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Abstract: A very challenging task for action recognition concerns how to effectively extract and
utilize the temporal and spatial information of video (especially temporal information). To date,
many researchers have proposed various spatial-temporal convolution structures. Despite their
success, most models are limited in further performance especially on those datasets that are highly
time-dependent due to their failure to identify the fusion relationship between the spatial and
temporal features inside the convolution channel. In this paper, we proposed a lightweight and
efficient spatial-temporal extractor, denoted as Channel-Wise Spatial-Temporal Aggregation block
(CSTA block), which could be flexibly plugged in existing 2D CNNs (denoted by CSTANet). The
CSTA Block utilizes two branches to model spatial-temporal information separately. In temporal
branch, It is equipped with a Motion Attention Module (MA), which is used to enhance the motion
regions in a given video. Then, we introduced a Spatial-Temporal Channel Attention (STCA) module,
which could aggregate spatial-temporal features of each block channel-wisely in a self-adaptive and
trainable way. The final experimental results demonstrate that the proposed CSTANet achieved the
state-of-the-art results on EGTEA Gaze++ and Diving48 datasets, and obtained competitive results
on Something-Something V1&V2 at the less computational cost.

Keywords: action recognition; channel-wise; spatial-temporal; video

1. Introduction

In recent years, video understanding has attracted increasing attention from the aca-
demic community [1–3]. The accurate recognition of human action in videos is a key step
for most video understanding applications. In the literature, several surveys [4–8] have
proposed to make the task of the human action or activity recognition more effective by
extracting new semantic or visual features. For the exploration of semantic features, re-
searchers have tried to conduct research in terms of poses [9] and poselets [10], objects [11],
scenes [12], skeletons [13,14], key-frames [15], attributes [16] and inference methods [17],
etc. For example, the Dense Trajectory Features (DTF) [18] and the Improved Dense Trajec-
tories (IDT) [19] showed their high potential for effectiveness. Recently, with the rise of
deep learning, methods such as using convolutional neural networks, modeling of tempo-
ral features and designing multi-branch networks have also been proposed to address the
challenges existing in the human action recognition task [5]. Further, to capture spatial and
temporal features for video analysis, a 3D convolution is proposed by Ji et al. [20]. However,
due to the layer-by-layer stacking of 3D CNNs, 3D CNN models cause higher training com-
plexity as well as higher memory requirements [21]. In particular, many researchers put
their efforts into the motion and temporal structures modeling [22] recently. Accordingly,
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the short-term motion modeling method based on optical flow technique was proposed
in [23]. Temporal Segment Network(TSN) [24] introduced a sparse segment sampling strat-
egy in the entire video to model long-term temporal features. Furthermore, the frameworks
based on 3D CNN [20,25] utilized convolution operation along both the temporal and the
spatial dimension for the sake of making the model directly learn the relation between
the temporal and the spatial features. More recently, several approaches suggested using
(2+1)D CNN instead of 3D CNN to achieve more explicit temporal modeling [26,27].

Though some actions can be inferred by relying solely on spatial information named
“scene-related” actions, such as “diving”, “ride a horse”, while other actions are more closely
related to temporal information named “temporal-related” actions, such as “moving some-
thing from left to right”, “moving something approaching something”, etc., and the latter
is more challenging. According to this observation, we can deduce that the importance
of temporal and spatial features to the recognition of different actions is not uniform,
and there should be competitive relationship between these two types of features when a
model trying to recognize the action. Therefore, we believe that a good spatial-temporal
features extractor should have the ability to determine what feature would be the dominant
for building a better model.

In the literature, the development of spatial information(or feature) extraction methods
is relatively mature, and how to efficiently extract the temporal information of a video
has become one of the key challenges in the current action recognition research. We may
regard the video as a fourth-dimensional representation (W × H × T× C). In particular, W
and H are the width and height of a single video frame, respectively, which can also be
collectively referred to as the spatial representation of the video frame, denoted as S. T and
C, which represent temporal and channel accordingly.

It should be mentioned that most of the previous work tends to focus on the two
dimensions of S and T, but this study focuses on the channel dimension (C) along with
deep learning structure. As a breakthrough, the proposal of the Temporal Shift Module
(TSM) network [28] made researchers realize that using 2D convolution and 3D convolution
to extract time information from the video has a certain equivalence, but the 2D network
requires much fewer parameters and calculations. In consideration of these essential facts,
we propose an efficient convolutional network for action recognition with the following
main contributions.

Firstly, in view that the existing 2D structures perform not very well on the extracting
of temporal context features (denoted as foreground changes) compared with the spatial
feature extraction, we propose to use a motion attention module (MA) to obtain enhanced
temporal features.

Secondly, for better utilization of the obtained features, a spatial-temporal channel
attention (STCA) mechanism is used to perform a trainable feature fusion.

Finally, this research reveals that for temporal-related action recognition video datasets,
spatial-temporal features have a complex relationship of cooperation and competition
inside the convolution channel. The rest of paper is organized as follows: first, some related
works are introduced in Section 2; second, the detailed training process for the proposed
approach is depicted in Section 3; third, some experimental results are reported in Section 4;
finally, conclusions and discussions are given in Section 5.

2. Related Works

Compared with single image recognition [7], the main difference of video understand-
ing is that it possesses temporal information. In recent years, researches on deep mining of
spatial information by using convolutional neural networks have achieved fruitful results.
However, the research on how to effectively model the temporal information is still one of
the most important challenges in the current action recognition research. For this reason,
Feichtenhofer et al. [29] suggested that current ConvNet architectures are not able to take
full advantage of temporal information and their performance is consequently often domi-
nated by spatial (appearance) recognition. Overall, according to most research progress in
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the current literature, the video-based action recognition task mainly faces the following
three challenges.

• Effective extraction of spatial and temporal features. Especially the extraction of
temporal features is the focus of current research and is one of the great challenges.

• The systematic integration of spatial and temporal features. From the early score [23]
fusion to the recent pixel-level fusion [29], researchers have proposed many novel
spatial-temporal feature fusion methods, but at present, there is still much room for
improvement in the effectiveness of each method.

• Improving the efficiency of action recognition network. This is one of the important
constraints on whether the proposed algorithm can be applied in practice. It is also
the focus of current research and will be discussed in the following sections.

In the literature, researchers have proposed a few advanced spatial-temporal convo-
lution structures. For intuitive comparison, the spatial-temporal convolution structure
proposed by other researchers and the new structure we proposed in this paper are put
together here and they can be formally divided into six categories: C2D [30,31], C3D [25,32],
cascade 3D [27,33], a reversed cascade 3D (derived from [27]), parallel [34] and DTP.

Figure 1a illustrates a C2D Residual Block (TSN [30] and Temporal Relational Rea-
soning Network (TRN) [31] belong to this category); Figure 1b shows a C3D network;
Figure 1c indicates a cascade 3D network, which decomposes a standard 3D kernel with a
1D temporal convolution followed by a 2D spatial convolution; Figure 1d demonstrates a
reversed cascade 3D architecture, which exchanges the order of temporal and spatial con-
volution in cascade 3D; Figure 1e displays a parallel architecture, which models the spatial
and temporal information in two independent branches; Figure 1f shows a new channel-
separate temporal convolution proposed to replace the standard temporal convolution in
Figure 1e, named as DTP.

Figure 1. Typical spatial-temporal convolutional structures. (a) C2D; (b) C3D; (c) 3D; (d) reversed
3D; (e) parallel architecture; (f) DTP.

As for the parallel structure, such as SlowFast [35], ArtNet [34], which independently
extracts the temporal and spatial information in a video. In this paper, based on the parallel
structure, we decompose the 3D convolution into a spatial and a temporal convolution.
The core contribution is that we no longer use the cascading method to perform the two
kinds of convolutions but extract spatial-temporal information, respectively, (as shown in
Figure 1e). By doing so, the network will not be disturbed by spatial information when
extracting temporal information. Moreover, we separate the original temporal convolution
in the parallel structure, and technically use a depth-wise temporal convolution (the
characteristic of depth-wise temporal convolution is to decouple the temporal and channel
dimensions, and perform temporal convolution on a depth-by-depth basis) instead of
the standard temporal convolution. We call this structure as DTP (depth-wise temporal
parallel), which is shown in Figure 1f.
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Currently, the existing structures can be roughly summarized into 5 categories:
CNN+Pooling [29,30], CNN+RNN [31,36,37], C3D [25,32], Efficient 3D [33,38], and new
C2D(NC2D) [3,28]. We will introduce these different architectures separately and the
representative results of them on the Something-Something V1 dataset, which is the most
widely used dataset in action recognition tasks.

CNN+Pooling [29,30,39,40]: Karpathy et al. [39] achieved the initial success in ap-
plying CNN to the video field for the first time. Then a two-stream structure proposed
by Simonyan et al. [40] surpassed the manual feature method for the first time in terms
of accuracy. Later, TSN network [30] uses the redundancy between video frames on the
basis of the “two-stream” network and proposes a sparse sampling strategy that can
greatly reduce the computational cost of the network compared to the dense sampling.
Although the computational complexity of 2D networks is lower than that of 3D networks,
the “frame-by-frame” processing has caused many difficulties in utilizing the full temporal
information contained in the video. Based on the reports of their experimental results,
the CNN+Pooling method (represented by TSN [30]) can obtain 19.7% Top-1 accuracy at the
computational cost of 33G floating point operations(Flops) on the Something-Something
V1 dataset.

CNN+RNN [31,36,37]: Researchers have proposed several CNN+RNN methods for
the temporal modeling. However, this category of method has an inherent flaw: when CNN
is used for encoding, the temporal information of the underlying features is often directly
lost. Besides, it only considers the temporal information in the top-level features, so its
recognition accuracy is not significantly improved compared to C2D networks such as the
two-stream networks. Based on the reports of their experimental results, the CNN+RNN
method (represented by TRN [31]) can obtain 34.4% Top-1 accuracy at the computational
cost of 33G Flops on the Something-Something V1 dataset.

C3D [25,32]: The 3D convolution network can simultaneously extract the spatial-
temporal features of a video. Tran et al. [25] first elaborated on how to apply C3D network
to the field of action recognition. However, the lack of large-scale video datasets for pre-
training makes the 3D network training very difficult. Although the recognition accuracy
of this method is not much improved compared with the previous methods, it opens up
a new horizon for the application of 3D convolution in the field of action recognition.
Carreira et al. [32] proposed the I3D network, which introduced a deep 3D network for the
first time, and creatively used the weights of the 2D-InceptionV1 network pre-trained on
ImageNet to initialize the network through the “inflated” operation. The proposal of the 3D
network has greatly improved the recognition accuracy, but its large amount of parameters
and calculations make it difficult to deploy on mobile devices with low computational
cost. Based on the reports of their experimental results, the C3D method (represented by
I3D [32]) can obtain 41.6% Top-1 accuracy at the computational cost of 306G Flops on the
Something-Something V1 dataset.

Efficient 3D [33,41–43]: Since the high computational complexity of 3D convolution is
mainly due to the simultaneous convolution of the three dimensions of the video (S, T, C),
researchers proposed to decouple the two dimensions of time and space, and decompose the
original 3D convolution into cascaded spatial convolution and temporal convolution [33,42,43];
Another way to reduce the computational overload is to use a hybrid spatial-temporal
convolution structure similar to “2D-3D” or “3D-2D” to replace the part of 3D convolution
in the 3D network kernel [44]. However, the structure, like “CNN+RNN”, may lose part
of the temporal information of the feature. In addition, many experiments have proved
that the spatial-temporal features (low-level and high-level) in different layers of the fusion
network are meaningful for action recognition [27]. More recently, X3D [38] reveals that
networks with thin channel dimension and high spatial-temporal resolution can be effective
for video recognition. This is also highly consistent with the point held by this research,
i.e., making full use of the spatial-temporal channel can improve the performance of the task
of action recognition. Based on the reports of their experimental results, the Efficient 3D
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method (represented by S3D [33]) can obtain 47.3% Top-1 accuracy at the cost of 66G Flops
computational power on the Something-Something V1 dataset.

NC2D [3,28,45]: The previous C2D networks have the advantage of fewer parame-
ters and a low computational cost but struggle to use temporal information effectively
compared to C3D networks. To address this issue, TSM [28] uses a shift in the temporal
channel so that channel information of two adjacent frames is shared. Recently, Gated
Shift Module(GSM) [3] has attracted the attention of researchers, and it performs very well,
while being extremely light in terms of network width and parameters. Much luckily, this
category also provides our study with many aspirations. Based on the reports of their
experimental results, the NC2D method (represented by GSM [3]) can obtain 49.6% Top-1
accuracy only at the cost of 33G Flops computational power on the Something-Something
V1 dataset currently.

Motivations: In summary, it should be said that both 2D and 3D methods have their
own advantages, but this research mainly focuses on the scope of the NC2D method.
On the one hand, 2D and 3D methods have great equivalence in extracting video features
and the 2D network requires much fewer parameters and calculations [28]; on the other
hand, compared to the 3D method, NC2D methods generally extract spatial-temporal
features separately, which ultimately leads to the necessity of experiencing a reasonable
fusion of the two types of features. However, because the existing methods do not conduct
an in-depth evaluation of the qualitative or quantitative contribution of the individual
features obtained by most of NC2D methods to the classification accuracy, thus largely
limits the NC2D method to achieve better classification results on time-related video
datasets. However, before the contribution of spatial-temporal features can be evaluated
reasonably, it is necessary to explore the relationship between them inside the convolution
channel, which is the prerequisite for designing the fusion method. To this end, we start
with the latest and typical NC2D structure to explore the internal relationship between
spatial-temporal features inside the convolution channel. Our study further explores that
compared with their spatial modeling capabilities, the current NC2D structures used in the
convolution channel have relatively weakened their own temporal modeling capabilities,
so we proposed a MA to improve the temporal modeling capabilities of NC2D. As a
result, MA enhanced the temporal modeling capability of NC2D to some extent, and the
experimental results also revealed the cooperative and competitive relationship of spatial-
temporal features inside the convolution channel. Finally, in response to such cooperative
and competitive relationship, we propose to use a parameter-trainable STCA module to
integrate temporal and spatial features instead of using a concatenated method.

3. The Proposed Approach

As mentioned in the above analysis, in order to achieve the effective extraction of
temporal features and better fusion of temporal and spatial features, we propose a channel-
wise spatial-temporal aggregation network (CSTANet, as shown in Figure 2). Intuitively,
our CSTANet looks like a stack of CSTA Blocks. As shown in the Figure 2, after sampling
the frames from a video, we adopt the same strategy as described in TSN [30]. Technically,
the input video is first split into N segments equally and then one frame from each segment
is sampled. In detail, we adopt the ResNet-50 [46] as a backbone, and replace the Residual
block with our CSTA block.
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Figure 2. Framework of CSTANet.

As shown in Figure 3, our CSTA block contains two stages: Spatial-Temporal Feature
Extraction (STE) and Spatial-Temporal Feature fusion (STF). We use DTP with MA as
the spatial-temporal extractor, in which the MA is assembled to the temporal branch
for enhancing the temporal context features. Next, an STF Module is used to fuse the
spatial-temporal features. As for the spatial-temporal feature extraction, we use two
independent branches to model the spatial-temporal information, respectively. In the
spatial feature extractor module, we adopt a standard 2D convolution while applying a
1D depth-wise convolution to model temporal information. After extracting the features,
in order to fuse the features extracted by the two branches, we construct a Spatial-Temporal
Channel Attention (STCA) module to aggregate the spatial and temporal features channel-
wisely. In contrast to Group Spatial-Temporal (GST) [47], which uses a hard-wired channel
concatenation, we use a self-adaptive and trainable approach to aggregate spatial-temporal
features for each block channel. Hence, the new model should be more discerning for
different types of video actions. In the following paragraphs, we first introduce the details
of the novel Motion Attention Module (MA) and then depict the novel Spatial-Temporal
Channel Attention (STCA) module.

Figure 3. The illustration of the architecture after replacing standard convolution in Resnet block by
the new proposed CSTA.

3.1. Motion Attention Module (MA)

From experience, a clip often contains a moving foreground and a relatively stable
background. It can be observed that in a temporal-related dataset, the backgrounds of
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many action categories may be closely similar. Therefore, in order to accurately distinguish
these actions, we must pay more attention to the moving part of the video, which is
denoted as the foreground. However, most current action recognition networks often
ignore the distinction between foreground and background, and simply extract foreground
(motion) and background (relatively static) features together. In fact, we believe that
temporal features should be more closely related to the motion parts of a video. In order
to further strengthen the model’s ability of extracting temporal information, we propose
a “Parameter-Free” foreground attention mechanism, which highlights the foreground
features of a motion in the video without adding additional model parameters. At the
same time, the model will improve the model’s ability of perceiving foreground changes.

Given an input X{x1, x2, x3, ......, xT}, xt ∈ Rw,h,c, the proposed MA module is mainly
divided into three processing steps. As an illustration, we select the t-th frame and the
(t + 1)-th frame as inputs. As shown in Figure 4, a mapping function is first used to map
a 3-D tensor to a 2-D tensor, which is based on the statistic of activation tensors across
the channel dimension. Next, we make an element-wise subtraction between adjacent
frames with an activation function followed to get an attention map for frame t. Finally,
the attention map is then multiplied in pixel-wise manner to the frame t’s feature, where 	
denotes element-wise subtraction, and � denotes element-wise multiplication. In detail,
first we define the mapping function:

Mw,h = ϕ(x) =
1
C

C

∑
c=1

xc,w,h (1)

where x c,w,h represents the pixel value at the position (c, w, h). Correspondingly, Mw,h

represents the value on the output 2D tensor on the position (x, y). After the global features
are extracted, we next calculate the changes in two adjacent frames for highlighting the
moving part. So, the M-tensor of the two frames obtained in the first step is subtracted and
then activated by using an activation function.

Attention = Activate(|Mt+1 −Mt|) (2)

Figure 4. The process of MA.

We have tried a variety of activation functions such as Sigmoid, Softmax, tanh and so
on, and the experiments indicate that Sigmoid has achieved the best activation effect. In the
end, the attention map is still a 2D tensor, which has the same shape as M. In other words,
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the foreground attention we proposed is “spatial-specific”, i.e., the attention weights are
applied to each position on the original frame. Finally, we multiply the obtained attention
map with the frame t pixel by pixel and obtain the following.

xa
t = Attentiont � xt (3)

where xa
t represents frame t after foreground attention is applied, and Attentiont represents

the foreground attention of frame t, and t ∈ [1, T − 1]. In order to ensure that the output of
MA (Xa{xa

1
, xa

2
, xa

3
,......, xa

T}) and input X{x1, x2, x3, ......, xT} are consistent in the temporal
dimension, the last frame of a video is directly used as the last frame of Xa, i.e.,

xa
t = xt (4)

3.2. Spatial-Temporal Channel Attention Module (STCA)

In the literature, both 3D convolution and a cascaded spatial-temporal convolution
can only perform simple fusion of spatial-temporal features. Based on the results of
literature comparison and feature extraction practices, we believe that the spatial-temporal
information contained in different layers and channels of the network should be treated
in a different manner. Among them, some channels may be more related to temporal
information, and some channels may be more related to spatial information. Therefore,
we propose a spatial-temporal feature fusion module (STCA), which is tightly coupled in
temporal (T) and spatial(S). The structure is shown in Figure 3. For the output feature maps
of spatial convolution and temporal convolution Xs and Xt, where Xs ∈ RT×W×H×C and
Xt ∈ RT×W×H×C, both are fed into the Squeeze module. The Squeeze module consists of a
global average pooling layer and two consecutive fully connection (FC) layers. First, we
process Xs ∈ RT×W×H×C and Xt ∈ RT×W×H×C to obtain Ps ∈ R1×1×1×C and Pt ∈ R1×1×1×C

by the global average pooling, which is followed by two consecutive fully connected layers
(FC). Among them, in order to reduce the number of parameters, the first FC layer is
configured with the number of channels to the original 1

γ . In the experiments, we take

γ = 16. The output of the Squeeze module is Ss ∈ R1×1×1×C and St ∈ R1×1×1×C. Finally, we
concatenate [Ss, St] to form S, followed by a FC layer and Softmax for activation in each row.
That is, the temporal and spatial features in each channel obey a probability distribution as a
whole, and within a channel, the spatial-temporal features form a competitive relationship.
Formally,

α[αt, αs] = So f t max(W([Ss, St]) + b) (5)

where α ∈ RC×2 is a matrix of C× 2. In each channel, two attention weights are calculated,
representing temporal attention and spatial attention, respectively. In other words, we
aggregate the spatial-temporal information channel by channel. Finally, we apply a matrix
multiplication to α[αt, αs] and [Xs, Xt]T to obtain the output of CSTA block (denoted as Y),
whose dimension is the same as input.

In summary, based on the DTP network structure, the MA module can make the
action foreground in a video get special attention. Simultaneously, the temporal and
spatial features can be fused in channel-wise by STCA module. In comparison to the
recent work GSM [3], we still keep the backbone structure of GST while developing a new
fusion technique.

4. Experimental Results and Analysis

This section presents an extensive set of experiments to evaluate CSTANet. First, we
will conduct experiments on various spatial-temporal convolution architectures. Then,
ablation analysis on MA and STCA is also provided. Please note that all experiments are
conducted on single modality (RGB frames).
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4.1. Datasets

We evaluate the CSTANet on three action recognition benchmarks, including Something-
Something V1&V2 [48,49] (abbreviated as SthV1, SthV2), Diving48 [50], and EGTEA Gaze++ [51].
SthV1 version contains 108,502 clips, and the V2 version contains 220,847 clips, which contains
a total of 174 types of fine-grained actions. Performance is reported on the validation set. Div-
ing48 dataset contains around 18K videos with 48 fine-grained dive classes, and we report the
accuracy on the official train/val split. EGTEA Gaze++ contains 15,484 samples with 106 activity
classes. We use the first split as described in [51], which contains 8299 training and 2022 testing
instances. In addition, in order to understand the impact of specific parameters in the ablation
experiments, due to hardware constraints, we randomly selected about 1/4 of the data in
the Something-SomethingV1 dataset (about 2W+ clips) to make a Mini-Something-Something
(MSth) dataset, which will keep the ratio of the number of samples among classes roughly
unchanged compared with original dataset.

4.2. Implementation Detail

We adopt ResNet-50 [46] pretrained on ImageNet [52] as the backbone. For the tempo-
ral dimension, we use the sparse sampling method described in TSN [30]. Furthermore,
for spatial dimension, the short side of the input frames are resized to 256 and then cropped
to 224 × 224. We do random cropping and flipping as data augmentation during training.
We train our model with RTX 2080TI GPUs, and each GPU processes a mini-batch of 8 video
clips (when T = 8) or 4 video clips (when T = 16). Furthermore, we optimize the model by
using SGD with an initial learning rate of 0.01. During the training process, the learning
rate decay at the 31-th, 41-th, and 46-th epoch is 1/10 of the previous epoch, respectively.
The total training epochs are about 50, and the dropout ratio is set to 0.3.

For inference, in addition to the single-clip method used during training, we also refer
to the strategy of TSM [28] using randomly sample 2 different clips from the video and get
the final prediction by averaging the scores of all the clips. If not specified, we use just the
center crop during inference.

4.3. Comparisons on Various Network Structures

Different spatial-temporal convolution structures are conducted on our MSth dataset,
and the experimental results are shown in the Table 1.

Table 1. Performance of different structures on MSth.

Method Params GFlops Accuracy (%)

C2D 23.9 M 33 G 3.0
C3D 46.5 M 62 G 25.9

Cascade 3D 27.6 M 37 G 26.9
Reversed Cascade 3D 27.6 M 40.6 G 27.8

Parallel 27.6 M 40.6 G 31.7

Our DTP 23.9 M 33 G 32.5

The accuracy of the C2D structure is only 3.0%, which proves that the 2D network’s
ability to utilize temporal information is far lower than the 3D network. On the one hand,
this conclusion has been also drawn by many previous works; on the other hand, it has
been proved that the action recognition on the Something-Something benchmark needs
to fully capture the temporal information of the video. Compared with C3D, cascade 3D
and reversed cascade 3D, we can find that the decomposed 3D convolution kernel is not
only beneficial to reduce the number of network parameters and calculations, but also
has the ability to achieve better results, which is consistent with the conclusions proposed
in [27]. After comparing and analyzing cascade 3D and reversed cascade 3D, we found
that compared to the commonly used cascade structure (they generally perform spatial
convolution first and then temporal convolution), the method of performing temporal
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convolution followed by a spatial convolution seems to obtain better performance. It is
worth noting that although the parallel structure has the same parameters as cascade 3D
and reversed cascade 3D, the accuracy rate exceeds the reversed cascade 3D structure by
3.9%, and surpasses the cascade 3D structure by nearly 4.7%. This strongly proves the
rationality of modeling spatial-temporal information separately.

Finally, comparing parallel and DTP, we find that temporal convolution and spatial
convolution perform differently in the channel dimension. Compared to spatial convolution
(standard 2D convolution), channel fusion is not necessary for 1D temporal convolution.
Furthermore, we found that the channel-separated temporal convolution not only uses
fewer parameters but also achieves a higher accuracy rate than the original temporal
convolution. Observing the loss curve on the left side of the Figure 5, the train loss of the
DTP structure is significantly lower than that of the parallel structure, while the val loss
is only slightly lower than the parallel structure. Next, we further use a deeper network
structure for comparison experiments. Specifically, we use ResNet101 as the backbone and
conduct experiment on the SthV1 dataset. The training curve is shown on the right side
of Figure 5 and we found that in a deeper network, the gap between the train loss of the
DTP structure and the parallel structure is reduced, while the gap of the val loss becomes
larger than that of the shallow network. This proves that the DTP structure can effectively
combat overfitting, and this manifestation is more obvious in much deeper networks. From
Figure 6, we can observe that our DTP structure can achieve a good trade-off between
accuracy and computational cost compared with other structures.

Figure 5. Training and testing errors for DTP and Parallel on Something-Something V1.

Figure 6. Accuracy vs. computational cost for various structures, and the size of dots denotes the
amount of parameters.

4.4. Ablation Analysis

In this part, we verify the validity of the MA and STCA modules. The four structures
shown in the Figure 7 are used for module effectiveness analysis. First, we verify the
effectiveness of MA on the CSTA block that uses STCA as spatial-temporal feature fusion.
We conduct experiments both on the MSth dataset and the SthV1 dataset. Intuitively,



Mathematics 2021, 9, 3226 11 of 17

based on the results in Table 2, we can observe that the structure of Figure 7c performs
better than Figure 7a. Both structures use the same spatial-temporal features as input,
and the direct superposition method will result in performance loss. Then, it can be inferred
that the contribution weight of the instant empty feature on the convolution channel is
non-uniform. In other words, the effectiveness of STCA proves to some extent that the
extracted spatial-temporal features have a cooperative and competitive relationship in the
convolution channel.

Figure 7. The four kinds of structure for ablation analysis. (a) DTP; (b) DTP+MA; (c) DTP+STCA;
(d) DTO+MA+STCA.

Table 2. Performance of different structures on MSth and SthV1.

Structure MSth (%) SthV1 (%)

DTP 32.5 45.1
DTP+MA 33.0 46.2
DTP+STCA 33.1 46.5
DTP+MA+STCA 34.2 47.4

4.5. Results on Something-Something Dataset

Table 3 illustrates the accuracy, parameter and complexity trade-off computed on
the validation set of SthV1 dataset. Among them, our new model only uses RGB as the
input and exceeds the TRN using dual-stream [47] as much as 5.4 percent. Furthermore,
compared with ECO-RGB [44], it has achieved a higher accuracy rate with fewer parameters
and less calculations. This proves that the temporal information of the low-level features
also contributes to the classification. Intuitively, CSTANet performs slightly better than
GSM [3] when the frame number is 8f, but accuracy is nearly the same as that of GSM
when the frame number is 16f. We should stress here that both GSM and CSTANet are
modifications of GST [47], in which GSM replaced the backbone of GST with a lightweight
backbone BN-inception focusing on splitting while CSTANet keeps the same backbone
as GST focusing on the fusion of spatial-temporal features. In addition, our model still
achieves a higher accuracy rate compared to heavyweight networks such as I3D with
non-local [32,53].

Table 4 shows the performance of our model on the SthV2 dataset. One can see that
the new model using 8 frames can outwin TSM using the same number of frames with
nearly 0.9 points, even surpassing the TSM model using 16 frames with only one-tenth of
the calculation cost.
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Table 3. The state-of-the-art results on the Something-Something V1 validation set.

Models Backbone Frame Number Params GFLOPS Top-1 Acc (%)

TSN [30] (ECCV’16) ResNet-50 8 23.9 M 33 19.7

I3D-RGB [32] (CVPR’17) ResNet-50 32 × 2 clips 28 M 153 × 2 41.6

TRN-2stream [31] (ECCV’18) BN-Inception 8 - - 42.0

ECO-RGB [44] (ECCV’18) BN-Inception
8 47.5 M 32 39.6

16 47.5 M 64 41.4

S3D [33] (ECCV’18) BN-Inception 64 - 66 47.3

NL I3D-RGB [53] (CVPR’18) 3D-ResNet-50 32 × 2 clips 28 M 117 × 2 44.4

TSM [28] (ICCV’19) ResNet-50
8 23.9 M 33 43.4

16 23.9 M 65 44.8

GST [47] (ICCV’19) ResNet-50
8 21.0 M 29.5 46.6

16 21.0 M 59 48.6

STM [45] (ICCV’19) ResNet-50
8 × 30 - 33.2 × 30 49.2

16 × 30 - 66.5 × 30 50.7

GSM [3] (CVPR’20) BN-Inception
8 - 16.5 47.24

16 - 33 49.56

CSTANet ResNet-50

8 24.1 M 33 47.4

8 × 2 clips 24.1M 33 × 2 48.6

16 24.1 M 66 48.8

16 × 2 clips 24.1 M 66 × 2 49.5

Table 4. State-of-the-art results on the Something-Something V2: * denotes that 5 crops are used.

Model Backbone Frame Top-1 Acc (%)

TRN [31] BN-Inception 8f 48.8

TSM [28] (*) ResNet-50
8f 59.1

16f 59.4

GST [47] ResNet-50 8f 58.8

TRN-2Stream [31] BN-Inception 8f 55.5

TSM-2Stream [28] ResNet-50 16f 63.5

CSTANet ResNet-50
8f 60.0

16f 61.6

4.6. Results on Diving48 and EGTEA Gaze++

First, we sample 16 frames from each video clip on Diving48 and only report results
using 1 clip per video. As shown in Table 5, by only employing a lightweight backbone
ResNet-18, our model can outperform all the previous approaches. Second, we conduct
similar experiment on EGTEA Gaze++ with results shown in Table 6. Because MA is
sensitive to the foreground motion, but there are a lot of background motions in EGTEA
Gaze++ dataset, MA is no longer active, but STCA module is still effective, so only by
relying on STCA module can the new model achieve the state-of-the-art result. Furthermore,
this experiment enlightens us that it is very important to distinguish the movement of
foreground and background.
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Table 5. State-of-the-art results on Diving48.

Method Pretrain Top-1 Acc (%)

C3D (64 frames) [25] - 27.6
R(2+1)D [54] Kinetics 28.9
R(2+1)D+DIMOFS [54] Kinetics + PoseTrack 31.4
C3D-ResNet18 [25] (from [47]) ImageNet 33
P3D-ResNet18 [42] (from [47]) ImageNet 30.8

CSTANet-ResNet18 (ours) ImageNet 35.3

C3D-ResNet50 [25] (from [47]) ImageNet 34
P3D-ResNet50 [42] (from [47]) ImageNet 32.4
GST-ResNet50 [47] ImageNet 38.8
CorrNet [55]) - 37.7
Attentive STRL [2]) ImageNet 35.64

CSTANet-ResNet50 (ours) ImageNet 39.5
CSTANet-ResNet50 (×2 clips) ImageNet 40.0

Table 6. State-of-the-art results on EGTEA Gaze++.

Method Pretrain Top-1 Acc (%)

I3D-2Stream [51] - 53.3
R34-2Stream [56] - 62.2
P3D-R34 [42] (from [47]) - 58.1

CSTANet-R34 (ours) ImageNet 59.0

P3D-R50 [42] (from [47]) - 61.1
GST [47] ImageNet 62.9

CSTANet-R50 (ours) ImageNet 66.5
CSTANet-R50 without MA (ours) ImageNet 67.6

4.7. Spatial-Temporal Feature Distribution Analysis

In this section, we will analyze the characteristics of spatial-temporal feature dis-
tributed in each layer of the network and discuss the spatial-temporal feature contribution
of different layers of the network. We use the attention weight calculated in each CSTA
block to indicate the importance of the features. Figure 8 illustrates the spatial-temporal
features’ distribution among all CSTA blocks based on ResNet-50. We can draw the conclu-
sion that the temporal feature plays a very important role in Something-Something dataset.
In contrast, on Diving48, the contribution of spatial and temporal nearly “half to half”.
As for EGTEA Gaze++, the contribution of spatial surpasses that of temporal. We also can
find that in all datasets, the contribution of temporal feature rises, while that of spatial
declines from shallow blocks to deep ones. This suggests that our model tends to learn
temporal representation in high-level semantic features, which has been verified by many
previous works [25,33].
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Figure 8. The spatial-temporal features distribution among CSTA blocks.

Furthermore, in order to analyze the spatial-temporal features in local areas, we use
sigmoid as our activate function in STCA module. As shown in Figure 9 (right), we find that
in shallow blocks the spatial and temporal are less distinguishable, and the performance
is worse than left. It suggests that in local areas, it is beneficial to make spatial-temporal
features compete with each other.

In fact, we believe that the current understanding of the characteristics of time and
space is far from satisfactory. The reason is that the spatial and temporal characteristics are
both complex and abstract concepts, which include at least the background, object, human
body, and changes in the temporal dimension of all three.

Figure 9. The activation function in STCA module.

5. Conclusions

In short, this paper mainly explores a possible best way to extract spatial-temporal
information in channel-wise in a video, and presents a new spatial-temporal feature
architecture composed of DTP+MA+STCA. Based on the empirical fact that the temporal
and spatial characteristics are both cooperative and competitive in the channel dimension,
this paper proposes to replace the hard wired fusion method often used in previous
studies with an adaptive feature fusion method. The proposed CSTANet integrates the
above research inspirations and provides a reference for academic researchers in action
recognition in videos.

In addition, we found that in some samples, such as “pushing something from left to
right” and “moving something closer to something”, the two are very similar in the path of
movement, and sometimes it is difficult for humans to distinguish. In fact, we believe that
the current understanding of the characteristics of time and space is far from satisfactory.
The reason is that the spatial and temporal characteristics are both complex and abstract
concepts, which include at least the background, target, human body, and changes in the
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temporal temporal dimension of all three. Therefore, it is necessary for us to further analyze
in detail the contribution of each feature to action recognition, which will be the direction
of our next work.
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