An Econometric Approach on Performance, Assets, and Liabilities in a Sample of Banks from Europe, Israel, United States of America, and Canada
Abstract
:1. Introduction
2. Literature Review
3. Materials and Method
- Deposits at credit institutions ratio (DCIR), computed as a ratio of deposits at credit institutions (DCI) to total bank assets (TA):
- Client loans ratio (CLR), computed as a ratio of client loans (CL) to total assets (TA):
- Debt securities ratio (DSR), computed as a ratio of debt securities (DS) to current assets (CA):
- Loans from credit institutions ratio (LCIR), determined as a ratio of loans from credit institutions (LCI) to the total of liabilities and equity (TLE):
- Client deposits ratio (CDR), determined as a ratio of client deposits (CD) to the total of liabilities and equity (TLE):
- Marketable debt securities ratio (MDSR), determined as a ratio of debt securities (MDS) to the total of liabilities and equity (TLE):
- Net income interest ratio (INIR), computed as a ratio of income interest (II) to total revenue (TR):
- Net income fees ratio (IFER), computed as a ratio of income fees (IFE) to total revenue (TR):
- Interest expenses ratio (INER), computed as a ratio of interest expenses (INE) to total expenses (TE):
- Fees expenses ratio (FEER), computed as a ratio of fees expenses (FEE) to total expenses (TE):
- denotes the intercept;
- denotes the coefficient of the independent variables (;
- denotes the independent variables;
- j denotes the banks included in the sample;
- t denotes the analyzed time span (i.e., 2006–2020);
- denotes the time-invariant bank specific fixed effects;
- denotes the fixed effects controlling for the global financial crisis;
- denotes the error term.
4. Results
4.1. Descriptive Statistics
4.2. Correlation Analysis
- r indicates the Pearson correlation coefficient;
- indicates the values of the x variable;
- indicates the mean of the values for the x variable;
- indicates the values of the y variable;
- indicates the mean of the values for the y variable.
4.3. Econometric Modeling
4.3.1. Testing the First Research Hypothesis
4.3.2. Testing the Second Research Hypothesis
5. Discussion, Conclusions, and Policy Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CDR | Client deposits ratio |
CLR | Credit loans ratio |
DCIR | Deposits at credit institutions ratio |
DSR | Debt securities ratio |
FEER | Fees expenses ratio |
IFER | Net income fees ratio |
INIR | Net income interest ratio |
INER | Interest expenses ratio |
LCIR | Loans from credit institutions ratio |
MDSR | Marketable debt securities ratio |
VIF | Variance inflation factor |
Appendix A
References
- Claessens, S.; van Horen, N. Being a foreigner among domestic banks: Asset or liability? J. Bank. Financ. 2012, 36, 1276–1290. [Google Scholar] [CrossRef] [Green Version]
- Gongol, T.; Vodová, P.K. Liquidity risk management of banks belonging to Erste Group and Societe Generale Group. Acta Acad. Karviniensia 2015, 15, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Hałaj, G. Dynamic balance sheet model with liquidity risk. Int. J. Theor. Appl. Financ. 2016, 19, 1650052. [Google Scholar] [CrossRef]
- Korol, M. Dynamics of main indicators of the Canadian banking system. Balt. J. Econ. Stud. 2020, 6, 136–142. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Ahmed, S.; Chevapatrakul, T.; Onali, E. Do stress tests affect bank liquidity creation? J. Corp. Financ. 2020, 64, 101622. [Google Scholar] [CrossRef]
- Lalić, S.; Mirović, I. Strategic approach to managing the balance sheet and income statement. Bus. Consult. 2011, 3, 65–72. [Google Scholar]
- Balanagagurunathan, K.; Selvaraj, M.; Sathyakala, S. Impact of asset liability management for the growth of selected private sector banks in India. Int. J. Econ. Res. 2016, 13, 347–360. [Google Scholar]
- Alhassan, A.L.; Kyereboah-Coleman, A.; Andoh, C. Asset quality in a crisis period: An empirical examination of Ghanaian banks. Rev. Dev. Financ. 2014, 4, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Bordo, M.D.; Redish, A.; Rockoff, H. Why didn’t Canada have a banking crisis in 2008 (or in 1930, or in 1907, or…)? Econ. Hist. Rev. 2014, 68, 218–243. [Google Scholar] [CrossRef]
- Erfani, G.R.; Vasigh, B. The impact of the global financial crisis on profitability of the banking industry: A comparative analysis. Economies 2018, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Fahlenbrach, R.; Prilmeier, R.; Stulz, R.M. This time is the same: Using bank performance in 1998 to explain bank performance during the recent financial crisis. J. Financ. 2012, 67, 2139–2185. [Google Scholar] [CrossRef]
- Ötker-Robe, I.; Podpiera, A.M. The Social Impact of Financial Crises: Evidence from the Global Financial Crisis. World Bank Policy Res. Work. Pap. 2013. [Google Scholar] [CrossRef]
- Ramskogler, P. Tracing the origins of the financial crisis. OECD J. Financ. Mark. Trends 2015, 2014, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Reavis, C. The global financial crisis of 2008: The role of greed, fear, and oligarchs. MIT Sloan Manag. Rev. 2012, 09-093. Available online: https://mitsloan.mit.edu/sites/default/files/2020-03/The%20Financial%20Crisis%20of%202008.IC_.pdf (accessed on 12 November 2021).
- Schoen, E.J. The 2007–2009 financial crisis: An erosion of ethics: A case study. J. Bus. Ethic 2017, 146, 805–830. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, A. Bank performance during the financial crisis 2007–2010. Int. J. Bus. Econ. 2013, 12, 27–44. [Google Scholar]
- Handorf, W.C. Regulatory ratios, CDS spreads, and credit ratings in a favorable economic environment. J. Bank. Regul. 2016, 18, 268–285. [Google Scholar] [CrossRef]
- Ippolito, F.; Peydró, J.-L.; Polo, A.; Sette, E. Double bank runs and liquidity risk management. J. Financ. Econ. 2016, 122, 135–154. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.N.; Hasan, I.; Zhou, M. The effects of focus versus diversification on bank performance: Evidence from Chinese banks. J. Bank. Financ. 2010, 34, 1417–1435. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Zhang, Y. Bank ownership reform and bank performance in China. J. Bank. Financ. 2009, 33, 20–29. [Google Scholar] [CrossRef]
- Shabani, H.; Morina, F.; Misiri, V. The effect of capital adequacy on returns of assets of commercial banks in Kosovo. Eur. J. Sustain. Dev. 2019, 8, 201. [Google Scholar] [CrossRef]
- Wang, C.-N.; Luu, Q.-C.; Nguyen, T.-K.-L.; Day, J.-D. Assessing bank performance using dynamic SBM model. Mathematics 2019, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Eatman, J.L.; Sealey, C.W. A spectral analysis of aggregate commercial bank liability management and its relationship to short-run earning asset behavior. J. Financ. Quant. Anal. 1977, 12, 767. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Kuo, T.-H. A financial assets and liabilities management support system. Contemp. Manag. Res. 2010, 6, 315–339. [Google Scholar] [CrossRef] [Green Version]
- Cenktan, O.; Begumhan, O. The strategic implications of asset and liability allocation in the Turkish banking industry. Emerg. Mark. Financ. Trade 2011, 47, 101–112. [Google Scholar] [CrossRef]
- Berger, A.N.; Bouwman, C.H.S. How does capital affect bank performance during financial crises? J. Financ. Econ. 2013, 109, 146–176. [Google Scholar] [CrossRef]
- Boateng, A.; Huang, W.; Kufuor, N.K. Commercial bank ownership and performance in China. Appl. Econ. 2015, 47, 5320–5336. [Google Scholar] [CrossRef]
- Zhang, K. Effect of Asset-Liability Structure on Bank Performance. In Proceedings of the 2017 7th International Conference on Education, Management, Computer and Society (EMCS 2017); Atlantis Press: Amsterdam, The Netherlands, 2017; Volume 61, pp. 21–25. [Google Scholar]
- Kadioglu, E.; Telceken, N.; Ocal, N. Effect of the asset quality on the bank profitability. Int. J. Econ. Financ. 2017, 9, 60. [Google Scholar] [CrossRef]
- Dinc, Y. The effect of retail loans on bank profitability: A comparative empirical analysis. Turk. J. Islam. Econ. 2017, 5, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Zsohar, P. Short introduction to the generalized method of moments. Hung. Stat. Rev. 2012, 16, 150–170. [Google Scholar]
- Wooldridge, J.M. Applications of generalized method of moments estimation. J. Econ. Perspect. 2001, 15, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E.; West, K.D. Generalized method of moments and macroeconomics. J. Bus. Econ. Stat. 2002, 20, 460–469. [Google Scholar] [CrossRef]
- Baltagi, B. Econometric Analysis of Panel Data, 4th ed.; Wiley: Chichester, UK, 2008. [Google Scholar]
- Hausman, J.A.; Taylor, W.E. Panel data and unobservable individual effects. Econometrica 1981, 49, 1377. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.L. Large sample properties of generalized method of moments estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Ullah, S.; Akhtar, P.; Zaefarian, G. Dealing with endogeneity bias: The generalized method of moments (GMM) for panel data. Ind. Mark. Manag. 2018, 71, 69–78. [Google Scholar] [CrossRef]
- Favara, G. An Empirical Reassessment of the Relationship between Finance and Growth; Working Paper No. 396; National Centre for Competence in Research Financial Valuation and Risk Management: Zurich, Switzerland, 2007. [Google Scholar]
- Das, D.K. Determinants of current account imbalance in the global economy: A dynamic panel analysis. J. Econ. Struct. 2016, 5, 281. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277. [Google Scholar] [CrossRef] [Green Version]
- Batrancea, L. An econometric approach regarding the impact of fiscal pressure on equilibrium: Evidence from electricity, gas and oil companies listed on the New York Stock Exchange. Mathematics 2021, 9, 630. [Google Scholar] [CrossRef]
- Batrancea, I.; Batrancea, L.; Nichita, A.; Gaban, L.; Masca, E.; Morar, I.-D.; Fatacean, G.; Moscviciov, A. An econometric approach on production, costs and profit in Romanian coal mining enterprises. Econ. Res.-Ekon. Istraživanja 2019, 32, 1019–1036. [Google Scholar] [CrossRef] [Green Version]
- Batrancea, L.; Nichita, A. Which is the best government? Colligating tax compliance and citizens’ insights regarding authorities’ actions. Transylv. Rev. Adm. Sci. 2015, 44E, 5–22. [Google Scholar]
- Nichita, A.; Batrancea, L.; Pop, C.M.; Batrancea, I.; Morar, I.D.; Masca, E.; Roux-Cesar, A.M.; Forte, D.; Formigoni, H.; da Silva, A.A. We learn not for school but for life: Empirical evidence of the impact of tax literacy on tax compliance. East. Eur. Econ. 2019, 57, 397–429. [Google Scholar] [CrossRef]
DCIR | CLR | DSR | LCIR | CDR | MDSR | INIR | INER | IFER | FEER | |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.0544 | 0.4809 | 0.2457 | 0.1602 | 0.5318 | 0.0388 | 0.3907 | 0.3054 | 0.1323 | 0.0703 |
Median | 0.0269 | 0.5038 | 0.2354 | 0.1198 | 0.5796 | 0.0165 | 0.4161 | 0.2972 | 0.1350 | 0.0594 |
Maximum | 0.7438 | 1.4489 | 0.7486 | 0.7663 | 1.4058 | 0.2470 | 0.8252 | 2.4739 | 0.5387 | 0.6302 |
Minimum | −0.0003 | 0.0000 | 0.0000 | −0.0286 | 0.0000 | 0.0000 | −4.8287 | −4.3672 | −6.9224 | −0.7744 |
Std. dev. | 0.0898 | 0.2156 | 0.1326 | 0.1257 | 0.2111 | 0.0488 | 0.2455 | 0.3127 | 0.2839 | 0.0766 |
Skewness | 3.8754 | −0.1990 | 0.5012 | 1.4787 | −0.5267 | 1.4557 | −14.4132 | −3.4981 | −22.7385 | −0.0187 |
Kurtosis | 21.2987 | 3.9748 | 3.5525 | 6.0046 | 3.6545 | 4.7352 | 304.0638 | 82.7383 | 566.4909 | 34.7185 |
Jarque-Bera test | 11,107 *** | 31.1799 *** | 36.8493 *** | 499.9039 *** | 43.2593 *** | 323.0676 ** | 2,572,605 *** | 180,201 *** | 8,988,474 *** | 28,295.55 *** |
Observations | 675 | 675 | 675 | 675 | 675 | 675 | 675 | 675 | 675 | 675 |
DCIR | CLR | DSR | LCIR | CDR | MDSR | INIR | INER | IFER | FEER | |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.0559 | 0.4657 | 0.2499 | 0.2170 | 0.4135 | 0.0253 | 0.4208 | 0.4008 | 0.1105 | 0.0588 |
Median | 0.0352 | 0.5035 | 0.2364 | 0.1991 | 0.3957 | 0.0044 | 0.4456 | 0.3672 | 0.1324 | 0.0522 |
Maximum | 0.7438 | 0.8453 | 0.7486 | 0.7663 | 0.8195 | 0.2470 | 0.8081 | 2.4739 | 0.2727 | 0.6081 |
Minimum | −0.0003 | 0.0000 | 0.0000 | −0.0286 | 0.0000 | 0.0000 | −4.8287 | −4.3672 | −6.9224 | −0.2371 |
Std. dev. | 0.0730 | 0.2046 | 0.1438 | 0.1418 | 0.1931 | 0.0395 | 0.3133 | 0.3717 | 0.3835 | 0.0550 |
Skewness | 5.0770 | −0.7615 | 0.5996 | 1.0024 | −0.1854 | 2.1999 | −13.7656 | −4.7914 | −17.9518 | 2.5267 |
Kurtosis | 43.2304 | 2.9271 | 3.3476 | 4.3475 | 2.6904 | 8.9763 | 230.0563 | 85.3741 | 329.7312 | 33.5750 |
Jarque-Bera test | 24,747 *** | 33.41 *** | 22.40 *** | 83.88 ** | 3.35 | 791.70 *** | 751,992 *** | 98,861 *** | 1,553,109 *** | 13,805 *** |
Observations | 345 | 345 | 345 | 345 | 345 | 345 | 345 | 345 | 345 | 345 |
DCIR | CLR | DSR | LCIR | CDR | MDSR | INIR | INER | IFER | FEER | |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.0528 | 0.4969 | 0.2413 | 0.1008 | 0.6555 | 0.0529 | 0.3593 | 0.2058 | 0.1550 | 0.0822 |
Median | 0.0130 | 0.5065 | 0.2352 | 0.0936 | 0.6764 | 0.0349 | 0.3851 | 0.1524 | 0.1410 | 0.0666 |
Maximum | 0.5336 | 1.4489 | 0.6127 | 0.3956 | 1.4058 | 0.2302 | 0.8252 | 1.2850 | 0.5387 | 0.6302 |
Minimum | 0.0000 | 0.0000 | 0.0000 | −0.0171 | 0.0000 | 0.0000 | 0.0000 | −0.6644 | 0.0000 | −0.7744 |
Std. dev. | 0.1046 | 0.2257 | 0.1199 | 0.0665 | 0.1493 | 0.0535 | 0.1375 | 0.1906 | 0.1017 | 0.0926 |
Skewness | 3.2447 | 0.1992 | 0.2614 | 0.8401 | −1.0047 | 0.9811 | −0.8347 | 1.1007 | 1.2056 | −0.8271 |
Kurtosis | 13.0945 | 4.4492 | 3.5383 | 4.5270 | 12.4770 | 3.2044 | 4.1291 | 7.3108 | 4.6280 | 29.5478 |
Jarque-Bera test | 1980 *** | 31.05 *** | 7.74 ** | 70.87 *** | 1,290 *** | 53.51 ** | 55.85 ** | 322.15 ** | 116.38 ** | 9728.46 *** |
Observations | 330 | 330 | 330 | 330 | 330 | 330 | 330 | 330 | 330 | 330 |
DCIR | CLR | DSR | LCIR | CDR | MDSR | INIR | INER | IFER | FEER | |
---|---|---|---|---|---|---|---|---|---|---|
DCIR | 1 | |||||||||
CLR | −0.198 | 1 | ||||||||
DSR | 0.121 * | −0.416 ** | 1 | |||||||
LCIR | 0.002 | 0.163 * | 0.027 | 1 | ||||||
CDR | 0.006 | 0.432 ** | −0.128 * | −0.380 ** | 1 | |||||
MDSR | 0.196 * | −0.107 * | 0.044 | −0.215 ** | −0.001 | 1 | ||||
INIR | 0.017 | 0.190 * | −0.065 | 0.169 * | −0.017 | −0.097 | 1 | |||
INER | 0.105 * | 0.008 | 0.007 | 0.274 ** | −0.277 ** | 0.037 | 0.063 | 1 | ||
IFER | 0.023 | −0.108 | 0.086 | −0.068 | 0.131 * | 0.015 | 0.696 *** | −0.218 ** | 1 | |
FEER | −0.065 | 0.059 | 0.023 | −0.019 | 0.142 * | −0.095 | −0.094 | −0.197 * | 0.052 | 1 |
DCIR | CLR | DSR | LCIR | CDR | MDSR | INIR | INER | IFER | FEER | |
---|---|---|---|---|---|---|---|---|---|---|
DCIR | 1 | |||||||||
CLR | −0.260 ** | 1 | ||||||||
DSR | 0.071 | −0.301 | 1 | |||||||
LCIR | 0.167 * | 0.220 ** | 0.044 | 1 | ||||||
CDR | 0.052 | 0.492 ** | −0.223 | −0.226 ** | 1 | |||||
MDSR | 0.036 | −0.055 | −0.044 | −0.088 | −0.175 * | 1 | ||||
INIR | 0.010 | 0.058 | 0.054 | 0.120 * | 0.094 | −0.132 * | 1 | |||
INER | 0.058 | −0.007 | 0.072 | 0.185 * | −0.121 * | 0.015 | −0.053 | 1 | ||
IFER | 0.023 | −0.023 | 0.020 | −0.027 | 0.104 | −0.027 | 0.884 *** | −0.213 | 1 | |
FEER | 0.068 | −0.017 | 0.082 | 0.001 | −0.021 | 0.059 | −0.057 | −0.538 *** | −0.010 | 1 |
DCIR | CLR | DSR | LCIR | CDR | MDSR | INIR | INER | IFER | FEER | |
---|---|---|---|---|---|---|---|---|---|---|
DCIR | 1 | |||||||||
CLR | −0.159 * | 1 | ||||||||
DSR | 0.173 * | −0.553 *** | 1 | |||||||
LCIR | −0.279 ** | 0.282 ** | −0.066 | 1 | ||||||
CDR | −0.010 | 0.476 ** | 0.013 | 0.021 | 1 | |||||
MDSR | 0.303 ** | −0.188 * | 0.152 * | −0.155 * | −0.257 ** | 1 | ||||
INIR | 0.029 | 0.571 *** | −0.434 ** | 0.158 * | −0.006 | 0.028 | 1 | |||
INER | 0.204 ** | 0.110 * | −0.187 * | 0.023 | −0.148 * | 0.361 ** | 0.391 ** | 1 | ||
IFER | 0.058 | −0.542 *** | 0.464 ** | −0.115 * | 0.167 * | 0.043 | −0.736 *** | −0.179 * | 1 | |
FEER | −0.120 * | 0.087 | −0.008 | 0.165 * | 0.148 * | −0.240 ** | −0.146 * | 0.236 ** | 0.215 ** | 1 |
Model 11: | Model 12: | Model 13: | |
---|---|---|---|
−0.0831 *** (−30.484) | 0.1475 *** (18.5697) | 0.0998 *** (4.7681) | |
0.0092 *** (8.7756) | 0.0248 *** (5.6943) | −0.0043 (−0.5282) | |
0.0550 *** (33.2156) | −0.0667 *** (−8.2097) | −0.0736 *** (−4.2180) | |
0.0214 *** (2.8488) | 0.2710 *** (29.4533) | 0.0260 (0.9709) | |
White cross-section standard errors & covariance (d.f. corrected) | Yes | Yes | Yes |
Cross-section effects | Fixed | Fixed | Fixed |
R2 | 0.6173 | 0.6456 | 0.7095 |
Adjusted R2 | 0.5879 | 0.6185 | 0.6872 |
J-statistic | 41.7777 | 39.4362 | 40.7397 |
Prob (J-statistic) | 0.3935 | 0.5402 | 0.4377 |
Arellano-Bond test AR(2) (p-value) | 0.9745 | 0.9995 | 0.8992 |
Instrument rank | 45 | 46 | 45 |
Observations | 585 | 585 | 585 |
Model 111: | Model 121: | Model 131: | |
---|---|---|---|
0.2302 *** (11.1314) | −0.1498 (−0.6465) | 0.1215 *** (4.1073) | |
−0.0076 * (−1.7224) | −0.0572 (−1.1697) | −0.0124 (−0.5899) | |
−0.1553 *** (−9.8306) | 0.1242 (0.8673) | −0.1011 *** (−3.9829) | |
−0.0671 *** (−2.7744) | −0.6089 (−1.3659) | −0.2615 (−1.2940) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes |
Cross-section effects | Fixed | Fixed | Fixed |
R2 | 0.2132 | 0.5783 | 0.7434 |
Adjusted R2 | 0.1489 | 0.5438 | 0.7224 |
J-statistic | 21.4553 | 75.5204 | 20.3663 |
Prob (J-statistic) | 0.2571 | 0.8628 | 0.3126 |
Arellano-Bond test AR(2) (p-value) | 0.9242 | 0.5105 | 0.8859 |
Instrument rank | 23 | 95 | 23 |
Observations | 299 | 299 | 299 |
Model 112: | Model 122: | Model 132: | |
---|---|---|---|
−0.3450 *** (−18.4467) | 0.3319 *** (16.5136) | −0.2487 *** (−3.5071) | |
0.0972 (8.4408) | −0.0878 *** (−8.2886) | 0.1335 *** (2.7175) | |
−0.1889 *** (−13.5335) | −0.1775 *** (−4.1226) | 0.1147 * (1.8911) | |
0.0357 (0.9626) | 0.2484 *** (26.8931) | −0.2015 *** (−2.9953) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes |
Cross-section effects | Fixed | Fixed | Fixed |
R2 | 0.8228 | 0.7385 | 0.6670 |
Adjusted R2 | 0.8070 | 0.7154 | 0.6374 |
J-statistic | 19.7475 | 21.9851 | 15.9916 |
Prob (J-statistic) | 0.3472 | 0.2326 | 0.5244 |
Arellano-Bond test AR(2) (p-value) | 0.9216 | 0.9997 | 0.9152 |
Instrument rank | 23 | 23 | 22 |
Observations | 286 | 286 | 286 |
Model 21: | Model 22: | Model 23: | |
---|---|---|---|
0.3097 *** (45.1206) | −0.0865 *** (−58.8307) | 0.0113 *** (4.5605) | |
0.0363 *** (8.1269) | −0.0578 *** (−8.4815) | 0.0097 *** (4.0032) | |
−0.2106 *** (−37.8422) | 0.1114 *** (44.8594) | −0.0092 *** (−3.7825) | |
0.1842 *** (13.0185) | 0.05745 *** (11.9346) | −0.0100 *** (−2.8451) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes |
Cross-section effects | Fixed | Fixed | Fixed |
R2 | 0.6164 | 0.7320 | 0.6347 |
Adjusted R2 | 0.5870 | 0.7114 | 0.6066 |
J-statistic | 36.9074 | 42.5335 | 40.1487 |
Prob (J-statistic) | 0.6103 | 0.4049 | 0.4636 |
Arellano-Bond test AR(2) (p-value) | 0.4960 | 0.9997 | 0.2177 |
Instrument rank | 45 | 46 | 45 |
Observations | 585 | 585 | 585 |
Model 211: | Model 221: | Model 231: | |
---|---|---|---|
0.4551 *** (15.3448) | −0.2038 *** (−4.0368) | −0.0366 *** (−141.5373) | |
0.0560 *** (3.0066) | −0.0169 *** (−0.6521) | −0.0029 *** (−26.8396) | |
−0.3211 *** (−11.6358) | 0.1681 *** (4.1538) | 0.0176 *** (129.7938) | |
0.3593 ** (2.0347) | −0.1386 *** (−0.9297) | −0.1125 *** (−9.2291) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes |
Cross-section effects | Fixed | Fixed | Fixed |
J-statistic | 17.9357 | 17.3138 | 20.0423 |
Prob (J-statistic) | 0.4599 | 0.5016 | 0.3920 |
Arellano-Bond test AR(2) (p-value) | 0.1039 | 0.0566 | 0.9915 |
R2 | 0.5274 | 0.7391 | 0.3886 |
Adjusted R2 | 0.4887 | 0.7177 | 0.3347 |
Instrument rank | 23 | 23 | 249 |
Observations | 299 | 299 | 299 |
Model 212: | Model 222: | Model 232: | |
---|---|---|---|
0.0773 *** (2.6276) | 0.6236 *** (11.1604) | −0.0653 *** (−4.2111) | |
0.1289 *** (21.8147) | −0.4185 *** (−9.5372) | 0.0111 (0.8651) | |
0.0420 ** (2.1856) | −0.0795 *** (−3.8029) | −0.0544 ** (−2.2066) | |
−0.0821 *** (−10.4011) | 0.2799 *** (7.7532) | −0.0167 (−0.4179) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes |
Cross-section effects | Fixed | Fixed | Fixed |
J-statistic | 19.5861 | 18.9273 | 19.5897 |
Prob (J-statistic) | 0.3566 | 0.3327 | 0.3564 |
Arellano-Bond test AR(2) (p value) | 0.9999 | 0.3929 | 0.3476 |
R2 | 0.4160 | 0.4655 | 0.7327 |
Adjusted R2 | 0.3642 | 0.4181 | 0.7090 |
Instrument rank | 23 | 22 | 23 |
Observations | 286 | 286 | 297 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batrancea, L.M. An Econometric Approach on Performance, Assets, and Liabilities in a Sample of Banks from Europe, Israel, United States of America, and Canada. Mathematics 2021, 9, 3178. https://doi.org/10.3390/math9243178
Batrancea LM. An Econometric Approach on Performance, Assets, and Liabilities in a Sample of Banks from Europe, Israel, United States of America, and Canada. Mathematics. 2021; 9(24):3178. https://doi.org/10.3390/math9243178
Chicago/Turabian StyleBatrancea, Larissa M. 2021. "An Econometric Approach on Performance, Assets, and Liabilities in a Sample of Banks from Europe, Israel, United States of America, and Canada" Mathematics 9, no. 24: 3178. https://doi.org/10.3390/math9243178
APA StyleBatrancea, L. M. (2021). An Econometric Approach on Performance, Assets, and Liabilities in a Sample of Banks from Europe, Israel, United States of America, and Canada. Mathematics, 9(24), 3178. https://doi.org/10.3390/math9243178