
mathematics

Article

Modeling the Dynamics of Spiking Networks with
Memristor-Based STDP to Solve Classification Tasks

Alexander Sboev 1,2,* , Danila Vlasov 1, Roman Rybka 1, Yury Davydov 1, Alexey Serenko 1

and Vyacheslav Demin 1

����������
�������

Citation: Sboev, A.; Vlasov, D.;

Rybka, R.; Davydov, Y.; Serenko, A.;

Demin, V. Modeling the Dynamics of

Spiking Networks with

Memristor-Based STDP to Solve

Classification Tasks. Mathematics 2021,

9, 3237. https://doi.org/10.3390/

math9243237

Academic Editors: Nikolai A.

Kudryashov and Cornelio Yáñez

Márquez

Received: 6 November 2021

Accepted: 10 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; vfked0d@gmail.com (D.V.);
rybkarb@gmail.com (R.R.); davydov.workbox@gmail.com (Y.D.); serenko@phystech.edu (A.S.);
Demin_VA@nrcki.ru (V.D.)

2 Moscow Engineering Physics Institute, National Research Nuclear University, 115409 Moscow, Russia
* Correspondence: Sboev_AG@nrcki.ru

Abstract: The problem with training spiking neural networks (SNNs) is relevant due to the ultra-low
power consumption these networks could exhibit when implemented in neuromorphic hardware.
The ongoing progress in the fabrication of memristors, a prospective basis for analogue synapses,
gives relevance to studying the possibility of SNN learning on the base of synaptic plasticity models,
obtained by fitting the experimental measurements of the memristor conductance change. The
dynamics of memristor conductances is (necessarily) nonlinear, because conductance changes depend
on the spike timings, which neurons emit in an all-or-none fashion. The ability to solve classification
tasks was previously shown for spiking network models based on the bio-inspired local learning
mechanism of spike-timing-dependent plasticity (STDP), as well as with the plasticity that models
the conductance change of nanocomposite (NC) memristors. Input data were presented to the
network encoded into the intensities of Poisson input spike sequences. This work considers another
approach for encoding input data into input spike sequences presented to the network: temporal
encoding, in which an input vector is transformed into relative timing of individual input spikes.
Since temporal encoding uses fewer input spikes, the processing of each input vector by the network
can be faster and more energy-efficient. The aim of the current work is to show the applicability
of temporal encoding to training spiking networks with three synaptic plasticity models: STDP,
NC memristor approximation, and PPX memristor approximation. We assess the accuracy of the
proposed approach on several benchmark classification tasks: Fisher’s Iris, Wisconsin breast cancer,
and the pole balancing task (CartPole). The accuracies achieved by SNN with memristor plasticity
and conventional STDP are comparable and are on par with classic machine learning approaches.

Keywords: spiking neural networks; synaptic plasticity; spike-timing-dependent plasticity; memristor

1. Introduction

A variety of problems surround the phenomena or dynamical processes that cannot be
described by explicit laws expressed in differential equations. Such tasks could be solved
with the help of data-driven modeling, which forms an implicit model of the process of
interest by learning from the observed data. An especially relevant direction in data-driven
modeling involves spiking neural networks (SNNs) [1–3], an inherent characteristic of
which is the nonlinearity in the temporal dynamics of neurons receiving and transmitting
spikes and the dynamics of the synaptic weights during learning. The dynamics of spiking
neurons is described by nonlinear differential equations: the membrane potential of a
neuron receives non-differentiable pulses when input spikes arrive and is instantaneously
reset to its resting value upon emitting an output spike.

The practical relevance of SNNs involves the ultra-low power consumption these
networks could exhibit when implemented in neuromorphic hardware [4,5]. For instance,
the digital neuromorphic chip TrueNorth [6] spends only 26 pJ for transmitting an impulse

Mathematics 2021, 9, 3237. https://doi.org/10.3390/math9243237 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6921-4133
https://orcid.org/0000-0002-2321-9879
https://doi.org/10.3390/math9243237
https://doi.org/10.3390/math9243237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9243237
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9243237?type=check_update&version=1

Mathematics 2021, 9, 3237 2 of 10

(spike) from neuron-to-neuron. Devices in which synapses (and possibly neurons too)
are implemented in an analogue fashion can be even more efficient [7]. The prospective
element base for the analogue implementation of a synapsis is a memristor [8,9].

This gives relevance toward developing spiking neural network models with learning
based on synaptic plasticity mechanisms that model the conductance change of a mem-
ristor. A number of memristor plasticity models have been obtained so far, backed by
experimental measurements, in which the drift of the conductance of a memristor depends
nonlinearly on its current conductance and on the time difference between presynaptic
and postsynaptic spikes [10–14]. Spiking networks with the plasticity approximating
nanocomposite (NC) memristors (CoFeB)x(LiNbO3)1−x were shown to classify the MNIST
handwritten digits [15]. Recently, a highly-plastic poly-p-xylylene (PPX) memristor was
created [16], which makes it relevant to study the possibility of learning about SNNs, with
plasticity modeling that type of memristor.

This paper considers three synaptic plasticity models: the model of the PPX memristor
plasticity obtained by approximation of its experimental measurements, the existing NC
memristor plasticity model [15], and the additive spike-timing-dependent plasticity, which
was shown to resemble the plasticity of various types of memristors [17,18].

The aim of this paper is to numerically solve the learning dynamics of the spiking
neural network model with the aforementioned plasticity mechanisms, to obtain weights
established after learning, and to obtain the times of output spikes for given input spikes,
which are then decoded into classes to solve a classification task.

Unlike existing works devoted to SNN learning with memristor plasticity
models [15,17,19–21], which are based on frequency encoding of the input data, we use
temporal encoding, in which the information is contained in the timings of input spike
patterns, as it requires fewer spikes and, thus, less energy.

For the NC and PPX memristor plasticity models (described in Section 2.2), we show in
Section 3.1 that a neuron memorizes repetitive spike patterns. Based on this, an algorithm
for training a spiking neural network with temporal encoding is proposed in Section 2.5. The
performance of the algorithm is tested in Section 3.2 on benchmark classification problems.

2. Materials and Methods
2.1. Neuron Model

Keeping in mind the prospective possibility of hardware implementation, we strive
for a simple neuron model. We thus use the leaky integrate-and-fire model [22] for the
neuron dynamics, in which the neuron has one state variable, the membrane potential V(t),
which obeys the following dynamics as soon as it is below the threshold Vth:

dV
dt

= −V(t)−Vrest

τm
+

Isyn(t) + Iext(t)
Cm

. (1)

The neuron is considered to fire an output spike when V(t) exceeds Vth, after which
V is instantaneously reset to 0, and during the refractory period tref the neuron is unable to
fire spikes.

Iext(t) is the external stimulation current applied during training, described in
Section 2.5. Isyn(t) is the incoming postsynaptic current, summed over currents Isyn, i(t)
coming from the neuron’s input synapses:

Isyn(t) = ∑
i

Isyn, i(t),
dIsyn, i

dt
= −

Isyn, i(t)
τsyn

+ wi(t)
qsyn

τsyn
Spre, i(t− tdelay). (2)

Here, Spre, i(t) is equal to 1 when a presynaptic spike arrives at the i-th input synapse
of the neuron, and to 0 otherwise. The arrivals of presynaptic spikes are governed by the
input encoding algorithm described in Section 2.4. tdelay is the delay for transmitting a
presynaptic spike to the postsynaptic neuron, in our simulations equal to the integration
timestep dt = 0.1 ms. Cm = 1 pF, qsyn = 5 fC, τsyn = 5 ms. The constants Vth, τm,
and tref are adjusted for each particular classification task and presented in Section 3.

Mathematics 2021, 9, 3237 3 of 10

The dimensionless synaptic weight 0 6 wi(t) 6 1 changes after each presynaptic and
postsynaptic spike in accordance with the plasticity model, as defined in Section 2.2.

2.2. Plasticity Models
2.2.1. Additive Spike-Timing-Dependent Plasticity

For the sake of comparison, in addition to memristive plasticity models, which will be
presented in the next sections, we perform numerical experiments with the conventional
STDP [23] in its additive form, where the synaptic weight change ∆w does not depend
on the current weight w, and only depends on the time interval ∆t from the arrival of a
presynaptic spike to emitting the postsynaptic spike:

∆w =

 −A− · exp
(

∆t
τ−

)
if ∆t < 0;

A+ · exp
(
− ∆t

τ+

)
if ∆t > 0.

(3)

Here, following the existing literature [24], τ+ = 20 ms, τ− = 20 ms, A+ = A− = 0.01.
Solving the synapse dynamics is performed with the help of two more state variables

for each synapse i, its presynaptic and postsynaptic eligibility traces [25] xi and yi:

dxi
dt

=− xi(t)
τ+

+ Spre, i(t),

dyi
dt

=− yi(t)
τ−

+ Spost(t).

dwi
dt

=max
(

A− · yi(t) · Spre, i(t), 1− wi
)
+

+ min
(

A+ · xi(t) · Spost(t), w
)
.

(4)

2.2.2. Nanocomposite Memristor Plasticity

The plasticity model for nanocomposite memristors (CoFeB)x(LiNbO3)1−x is borrowed
from the literature [15]:

∆w(∆t) =

A+ · w ·
[
1 + tanh

(
−∆t−µ+

τ+

)]
if ∆t > 0;

A− · w ·
[
1 + tanh

(
∆t−µ−

τ−

)]
if ∆t < 0.

(5)

The constants are kept as in the original literature [15]: A+ = 0.074, A− = −0.047,
µ+ = 26.7 ms, µ− = −22.3 ms, τ+ = 9.3 ms, τ− = 10.8 ms.

The spike timing dependence curves for different conductance values are depicted in
Figure 1A.

2.2.3. Model of Poly-p-Xylylene Memristors

PPX-based memristors, in contrast to NC-based memristors, demonstrate resistive
switching driven by electrochemical metallization mechanism: conductive filaments are
formed in them due to electromigration of metal ions [16]. This leads to a slightly different
shape of the spike timing dependence curves.

We fitted the experimental dependences of the change in synaptic conductance on the
time interval ∆t between presynaptic and postsynaptic splices for PPC memristors using
the following function:

∆w(∆t) =

 |∆t|
τ α+e−β+

(
wmax−w

wmax−wmin

)
e−γ+(∆t

τ)
2

if ∆t > 0;
|∆t|

τ α−e−β−
(

w−wmin
wmax−wmin

)
e−γ−(∆t

τ)
2

if ∆t < 0.
(6)

Here τ = 10 ms, α+ = 0.32, α− = 0.01, β+ = 2.21, β− = −5.97, γ+ = 0.03, γ− = 0.15,
wmax = 1, wmin = 0.

Mathematics 2021, 9, 3237 4 of 10

−100 −50 0 50 100 150 200
Δt

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

ΔW

Δ
0.1
0.14
0.18
0.22
0.26
0.3
0.34
0.38
0.42
0.46
0.5
0.54
0.58

−100 −50 0 50 100 150 200
Δt

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

ΔW

B
0.1
0.14
0.18
0.22
0.26
0.3
0.34
0.38
0.42
0.46
0.5
0.54
0.58

Figure 1. Spike timing dependence curves: the dependence of the change ∆w in synaptic conductance on the interval ∆t
between a presynaptic spike and a postsynaptic spike for different current synaptic conductance values w. (A): for the
nanocomposite memristors, redrawn from the original paper [15], (B): for poly-p-xylylene memristors.

The weight-dependent exponents in Equation (6) express the experimentally observed
dependence of the change in synaptic conductance on the initial conductance value. Similar
dependencies have already been applied in some works on memristic conductivity, in
particular in [26]. Parameters α+, α−, β+, β−, γ+, γ− were determined from the experimen-
tally obtained dependencies in three stages: at the first stage, experimental dependencies
were approximated by cubic splines. At the second stage, the obtained spline curves were
approximated by the function above (see Equation (6)) for each set of experimental data
by the nonlinear least squares method At the third stage, the best set of parameters was
chosen based on the maximum possible values of R2. The experimental data consisted of
measurements of the dependence of the change in synaptic conductance on ∆t for four
different initial conductance values, for each of which, measurements were performed
five times, after which the results were averaged. The results of the experiments and
approximations are shown in Figure 1B.

2.3. Network Model Implementation

Overall, the network is defined by the following system of equations:

For each neuron j:

Vj(t) =
t∫

t̂j

exp
(
− t− t′

τm

)
·
(

Iext, for neuron j(t′) + Isyn, for neuron j(t′)
)

dt′,

Spost, j(t) = Θ
(
Vj(t)−Vth

)
·Θ
(
t− t̂j − tref

)
;

For each input component i:

Spre, i(t) = ∑
ti
input

δ
(

t− ti
input

)
;

For each input synapse i of each neuron j:
dwij

dt
= Plasticity

(
wij, Spre, i, Spost, j

)
.

(7)

Here, the formal solution for a neuron’s potential Vj(t) is presented [27,28], start-
ing from the moment t̂j of its most recent spike. The initial conditions are Vj(t̂j) = 0,
wij(0) = winit. The times ti

input of the presynaptic spikes arriving from each input i during
presenting every input vector are defined in Section 2.4. Isyn are defined in Equation (2).
Plasticity refers to one of the models (3), (5), or (6). Θ is the heaviside step function.

Mathematics 2021, 9, 3237 5 of 10

Solving the network dynamics is performed numerically in a piecewise manner: Vj(t)
is obtained over an interval during which Spost, j(t) and all Spre, i(t) equal 0. When a
postsynaptic spike occurs, wij is updated in accordance with the plasticity model, and t̂j is
updated to equal the current value of t. When a presynaptic spike arrives, wij is updated,
and the integration continues.

Simulations are carried out with the help of the NEural Simulation Tool (NEST)
library [29].

2.4. Input Preprocessing and Encoding

Before presenting input data to the SNN, it is normalized by applying L2 norm or
MinMaxScale (https://scikit-learn.org/stable/modules/preprocessing.html, accessed on
13 October 2021) depending on the dataset (see Section 2.6), and then processed by Gaussian
receptive fields [30–32]. The latter converts an input vector ~x of dimension N, a vector
of dimension N · M, where M is the number of receptive fields. Each component xi is

transformed into M components g(xi, µ0), . . . , g(xi, µM), where g(xi, µj) = exp
(

(xi−µj)
2

σ2

)
.

Here, µj = Xi
min + (Xi

max − Xi
min) ·

j
M−1 is the center of the j-th receptive field, Xi

max and
Xi

min are the maximal and minimal values of the i-th component among all vectors of the
training set, which are 1 and 0, respectively, if MinMaxScale normalization is applied. M is
chosen to be 20 in all experiments.

After preprocessing, the vector obtained is encoded into a pattern of spikes to present
to the input synapses of the network. Each component xi of the preprocessed vector is
represented by one spike arriving at he i-th input synapse at time ti

input = th(1− xi), relative
to the beginning of presenting that input vector, where th is the duration of presenting one
vector. That way, the particularities of a class of input vectors are characterized by a few
of the earliest input spikes, which, in turn, correspond to the receptive fields typical to
that class.

2.5. Learning Algorithm

To solve multi-class classification tasks, on the base of local plasticity tasks, the learning
algorithm should be designed so that each neuron learns specifically the class it is assigned
to. To achieve that, we use a learning algorithm in which neurons memorize their classes
induced by a reinforcing signal (see Algorithm 1).

The network consists of as many neurons as there are classes in the classification
problem; the neurons are connected with each other by non-plastic inhibitory synapses
with fixed weights winh (see Figure 2).

Figure 2. The spiking neural network topology.

https://scikit-learn.org/stable/modules/preprocessing.html

Mathematics 2021, 9, 3237 6 of 10

At the training stage, the neurons receive spike patterns encoding vectors of classes of
the training sample. The neuron that corresponds to the class of the input sample being
fed at the moment is stimulated by setting a high positive Iext for a short period, starting
from xmin

i + tshift, where xmin
i is the beginning of presenting an input vector. The value

of Iext is chosen such that it causes an immediate output spike. The spike induced by
such a stimulation will lead to amplification, according to the rule of local plasticity, of
those inputs that receive spikes at earlier moments of time. To decrease the probability of
excitation of other neurons and prevent their synaptic weights from growing while giving
examples of classes that are not assigned to them at the learning stage, the threshold is set
so that only the trained neuron spikes in response to reinforcing signal. The class of the
example is determined by the neuron that generated the spike earliest.

Algorithm 1 Learning algorithm
Input: matrix of preprocessed input objects X, vector of object classes Y, neuron parameters,
plasticity parameters, initial distribution of weights
Parameter: N_epochs, th, h
Output: network weights

1: Initialize neural network: neurons, synapses and initial weights.
2: Define input spike patterns with the duration th.
3: for each xi in X do
4: search for a minimal value of xmin

i .
5: define the time since the beginning of the reinforcing signal as xmin

i + tshift, where
tshift is a reinforcing signal temporal shift.

6: define the termination time of the reinforcing signal as xmin
i + tshift + 2 * dt, where dt

is the simulation timestep.
7: Set an amplitude for the reinforcing signal.
8: end for
9: for k in N_epochs do

10: Set input spikes at the generators.
11: Set teacher current impulse times at the generators.
12: Simulate a training epoch.
13: For the next sample, times of input spikes and teacher current impulse times are

shifted on a time period equal to the epoch simulation time.
14: end for
15: return weight distribution, output spike times.

2.6. Datasets

Two benchmark classification problems are considered: Fisher’s Iris and Wisconsin
breast cancer.

The dataset of Fisher’s Iris consists of 150 flowers, described by four traits: the length
and width of the sepal and petals in centimeters. The specimens belong to three different
classes of 50 specimens each, corresponding to three species: Iris setosa, Iris virginica, and
Iris versicolor. The first class is linearly separable from the second and third, while the
second and third are not linearly separable.

The breast cancer dataset collected at the University of Wisconsin consists of 569 sam-
ples, 357 of which are classified as “benign” and 212 as “malignant”. Each sample in
the dataset represents cell characteristics from a digitized image of a fine needle aspira-
tion breast biopsy. The input vector of length 30 is composed of the mean value (among
all cells), the standard deviation, and the extreme values of each of the 10 cell nucleus
characteristics—radius, texture, perimeter, area, smoothness, compactness, concavity, con-
cave points, symmetry, and fractal dimension.

Pole balancing [33] is originally a reinforcement learning task. However, creating a
reinforcement learning algorithm for SNNs with memristive plasticity will be included in
future work. As a preliminary step for that, we here consider it as a classification task.

Mathematics 2021, 9, 3237 7 of 10

In this task, the objective is to hold a massive pole attached to a moving cart by a
hinge for a given number of episodes (at least 195 out of 200) by changing the position of
the carriage. The environment is characterized by four parameters: coordinate and speed
of the carriage, as well as angle of deviation from the vertical and angular velocity of the
pole (x, ẋ, φ and φ̇). The control action which the network should predict applies a force of
1 N to the carriage in the left or right direction.

To convert this task into a classification problem, we collected a reference set of
environmental states and control actions with the help of an artificial neural network,
with one hidden layer of two neurons to the task. This network was trained using the RL
algorithm Policy Gradient (https://github.com/norse/norse/blob/master/norse/task/
cartpole.py, accessed on 24 October 2021) until the average number of episodes (carriage
movements), during which the pole remained in an acceptable position, was equal to 198
(out of 200 episodes). After the artificial neural network was successfully trained, it was run
in the CartPole environment without training, and the decisions it made at each step and
their corresponding environment states were recorded. A total of 100 runs were performed,
which resulted in the collection of 1949 input-output pairs. The collected set of pairs was
used to train the spiking neural network.

3. Results
3.1. Memorizing Repeating Patterns

The first experiment was aimed at testing the underlying effect necessary for learning
with temporal encoding. This effect was shown previously [34] for STDP: if a neuron gets a
repeating spike pattern among Poisson noise, the neuron will gradually become selectively
sensitive to this pattern. The times of spikes emitted by the neuron in response to the
pattern will gradually become closer to the beginning of its presentation.

We tested this effect by feeding a single neuron with a single vector from the Fisher’s
Iris dataset, interspersed with random Poisson spike sequences. When a repeating spike
pattern is presented to a neuron, the synaptic weights change, so that the neuron generates
spike earlier, related to the start of pattern presentation (Figure 3). The spike time even-
tually established depends on the value of the neuron threshold. At the same time, the
neuron gradually stops spiking during presenting Poisson noise. Plasticity modeling PPX
memristors is less robust to noise due to the high value of its time window constant τ.

Figure 3. Reduction over time of the delay between the start of the repetitive input spike pattern and
the output spike of the neuron.

In the next section, the learning algorithm based on the pattern memorization effect
confirmed here for all three plasticity models is tested on benchmark classification datasets:
Fisher’s Iris, Wisconsin breast cancer, and CartPole.

https://github.com/norse/norse/blob/master/norse/task/cartpole.py
https://github.com/norse/norse/blob/master/norse/task/cartpole.py

Mathematics 2021, 9, 3237 8 of 10

3.2. Classification with SNN

For each dataset, the learning algorithm was applied three times: with STDP, with NC
plasticity, and with PPX plasticity. The plasticity model constants were kept unchanged as
originally defined. The neuron model and input encoding constants were adjusted when
necessary. As a result, the neuron membrane time constant τm was found to be 13 ms.
The neuron refractoriness period is tref = 300 ms, so that after emitting a spike, it cannot
spike again up until the end of the inter-pattern interval th = 400 ms. The initial weight of
excitatory synapses is winit = 0.5. The inhibitory weight winh = −4.

The parameters adjusted separately for each task are shown in Table 1 along with the
accuracies of solving respective classification tasks. Accuracy is measured by the F1-macro
score, since the classes are almost equal by the numbers of input vectors. Mean, minimum,
and maximum values are presented over the splits of five-fold cross-validation.

Table 1. Spiking network parameters and F1-score for different classification tasks.

Task Plasticity Vth, mV σ tshift, ms F1, %
mean min max

Fisher’s Iris STDP 5 0.005 0 97 93 100
Fisher’s Iris NC 5 0.005 0 97 93 100
Fisher’s Iris PPX 3 0.005 0 97 93 100
Breast cancer STDP 8 0.005 3.2 94 89 97
Breast cancer NC 8 0.005 3.2 93 88 96
Breast cancer PPX 6 0.005 3.2 93 89 96
CartPole STDP 5 0.01 1.2 66 (199/200) 65 68
CartPole NC 6 0.01 1.2 63 (199/200) 62 65
CartPole PPX 5 0.01 1 60 (197/200) 60 68

4. Discussion

The fact that the results were obtained with similar neuron and synapse model parame-
ters indicates a possible applicability of the proposed learning algorithm to other problems,
while the parameters reported here could form the initial working range. Still, selecting the
network and encoding parameters individually can achieve greater accuracy. For example,
for the Wisconsin breast cancer and CartPole tasks, the timing of the reinforcing signal had
to be shifted in the positive direction.

The simplicity of the neuron model considered contributes towards the prospective
possibility of hardware implementation of the proposed learning algorithm. However,
other nonlinear forms of the neuron’s response function could be studied in further work.

5. Conclusions

This paper demonstrates the possibility of solving classification tasks using spiking
neural network models with synaptic plasticity models that approximate the plasticity of
nanocomposite and poly-p-xylylene memristors. The proposed learning algorithm was
tested on several benchmark classification tasks: Fisher’s Iris, Wisconsin breast cancer, and
the pole balancing task. The network hyperparameters were similar for all tasks, which
shows the robustness of the approach.

In the future, we plan to test the proposed algorithm on more benchmarks, and
analyze more variants of memristive plasticity models.

Mathematics 2021, 9, 3237 9 of 10

Author Contributions: Conceptualization, A.S. (Alexander Sboev) and V.D.; funding acquisition,
R.R.; investigation, D.V. and Y.D.; methodology, D.V., R.R., and A.S. (Alexey Serenko); project
administration, A.S. (Alexander Sboev) and R.R.; resources, V.D.; software, D.V. and Y.D.; supervision,
V.D.; writing—original draft, D.V., Y.D., and A.S. (Alexey Serenko); writing—review & editing, A.S.
(Alexander Sboev), R.R. and A.S. (Alexey Serenko). All authors have read and agreed to the published
version of the manuscript.

Funding: Developing the network model and the learning algorithm and running numerical simula-
tions were supported by Russian Science Foundation grant no. 21-11-00328. Obtaining experimental
measurements of memristor conductivity changes in which the memristor plasticity models are based,
in Sections 2.2.2 and 2.2.3, was supported by Russian Science Foundation grant no. 20-79-10185.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was carried out using computing resources of the federal collective
usage center Complex for Simulation and Data Processing for MEGA-Science Facilities at NRC
“Kurchatov Institute”, http://ckp.nrcki.ru/, accessed on 13 October 2021.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Paugam-Moisy, H.; Bohte, S.M. Computing with spiking neuron networks. In Handbook of Natural Computing; Rozenberg, G.,

Back, T., Kok, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 335–376. [CrossRef]
2. Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S.R.; Masquelier, T.; Maida, A. Deep learning in spiking neural networks. Neural Netw.

2019, 111, 47–63. [CrossRef] [PubMed]
3. Taherkhani, A.; Belatreche, A.; Li, Y.; Cosma, G.; Maguire, L.P.; McGinnity, T. A review of learning in biologically plausible

spiking neural networks. Neural Netw. 2020, 122, 253–272. [CrossRef] [PubMed]
4. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A

neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]
5. Indiveri, G.; Corradi, F.; Qiao, N. Neuromorphic architectures for spiking deep neural networks. In Proceedings of the 2015 IEEE

International Electron Devices Meeting, Washington, DC, USA, 7–9 December 2015; pp. 4.2.1–4.2.4.
6. Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.; Guo, C.;

Nakamura, Y.; et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science
2014, 345, 668–673. [CrossRef]

7. Rajendran, B.; Sebastian, A.; Schmuker, M.; Srinivasa, N.; Eleftheriou, E. Low-Power Neuromorphic Hardware for Signal
Processing Applications: A review of architectural and system-level design approaches. IEEE Signal Process. Mag. 2019,
36, 97–110. [CrossRef]

8. Camuñas-Mesa, L.A.; Linares-Barranco, B.; Serrano-Gotarredona, T. Neuromorphic spiking neural networks and their memristor-
CMOS hardware implementations. Materials 2019, 12, 2745. [CrossRef]

9. Saïghi, S.; Mayr, C.G.; Serrano-Gotarredona, T.; Schmidt, H.; Lecerf, G.; Tomas, J.; Grollier, J.; Boyn, S.; Vincent, A.F.;
Querlioz, D.; et al. Plasticity in memristive devices for spiking neural networks. Front. Neurosci. 2015, 9, 51. [CrossRef]

10. Ismail, M.; Chand, U.; Mahata, C.; Nebhen, J.; Kim, S. Demonstration of synaptic and resistive switching characteristics in
W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing. J. Mater. Sci. Technol. 2022, 96, 94–102.
[CrossRef]

11. Ryu, J.H.; Mahata, C.; Kim, S. Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic
application. J. Alloys Compd. 2021, 850, 156675. [CrossRef]

12. Sboev, A.G.; Emelyanov, A.V.; Nikiruy, K.E.; Serenko, A.V.; Sitnikov, A.V.; Presnyakov, M.Y.; Rybka, R.B.; Rylkov, V.V.;
Kashkarov, P.K.; Kovalchuk, M.V.; et al. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive
weights. Nanotechnology 2019, 31, 045201. [CrossRef]

13. Prudnikov, N.V.; Lapkin, D.A.; Emelyanov, A.V.; Minnekhanov, A.A.; Malakhova, Y.N.; Chvalun, S.N.; Demin, V.A.; Erokhin, V.V.
Associative STDP-like learning of neuromorphic circuits based on polyaniline memristive microdevices. J. Phys. D Appl. Phys.
2020, 53, 414001. [CrossRef]

14. Lapkin, D.A.; Emelyanov, A.V.; Demin, V.A.; Berzina, T.S.; Erokhin, V.V. Spike-timing-dependent plasticity of polyaniline-based
memristive element. Microelectron. Eng. 2018, 185–186, 43–47. [CrossRef]

15. Demin, V.; Nekhaev, D.; Surazhevsky, I.; Nikiruy, K.; Emelyanov, A.; Nikolaev, S.; Rylkov, V.; Kovalchuk, M. Necessary conditions
for STDP-based pattern recognition learning in a memristive spiking neural network. Neural Netw. 2021, 134, 64–75. [CrossRef]

http://ckp.nrcki.ru/
http://doi.org/10.1007/978-3-540-92910-9_10
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://www.ncbi.nlm.nih.gov/pubmed/30682710
http://dx.doi.org/10.1016/j.neunet.2019.09.036
http://www.ncbi.nlm.nih.gov/pubmed/31726331
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1109/MSP.2019.2933719
http://dx.doi.org/10.3390/ma12172745
http://dx.doi.org/10.3389/fnins.2015.00051
http://dx.doi.org/10.1016/j.jmst.2021.04.025
http://dx.doi.org/10.1016/j.jallcom.2020.156675
http://dx.doi.org/10.1088/1361-6528/ab4a6d
http://dx.doi.org/10.1088/1361-6463/ab9262
http://dx.doi.org/10.1016/j.mee.2017.10.017
http://dx.doi.org/10.1016/j.neunet.2020.11.005

Mathematics 2021, 9, 3237 10 of 10

16. Minnekhanov, A.A.; Shvetsov, B.S.; Martyshov, M.M.; Nikiruy, K.E.; Kukueva, E.V.; Presnyakov, M.Y.; Forsh, P.A.; Rylkov, V.V.;
Erokhin, V.V.; Demin, V.A.; et al. On the resistive switching mechanism of parylene-based memristive devices. Org. Electron.
2019, 74, 89–95. [CrossRef]

17. Serrano-Gotarredona, T.; Masquelier, T.; Prodromakis, T.; Indiveri, G.; Linares-Barranco, B. STDP and STDP variations with
memristors for spiking neuromorphic learning systems. Front. Neurosci. 2013, 7, 2. [CrossRef]

18. Du, N.; Kiani, M.; Mayr, C.; You, T.; Bürger, D.; Skorupa, I.; Schmidt, O.; Schmidt, H. Single pairing spike-timing dependent
plasticity in BiFeO3 memristors with a time window of 25 ms to 125 µs. Front. Neurosci. 2015, 9, 227. [CrossRef]

19. Qu, L.; Zhao, Z.; Wang, L.; Wang, Y. Efficient and hardware-friendly methods to implement competitive learning for spiking
neural networks. Neural Comput. Appl. 2020, 32, 13479–13490. [CrossRef]

20. Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Asapu, S.; Zhuo, Y.; et al. Fully memristive neural
networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145. [CrossRef]

21. Pedretti, G.; Milo, V.; Ambrogio, S.; Carboni, R.; Bianchi, S.; Calderoni, A.; Ramaswamy, N.; Spinelli, A.; Ielmini, D. Memristive
neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci. Rep. 2017, 7, 1–10.
[CrossRef]

22. Burkitt, A.N. A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol.
Cybern. 2006, 95, 97–112. [CrossRef]

23. Bi, G.Q.; Poo, M.M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 2001,
24, 139–166. [CrossRef]

24. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using Spike-Timing-Dependent Plasticity. Front. Comput.
Neurosci. 2015, 9, 99. [CrossRef]

25. Morrison, A.; Diesmann, M.; Gerstner, W. Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern.
2008, 98, 459–478. [CrossRef]

26. Querlioz, D.; Dollfus, P.; Bichler, O.; Gamrat, C. Learning with memristive devices: How should we model their behavior? In
Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures, San Diego, CA, USA, 8–9 June 2011;
pp. 150–156. [CrossRef]

27. Gerstner, W. A framework for spiking neuron models: The spike response model. Handb. Biol. Phys. 2001, 4, 469–516.
28. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge,

UK, 2002.
29. Kunkel, S.; Morrison, A.; Weidel, P.; Eppler, J.M.; Sinha, A.; Schenck, W.; Schmidt, M.; Vennemo, S.B.; Jordan, J.; Peyser, A.; et al.

NEST 2.12.0. 2017. Available online: https://doi.org/10.5281/zenodo.259534 (accessed on 13 October 2021).
30. Gütig, R.; Sompolinsky, H. The tempotron: A neuron that learns spike timing-based decisions. Nat. Neurosci. 2006, 9, 420–428.

[CrossRef]
31. Yu, Q.; Tang, H.; Tan, K.C.; Yu, H. A brain-inspired spiking neural network model with temporal encoding and learning.

Neurocomputing 2014, 138, 3–13. [CrossRef]
32. Wang, X.; Hou, Z.G.; Lv, F.; Tan, M.; Wang, Y. Mobile robots’ modular navigation controller using spiking neural networks.

Neurocomputing 2014, 134, 230–238. [CrossRef]
33. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE

Trans. Syst. Man Cybern. 1983, SMC-13, 834–846. [CrossRef]
34. Masquelier, T.; Guyonneau, R.; Thorpe, S.J. Spike Timing Dependent Plasticity finds the start of repeating patterns in continuous

spike trains. PLoS ONE 2008, 3, e1377. [CrossRef]

http://dx.doi.org/10.1016/j.orgel.2019.06.052
http://dx.doi.org/10.3389/fnins.2013.00002
http://dx.doi.org/10.3389/fnins.2015.00227
http://dx.doi.org/10.1007/s00521-020-04755-4
http://dx.doi.org/10.1038/s41928-018-0023-2
http://dx.doi.org/10.1038/s41598-017-05480-0
http://dx.doi.org/10.1007/s00422-006-0082-8
http://dx.doi.org/10.1146/annurev.neuro.24.1.139
http://dx.doi.org/10.3389/fncom.2015.00099
http://dx.doi.org/10.1007/s00422-008-0233-1
http://dx.doi.org/10.1109/NANOARCH.2011.5941497
https://doi.org/10.5281/zenodo.259534
http://dx.doi.org/10.1038/nn1643
http://dx.doi.org/10.1016/j.neucom.2013.06.052
http://dx.doi.org/10.1016/j.neucom.2013.07.055
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1371/journal.pone.0001377

	Introduction
	Materials and Methods
	Neuron Model
	Plasticity Models
	Additive Spike-Timing-Dependent Plasticity
	Nanocomposite Memristor Plasticity
	Model of Poly-p-Xylylene Memristors

	Network Model Implementation
	Input Preprocessing and Encoding
	Learning Algorithm
	Datasets

	Results
	Memorizing Repeating Patterns
	Classification with SNN

	Discussion
	Conclusions
	References

