Secondary School Students’ Construction and Interpretation of Statistical Tables
Abstract
:1. Introduction
2. Foundations
2.1. Classification of Statistical Tables
- Data tables are the first way to organize a data set. They are displayed as a matrix that contains, for each individual in the sample, the values of one or several variables. In this representation, the ideas of variable and value appear, but not that of frequency associated with each variable modality; therefore, the concepts of distribution or statistical variable do not emerge.
- One-variable distribution tables describe the distribution of a variable, since they associate each modality of the variable with the number of individuals in the sample (frequency) that present this modality. These tables involve the concepts of frequency and distribution, in addition to those of the variable and its values.
- A two-way or contingency table represents the data obtained when crossing two statistical variables. In the upper part of the table (first row), the modalities of one of the variables are indicated, while the modalities of the second variable are included in the first column. The body of the table is formed by the joint frequencies corresponding to the modality of the row for the first variable and the column for the second variable. Other concepts linked to these tables are those of marginal and conditional frequencies, as well as association between the variables.
2.2. Reading Levels of Tables and Graphs
- Reading the data. At this level, the questions only involve a literal reading of information that is explicit on the table or graph, and therefore no calculations or other operations are required to be performed on the data represented. An example would be asking the learner the frequency of a given value of the variable.
- Reading between the data. At this level, the question involves not only literal reading, but also comparison of data represented in the table, or calculations. This level is required, for example, to determine the mean of a distribution or to compare the frequencies of two particular values.
- Reading beyond the data. These are questions that involve a greater ability to read the statistical graph or table, as they request to infer unrepresented information that cannot be extracted arithmetically. An example is interpolating or extrapolating a value in a series of ordered data over time.
- Reading behind the data. This is the most advanced level, involving not only reading the graph or table, but being able to make a critical appraisal of its content, the sources from which the information has been extracted, or statements made about its content.
2.3. Mathematical Activity and Semiotic Conflicts
2.4. Reading Tables by Students
2.5. Construction of Tables and Transnumeration Processes
3. Materials and Methods
4. Results
4.1. Translating Graphs to Tables
4.1.1. Translating a Pictogram to a Frequency Table
4.1.2. Translating a Bar Graph into a Two-Way Table
4.1.3. Semiotic Conflicts in Constructing the Tables
- N1.2. Interpreting the icon displayed on the pictogram label as part of the frequencies corresponding to one modality (an example is provided in Figure 4). This conflict has not been reported in previous research.
4.2. Reading Tables
4.2.1. Reading a Marginal Frequency in a Two-Way Table
4.2.2. Reading a Conditional Frequency in a Two-Way Table
4.2.3. Arguments Based on the Data
4.2.4. Reading Levels in Tasks 1b and 1c
5. Discussion and Teaching Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estrella, S. El formato tabular: Una revisión de literatura. Actual. Investig. Educ. 2014, 14, 449–478. [Google Scholar]
- Estrella, S.; Mena-Lorca, A.; Olfos-Ayarza, R. Naturaleza del objeto matemático Tabla. MAGIS Rev. Int. Investig. Educ. 2017, 10, 105–122. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, R.A.; Wainer, H. Extracting sunbeams from cucumbers. J. Comput. Graph. Stat. 2011, 20, 793–810. [Google Scholar] [CrossRef] [Green Version]
- Postigo, Y.; Pozo, J.I. Cuando una gráfica vale más que 1000 datos: La interpretación de gráficas por alumnos adolescentes. Infanc. Aprendiz. 2000, 90, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Burgess, T. Investigating the “data sense” of preservice teachers. In Proceedings of the 6th International Conference on Teaching Statistics, Cape Town, South Africa, 7–12 July 2002; Phillips, B., Ed.; International Association for Statistics Education: Cape Town, South Africa, 2002. [Google Scholar]
- Gal, I. Adults’ statistical literacy: Meanings, components, responsibilities. Int. Stat. Rev. 2002, 70, 1–25. [Google Scholar] [CrossRef]
- Gal, I. Understanding statistical literacy: About knowledge of contexts and models. In Actas del Tercer Congreso Internacional Virtual de Educación Estadística; Contreras, J.M., Gea, M.M., López-Martín, M.M., Molina-Portillo, E., Eds.; Universidad de Granada: Granada, Spain, 2019. [Google Scholar]
- Gould, R. Data literacy is statistical literacy. Stat. Educ. Res. J. 2017, 16, 22–25. [Google Scholar] [CrossRef]
- Sharma, S. Definitions and models of statistical literacy: A literature review. Open Rev. Educ. Res. 2017, 4, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Muñiz, L.J.; Muñiz-Rodríguez, L.; Vásquez, C.; Alsina, Á. ¿Cómo promover la alfabetización estadística y de datos en contexto? Estrategias y recursos a partir de la COVID-19 para Educación Secundaria. Números 2020, 104, 217–238. [Google Scholar]
- Watson, J.M. Statistical Literacy at School: Growth and Goals; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- MECD. Real Decreto 126/2014, de 28 de Febrero, Por el que se Establece el Currículo Básico de la Educación Primaria; Ministerio de Educación, Cultura y Deportes: Madrid, Spain, 2014. [Google Scholar]
- MECD. Real Decreto 1105/2014, de 26 de Diciembre, Por el que se Establece el Currículo Básico de la Educación Secundaria Obligatoria y del Bachillerato; Ministerio de Educación, Cultura y Deportes: Madrid, Spain, 2015. [Google Scholar]
- Koschat, M.A. A case for simple tables. Am. Stat. 2005, 59, 31–40. [Google Scholar] [CrossRef]
- Pallauta, J.; Arteaga, P.; Begué, N.; Gea, M. Análisis de la complejidad semiótica y el contexto de las tablas estadísticas en los libros de texto españoles de secundaria. Educ. Matemática Pesqui. 2021, 23, 193–220. [Google Scholar] [CrossRef]
- Gabucio, F.; Martí, E.; Enfedaque, J.; Gilabert, S.; Konstantinidou, A. Niveles de comprensión de las tablas en alumnos de primaria y secundaria. Cult. Educ. 2010, 22, 183–197. [Google Scholar] [CrossRef]
- Garcia-Mila, M.; Marti, E.; Gilabert, S.; Catells, M. Fifth through eighth grade students’ difficulties in constructing bar graphs: Data organisation, data aggregation, and integration of a second variable. Math. Think. Learn. 2015, 16, 201–233. [Google Scholar] [CrossRef] [Green Version]
- Martí, E. Tables as cognitive tools in primary education. In Representational Systems and Practices as Learning Tools in Different Fields of Learning; Andersen, C., Scheuer, N., Echeverría, M.P.P., Teubal, E., Eds.; Sense: Rotterdam, The Netherland, 2009; pp. 133–148. [Google Scholar] [CrossRef]
- Brizuela, B.; Lara-Roth, S. Additive relations and function tables. J. Math. Behav. 2002, 20, 309–319. [Google Scholar] [CrossRef]
- García-García, J.; Díaz-Levicoy, D.; Vidal, H.; Arredondo, E. Las tablas estadísticas en libros de texto de educación primaria en México. Paradigma 2019, 40, 153–175. [Google Scholar]
- Pallauta, J.D.; Gea, M.; Arteaga, P. Caracterización de las tareas propuestas sobre tablas estadísticas en libros de texto chilenos de educación básica. Paradigma 2021, 42, 32–60. [Google Scholar] [CrossRef]
- Pallauta, J.D.; Batanero, C.; Gea, M.M. Complejidad semiótica de las tablas estadísticas en textos escolares chilenos y españoles de educación primaria. Teia Rev. Educ. Matemática Tecnol. Iberoam. 2021, 12, 36–60. [Google Scholar] [CrossRef]
- Lahanier-Reuter, D. Différents types de tableaux dans l’enseignement des statistiques. Spirale 2003, 32, 143–154. [Google Scholar] [CrossRef]
- Curcio, F.R. Developing Graph Comprehension; N.C.T.M.: Reston, VA, USA, 1989. [Google Scholar]
- Shaughnessy, J.; Garfield, J.; Greer, B. Data handling. In International Handbook of Mathematics Education; Bishop, A., Clements, K., Keitel, C., Kilpatrick, J., Laborde, C., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 205–237. [Google Scholar]
- Friel, S.; Curcio, F.; Bright, G. Making sense of graphs: Critical factors influencing comprehension and instructional implications. J. Res. Math. Educ. 2001, 32, 124–158. [Google Scholar] [CrossRef] [Green Version]
- Godino, J.D.; Batanero, C.; Font, V. The onto-semiotic approach to research in mathematics education. ZDM. Int. J. Math. Educ. 2007, 39, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Godino, J.D.; Batanero, C.; Font, V. The onto-semiotic approach: Implications for the prescriptive character of didactics. Learn. Math. 2019, 39, 37–42. [Google Scholar]
- Eco, U. Tratado de Semiótica General; Lumen: Barcelona, Spain, 1995. [Google Scholar]
- Estrella, S.; Estrella, P. Representaciones de datos en estadística: De listas a tablas. Rev. Chil. Educ. Matemática 2020, 12, 21–34. [Google Scholar] [CrossRef]
- Díaz-Levicoy, D.; Morales, R.; Arteaga, P.; López-Martín, M.M. Conocimiento sobre tablas estadísticas por estudiantes chilenos de tercer año de Educación Primaria. Educ. Matemática 2020, 32, 247–277. [Google Scholar] [CrossRef]
- Castellaro, M.; Roselli, N. Comprensión individual y diádica de tablas de frecuencias en alumnos de escolaridad primaria. Pensam. Psicológico 2020, 18, 57–70. [Google Scholar] [CrossRef]
- Chick, H. Tools for transnumeration: Early stages in the art of data representation. In Proceedings of the 26th Annual Conference of the Mathematics Education Research Group of Australasia, Geelong, Australia, 6–10 July 2003; Bragg, L., Campbell, C., Herbert, G., Mousley, J., Eds.; MERGA: Sydney, NSW, Australia, 2003; pp. 207–214. [Google Scholar]
- Pfannkuch, M.; Wild, C. Towards an understanding of statistical thinking. In The Challenge of Developing Statistical Literacy, Reasoning and Thinking; Ben-Zvi, D., Garfield, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 17–46. [Google Scholar] [CrossRef]
- Nisbet, S.; Jones, G.; Thornton, C.; Langrall, C.; Mooney, E. Children’s representation and organisation of data. Math. Educ. Res. J. 2003, 15, 42–58. [Google Scholar] [CrossRef]
- Pfannkuch, M.; Rubick, A. An exploration of students’ statistical thinking with given data. Stat. Educ. Res. J. 2002, 1, 4–21. [Google Scholar]
- Martí, E.; Garcia-Mila, M.; Gabucio, F.; Konstantinidou, K. The construction of a double-entry table: A study of primary and secondary school students’ difficulties. Eur. J. Psychol. Educ. 2011, 26, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Levicoy, D. Comprensión de Gráficos Estadísticos por Alumnos Chilenos de Educación Primaria. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2018. [Google Scholar]
- Álvarez, I.; Guerrero, Y.; Torres, Y.D.T. Taxonomía de errores y dificultades en la construcción e interpretación de tablas de frecuencia. Zetetike 2020, 28, e020012. [Google Scholar] [CrossRef]
- Wang, Z.; Osterlind, S.J. Classical test theory. In Handbook of Quantitative Methods for Educational Research; Teo, T., Ed.; Sense Publishers: Rotterdam, The Netherland, 2013; pp. 31–44. [Google Scholar]
- Kheong, F.; Soon, G.; Ramakrishnan, C. Matemática 5° Básico. Texto del Estudiante; Marshall Cavendish Education: Santiago, Chile, 2017. [Google Scholar]
- Castro, C. Cuaderno de Ejercicios Matemática 6° Básico; Santillana: Santiago, Chile, 2017. [Google Scholar]
- Drisko, J.W.; Maschi, T. Content Analysis; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Batanero, C.; Cañadas, G.; Contreras, J.; Gea, M. Understanding of contingency tables: A synthesis of educational research. Boletín Estadística Investig. Oper. 2015, 31, 299–315. [Google Scholar]
- Sharma, S. Assessing students’ understanding of tables and graphs: Implications for teaching and research. Int. J. Educ. Res. Technol. 2013, 4, 61–69. [Google Scholar]
- Rosenshine, B.; Meister, C.; Chapman, S. Teaching students to generate questions: A review of the intervention studies. Rev. Educ. Res. 1996, 66, 181–221. [Google Scholar] [CrossRef]
Response | Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) |
---|---|---|---|
Correct table | 71.8 | 77.3 | 74.3 |
Partly correct table | 0.7 | 1.6 | 1.1 |
Incorrect table | 25.5 | 19.5 | 22.7 |
Did not complete | 2.0 | 1.6 | 1.8 |
Response | Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) |
---|---|---|---|
Correct table | 56.4 | 50.8 | 53.8 |
Partially correct table | 27.5 | 28.1 | 27.8 |
Incorrect table | 9.4 | 14.1 | 11.6 |
Did not complete the table | 6.7 | 7.0 | 6.9 |
Semiotic Conflict | Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) |
---|---|---|---|
Notational conflicts | |||
N1.1. Incorrect interpretation of icon | 22.8 | 18.8 | 20.9 |
N1.2. Interpreting the icon as frequency of a modality | 2.7 | 6.3 | 4.3 |
N2. Unable to read the graph | 11.5 | 6.3 | 9.0 |
N3. Misinterpreting labels | 7.4 | 10.9 | 9.0 |
Conceptual conflicts | |||
C1. Confunsing frequencies and percentages | 1.3 | 0.8 | 1.1 |
Procedimental conflicts | |||
P1. Incorrect computation of totals | 37.6 | 43.8 | 40.4 |
Response | Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) |
---|---|---|---|
Correct | 77.9 | 85.9 | 81.6 |
Partially correct | 2.0 | 1.6 | 1.8 |
Incorrect | 11.4 | 5.5 | 8.7 |
No response | 8.7 | 7.0 | 7.9 |
Type of Justification | Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) |
---|---|---|---|
Use the table | 51.0 | 61.7 | 56.0 |
Use the graph | 9.4 | 10.2 | 9.7 |
Personal criteria | 14.1 | 3.9 | 9.4 |
Did not justify | 25.5 | 24.2 | 24.9 |
Response | Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) |
---|---|---|---|
Correct | 87.2 | 83.6 | 85.6 |
Partially correct | 0.7 | 0.4 | |
Incorrect | 4.0 | 9.4 | 6.5 |
No response | 8.1 | 7.0 | 7.6 |
Response | Task 1b | Task 1c | ||||
---|---|---|---|---|---|---|
Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) | Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) | |
Correct | 46.3 | 39.1 | 43.0 | 8.1 | 14.1 | 10.8 |
Partially correct | 12.1 | 14.1 | 13.0 | 16.8 | 15.6 | 16.2 |
Incorrect | 36.2 | 43.8 | 39.7 | 66.4 | 65.6 | 66.1 |
No response | 5.4 | 3.1 | 4.3 | 8.7 | 4.7 | 6.9 |
Reading Levels | Task 1b | Task 1c | ||||
---|---|---|---|---|---|---|
Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) | Grade 1 (n = 149) | Grade 3 (n = 128) | Total (n = 277) | |
L0 | 18.8 | 10.9 | 15.2 | 22.8 | 11.7 | 17.7 |
L1 | 8.1 | 10.9 | 9.4 | 13.4 | 11.7 | 12.6 |
L2 | 26.8 | 39.1 | 32.5 | 56.4 | 65.6 | 60.6 |
L4 | 46.3 | 39.1 | 43.0 | 7.4 | 10.9 | 9.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallauta, J.D.; Arteaga, P.; Garzón-Guerrero, J.A. Secondary School Students’ Construction and Interpretation of Statistical Tables. Mathematics 2021, 9, 3197. https://doi.org/10.3390/math9243197
Pallauta JD, Arteaga P, Garzón-Guerrero JA. Secondary School Students’ Construction and Interpretation of Statistical Tables. Mathematics. 2021; 9(24):3197. https://doi.org/10.3390/math9243197
Chicago/Turabian StylePallauta, Jocelyn D., Pedro Arteaga, and José A. Garzón-Guerrero. 2021. "Secondary School Students’ Construction and Interpretation of Statistical Tables" Mathematics 9, no. 24: 3197. https://doi.org/10.3390/math9243197
APA StylePallauta, J. D., Arteaga, P., & Garzón-Guerrero, J. A. (2021). Secondary School Students’ Construction and Interpretation of Statistical Tables. Mathematics, 9(24), 3197. https://doi.org/10.3390/math9243197