̂ ky]

]
n z
±

}
dξ dυ

]
. (74)

Taking now into account (51), along with the relations nx
+ = −nx

− = 1 and ny
+ = −ny

− = 1,
and also the boundedness of the components of γ̂ij and that of the coordinates ξ, υ, ζ,
in virtue of (34)–(39) and the Regge-Teitelboim condition (40)–(42), it follows that either
of the terms involved by the integrands, is at most of order O(|~x|−1) which implies the
vanishing of ∆[J ADM

x ].
In virtue of the use of analogous terms in ∆[ J̃xl ] and ∆[ J̃yl ] a completely analogous

argument can be seen to apply to the y-component of ∆[J ADM
i ].

Finally, ∆[J ADM
z ] can be evaluated as

∆[J ADM
z ] = − 1

16π

[
�
∫ 1,1

−1,−1
lim

x→∞

{
x3[ γ̂xy − υ γ̂xx

]
∆[Km

m] n x
±

}
dυ dζ

+ �
∫ 1,1

−1,−1
lim

y→∞

{
y3[ ξ γ̂yy − γ̂yx

]
∆[Km

m] n y
±

}
dξ dζ

−2 �
∫ 1,1

−1,−1
lim

z→∞

{
z3
[

ξ ∆[N̂ ky]− υ ∆[N̂ kx]
]
n z
±

}
dξ dυ

]
. (75)

Then, by making use of the fall off and Regge-Teitelboim conditions, (37)–(42), and by an
argument that has already been applied several times above, the vanishing of ∆[J ADM

z ] can
be inferred.

Putting all the results of the previous subsections together we get the desired verifica-
tion of Theorem 1.
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5. Conclusions

Our primary aim was to answer the question raised in the title concerning the free-
dom we have in specifying the physical parameters of multiple black hole configurations.
In doing so, a combination of the parabolic-hyperbolic formulation of constraints and
superposed Kerr-Schild black holes were used. We treated only the case of multiple black
hole systems where the ring singularities and the speeds of the individual Kerr-Schild
black holes were confined to the z = 0 plane. This, also meant that the spins were required
to be aligned or anti-aligned to the z-axis. As there were no further restrictions on the input
parameters, a significant number of multiple black hole configurations with immediate
physical interest are covered by the investigated set.

The main result of this paper can be formulated as follows:

Theorem 1. Suppose that an asymptotically flat solution to the initial-boundary value problem—
deduced from the parabolic-hyperbolic form of the constrains, (9)–(11)—exists such that the free
data is chosen, as described in Section 3, by applying the superposed Kerr-Schild metric (27). Then,
the ADM mass, center of mass, linear and angular momenta, relevant for the initialization of
the corresponding multiple black hole system, can be given, as in Sections 4.1–4.4, in terms of
the rest masses, positions, velocities, and spins of the involved individual Kerr-Schild black holes.
In addition, all of these parameters can be prescribed in advance of solving the constraints.

Several remarkable features characterize the applied initial data construction. First,
as we do not use conformal rescalings, our method retains the physically distinguished
nature of hij and Kij. Second, the input parameters are the rest masses, the sizes, and ori-
entations of the displacements, velocities, and spins of the individual black holes. Note
that these are essentially the same as the input parameters of the post-Newtonian (PN)
formalism. This provides significant interrelations between the PN and our fully rela-
tivistic setups. In particular, physically adequate choices of the orbital parameters could
be made using the insights earned within the PN. Notably, as shown in this paper, each
of the global ADM charges can also be given in terms of the input parameters, which is
unprecedented in other methods to solve the constraints. More strikingly, the ADM mass,
center of mass, linear and angular momenta of the binary system can be fixed in advance
of solving the constraints.

Despite the advantages discussed above, it is important to keep in mind that there is
room for further investigations. There is an obvious interest to generalize the applied initial
data construction to the case where the speed and spin vectors of involved individual
Kerr-Schild black holes are arbitrarily pointing. Once this is done, there will also be a need
to generalize the results covered by this paper.

Another physically important generalization could be to replace asymptotic flatness
with more realistic geometric assumptions. For instance, black holes could be placed in
the environment of the expanding universe modeled by the standard Friedman-Lemaitre-
Robertson-Walker solutions. Similarly, investigations of black hole systems in the McVittie
background, studied, e.g., in [19,20], could also be of interest. Note that such a replace-
ment will require a more substantial generalization of the construction as even the freely
specifiable variables have to be altered significantly.

Both of the indicated problems—which certainly deserve further attention—are left
open for future investigations.
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