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Abstract: In this paper, we investigate a reaction–diffusion equation with a Caputo fractional deriva-
tive in time and with boundary conditions. According to the principle of contraction mapping, we
first prove the existence and uniqueness of local solutions. Then, under some conditions of the initial
data, we obtain two sufficient conditions for the blow-up of the solutions in finite time. Moreover, the
existence of global solutions is studied when the initial data is small enough. Finally, the long-time
behavior of bounded solutions is analyzed.
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1. Introduction

The purpose of this paper is to study the Cauchy problem for the following time
fractional reaction–diffusion equation:

cDα
t u− d∆u = −u(1− u), x ∈ Ω, t > 0, (1)

supplemented with a boundary condition:

u(x, t) = 0, x ∈ ∂Ω, t > 0, (2)

and the following initial condition:

u(x, 0) = u0(x), x ∈ Ω. (3)

Here, Ω ⊆ RN(N ≥ 1) is an open bounded domain with the Dirichlet boundary
values ∂Ω, d > 0 is the diffusion coefficient, and cDα

t is the Caputo fractional derivative of
order α ∈ (0, 1] defined by the following equation:

cDα
t u(x, t) =

1
Γ(1− α)

∫ t

0
(t− s)−α ∂u

∂s
(x, s)ds, (4)

where Γ(·) is the Gamma function.
Fractional calculus is a generalization of ordinary differential as well as arbitrary

non-integer orders. In recent years, it has achieved considerable development and has been
widely used for modeling in various fields of science and engineering such as in diffusion
process, signal processing, porous media, economics, physics and chemistry, etc. It is also
considered to be an excellent tool for describing the hereditary properties and diffusion
process of various materials. For more details, we refer the reader to the monographs
of Samko, Kilbas, and Marichev [1], which is an encyclopedic treatment of fractional
calculus and Podlubny [2], Kilbas et al. [3], and papers [4–9] and the references therein. In
particular, differential equations with fractional derivatives are widely used to simulate the
reaction–diffusion phenomenon. A powerful impetus for scholars to study such equations
comes from physics. Reaction–diffusion on fractals is described by fractional diffusion
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equations (for example, strong porous materials or amorphous semiconductors can be
found in [10] and the references therein); hence, scholars worked to obtain the so-called
fractional diffusion equation.

Fractional diffusion theory has developed rapidly in the past few decades because
it has successfully described many important phenomena. It is well known that many physi-
cal and biological phenomena can be described by the following reaction–diffusion equation:

ut = ∆u + F(u(t, x)),

where the variable u(t, x) can be seen as the temperature in a chemical reaction or the
population density of a biological species (see [11,12]). Meanwhile, since the important
conception of “critical exponent” was defined in Fujita’s work [13], many scholars have
investigated the blow-up and global existence issues and have obtained some rich results
in the past decades [14–18].

From the introduction above, it is easy to guess that researchers are interested in
the blow-up problem of the solution for fractional diffusion equations. Many relevant
papers have been published in recent years, such as [19–21]. Particularly, Hnaien et al. [22]
studied the blow-up time and the large-time behavior of the global existence for fractional
equations. In [23], the authors considered a reaction–diffusion equation with a Caputo
fractional derivative in time and with various boundary conditions. In [24], the blow-up
phenomenon and conditions of its appearance were proved by Xu.

This paper is motivated by the recent work of [25], in which they proved the dissipa-
tivity of the time fractional-order sub-diffusion equation:

cDα
t u− d∆u + f (u) = 0, x ∈ Ω, α ∈ (0, 1), (5)

where f (u) =
2p−1

∑
j=0

bjuj, b2p−1 > 0, p ∈ N+.

Recently, Cao et al. [26] studied the following reaction–diffusion equation with a weak
spatial source:

cDα
t u− d∆u + a(x) + up = 0, x ∈ Ω, α ∈ (0, 1). (6)

In this paper, we are interested in the blow-up phenomenon of solutions to the initial
boundary value problem (1)–(3). Since the solution of the problem (1)–(3) may blow up in
finite time, we shall use the following notation:

Tmax = Tmax(u0) := sup{T > 0 : the classical solution exists on [0, T]for the initial data u0}.

If Tmax < ∞ and
lim

t→Tmax
‖u(·, t)‖L∞(Ω) = ∞,

where we call the solution u that blows up in finite time and say Tmax is the blow-up time;
otherwise, the solution exists globally.

We need to overcome some difficulties when we modify f (u) based on the above-
mentioned literature and give an appropriate f (u). We decided to analyze the blow-up
and global existence of solutions to the fractional Fisher–KPP (Kolmogorov–Petrovski–
Piskunov) equations because most of the literature on Fisher–KPP equations is of integer
order. This paper is mainly divided into the following parts: By using the contraction
mapping principle, Theorem 1 in Section 2 proves the existence and uniqueness of the
local solution of problems (1)–(3). In Section 3, two sufficient conditions for the blow-up of
solutions in finite time are given in Theorem 2. According to the conditions of the initial
data, we analyze the existence of globally bounded solutions and the long-time behavior of
global solutions in Section 4. Finally, conclusions and a brief discussion are presented in
Section 5.
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2. Existence of a Local Solution

In this section, we prove the existence and uniqueness of the solution to problems
(1)–(3).

Lemma 1. Let Tmax > 0, we say that u ∈ C([0, Tmax], C(D)) is a mild solution to (1)–(3) if u
satisfies the following integral equation:

u(t) = Eα,1(−dtαA)u0 +
∫ t

0
sα−1Eα,α(−dtαA) f (u(t− s))ds, (7)

where D = Ω or RN , f (u(s)) = −u(s)(1− u(s)), and A is the L2 realization of the Laplacian
−∆. Eα(z) and Eα, β(z) are the Mittag–Leffler functions defined by the following equation (see [3]):

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, Eα, β(z) =

∞

∑
k=0

zk

Γ(αk + β)
, α, β > 0, z ∈ C. (8)

Proof. Similar to the proof of [3], let us now solve (1) by the method of Laplace transforms.
Assuming that:

IαcDα
t (u(t)) = u(t),

where Iαu(t) := 1
Γ(α)

∫ t
0 (t − τ)α−1u(τ)dτ, t > 0. Then, applying Iα to both sides of (1),

we obtain the following:
u(t) = dIα(∆u(t)) + Iα f (u(t)). (9)

The Laplace transform of a function f is defined as follows:

L{ f (t)} :=
∫ ∞

0
e−st f (t)dt, s ∈ C.

The application of the Laplace transform yields the following:

U(s) =
(−dA)

sα
U(s) + s−αF(u(s)),

where U = Lu, F = L f . Hence,

U(s) =
1

sα + dA F(u(s)). (10)

We find that from the inversion of the Laplace transforms in (10),

u(t) = Eα,1(−dtαA)u0 +
∫ t

0
sα−1Eα,α(−dtαA) f (u(t− s))ds.

This completes the proof.

Theorem 1. Suppose that u0 is continuous, then there exists a unique local mild solution u ∈
C([0, Tmax], C(D)) for the problem (1)–(3), with the following alternative:

• either Tmax = +∞,
• or Tmax < +∞ and lim

t→Tmax
‖u(·, t)‖L∞ = +∞.

Proof. Firstly, two important inequalities (see [19]) are given:

‖Eα,1(−dtαA)u0‖L∞ ≤ ‖u0‖L∞ , (11)

and
‖Eα,α(−dtαA)u0‖L∞ ≤ 1

Γ(α)
‖u0‖L∞ . (12)
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The existence of a local solution is derived by the contraction mapping principle. For
r ∈ [2,+∞), let us define the Banach space as follows:

B =

{
u ∈ C([0, τ], C(D)) : sup

t∈[0,τ]
‖u(t)‖L∞ ≤ r‖u0‖L∞

}
,

where τ is determined later. We define the following:

Tu(t) = Eα,1(−dtαA)u0 +
∫ t

0
sα−1Eα,α(−dtαA) f (u(t− s))ds, t ∈ [0, τ].

Observe that the nonlinear term f (s) = −u(s)(1 − u(s)) is a locally Lipschitzian
function; hence, there exists a constant L > 0 such that:

‖ f (u(t− s))− f (v(t− s))‖L∞ ≤ L‖u(t− s)− v(t− s)‖L∞ . (13)

We first need to show that T : B → B. If u ∈ B, then by (11), (12), and (13), we see
that:

‖Tu(t)‖L∞ ≤ ‖Eα,1(−dtαA)u0‖L∞ +
τα

α
‖Eα,α(−dtαA) f (u)‖L∞

≤ ‖u0‖L∞ +
Lτα

Γ(α + 1)
‖u0‖L∞ .

Then T : B → B whenever τα ≤ (r−1)Γ(α+1)
L .

Next, we prove that T is a contraction mapping. Assume that u, v ∈ B, we derive the
following equation:

‖Tu(t)− Tv(t)‖L∞ ≤ tα

Γ(α + 1)
sup

0≤s≤t
‖ f (u(t− s))− f (v(t− s))‖L∞

≤ tαL
Γ(α + 1)

sup
0≤s≤t

‖u(t− s)− v(t− s)‖L∞ .

Furthermore, if we choose a τ that is small enough, such that τα ≤ Γ(α+1)
2L , then:

sup
0≤s≤t

‖Tu(t)− Tv(t)‖L∞ ≤ 1
2

sup
0≤s≤t

‖u(t− s)− v(t− s)‖L∞ .

As a result, T is the contraction mapping in B. Then, by the contraction mapping
principle, problems (1)–(3) admit a unique mild solution u ∈ B.

3. Blow-Up of Solution

From the current literature, there are three main methods of considering the blow-up
phenomenon: the comparison method [27], the concavity method [28], and the Kaplan’s
first eigenvalue method [29]. The Kaplan’s first eigenvalue method is simpler than the
other two methods, so we chose to use it for this paper in order to analyze the the blow-up
phenomenon of the reaction–diffusion equation with time fractional derivatives. Problems
(1)–(3) are reduced to the classic reaction–diffusion equation when α = 1, which was
studied in [11].

Firstly, we get two sufficient conditions for the blow-up of the solutions for (1)–(3) in
finite time. Now, let us consider the following eigenvalue problem:

{
−dφxx = λφ, x ∈ Ω,
φ = 0, x ∈ ∂Ω.

(14)
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Let φ1 be the first eigenfunction associated with the first eigenvalue λ1 of (14), which
is normalized such that

∫
Ω φ1(x)dx = 1.

The following Jensen’s inequality is important in Section 3.

Lemma 2 ([30]). Let χ be a real-valued convex function defined on Ω, and let ψ and ϕ be non-
negative Riemann integrable functions on Ω, where

∫
Ω ϕ1(x)dx = 1. Then:

χ

(∫
Ω

ψ(x)ϕ(x)dx
)
≤
∫

Ω
χ(ψ(x))ϕ(x)dx. (15)

Next, we state our main theoretical result.

Theorem 2. (Finite-Time Blow-up) Let λ1 and φ1 be the principal eigenvalue and associated
positive eigenfunction of the boundary value problem (14), with

∫
Ω φ1(x)dx = 1. Then, there exist

solutions for problems (1)–(3), with u0(x) = σϕ(x) blowing up in finite time if one of the following
conditions holds true:

(i) λ1 < −1 and σ > 0;
(ii) λ1 > −1 and σ > σ∗ := (1 + λ1)A−1

0 , where A0 =
∫

Ω ϕφ1dx.

Furthermore, Tmax ≤ C̄σ−1 has a positive constant C̄ > 0 that is dependent on the value of
α, ϕ.

Proof. Define the following:

A(t) =
∫

Ω
u(x, t)φ1dx. (16)

Then, let χ(ϕ(x)) = ϕ2(x) in Lemma 2, which leads to:

∂α A
∂tα

=
∫

Ω

∂αu
∂tα

φ1dx =
∫

Ω
(d∆u + u(u− 1)φ1dx ≥ −(1 + λ1)A + A2. (17)

Now, according to the monotonicity and maximum principle of the diffusion equation,
one gets the following:

− (1 + λ1)A + A2 ≤ ∂α A
∂tα
≤ t1−α

Γ(2− α)
A′(t), (18)

which implies that:

A′(t) ≥ Γ(2− α)

t1−α
[−(1 + λ1)A + A2]. (19)

Now, we try to solve (19). Let us denote B(t) = A−1, then B′(t) = − A′(t)
A2 , we then

have the following equation:

dB(t)
dt
≤ − 1

A2
Γ(2− α)

t1−α
[−(1 + λ1)A + A2]

= (1 + λ1)Γ(2− α)tα−1B(t)− Γ(2− α)tα−1.
(20)

It follows that when λ1 6= −1,

B(t) ≤ e(1+λ1)tα Γ(2−α)
α

{(
B(0)− 1

1 + λ1

)
+

1
1 + λ1

e−(1+λ1)tα Γ(2−α)
α

}
= e(1+λ1)tα Γ(2−α)

α

{
δ−1 A−1

0 −
1

1 + λ1

(
1− e−(1+λ1)tα Γ(2−α)

α

)}
,

(21)

where A0 =
∫

Ω ϕφ1dx. This yields the equation below:
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A(t) ≥ 1(
σ−1 A−1

0 −
1

1+λ1

)
e(1+λ1)tα Γ(2−α)

α + 1
1+λ1

. (22)

Combining the above inequalities, we then deduce the following:
(i) if λ1 < −1, then u(x, t) will eventually blow up in finite time for any σ > 0;
(ii) if λ1 > −1, it follows that when σ−1 A−1

0 −
1

1+λ1
< 0, i.e., σ > (1 + λ1)A−1

0 , u(x, t)
blows up in finite time.

In particular, since (22) implies that T̃max ≤ C̄σ−1 with a constant C̄ > 0 dependent on
α, ϕ, the comparison principle derives that same estimate holds for Tmax. This completes
the proof.

4. Global Existence and Long-Time Asymptotic Behavior

In this section, we obtain the global existence and long-time behavior of the global
solutions of (1)–(3) for small initial data.

4.1. Existence of a Global Solution

Theorem 3. Let 0 ≤ u(x, 0) ≤ 1. Then, problems (1)–(3) admit a global solution u that satisfies
0 ≤ u(x, t) ≤ 1.

Proof. Firstly, we show that u ≥ 0. Multiplying scalarly in L2(Ω) Equation (1) by ũ :=
min(u, 0) and integrating over Ω, we obtain the following:∫

Ω

cDα
t ũ(x, t) · ũ(x, t)dx−

∫
Ω

d∆ũ(x, t) · ũ(x, t)dx =
∫

Ω
ũ2(x, t)(ũ(x, t)− 1)dx. (23)

Then, using the maximum principle and the inequality (see [31]):

2v(t)cDα
t v(t) ≥ cDα

t v2(t), v ∈ C1([0, T]),

we have the following:
cDα

t

∫
Ω

ũ2(x, t)dx .
∫

Ω
ũ2(x, t)dx. (24)

By denoting
∫

Ω ũ2(x, t)dx = E(t) in (24), we can deduce the equation below:{
cDα

t E(t) . E(t),

E(0) = 0,
(25)

which implies that
∫

Ω ũ2(x, t)dx = 0 as ũ(x, 0) = 0. Consequently, u ≥ 0.
Now, we show the upper estimate u ≤ 1. We multiply scalarly in L2(Ω) Equation (1)

by û := min(1− u, 0), we then obtain the following:∫
Ω

cDt
αû(x, t) · û(x, t)dx−

∫
Ω

d∆û(x, t) · û(x, t)dx =
∫

Ω
û2(x, t)(û(x, t)− 1)dx. (26)

As in the calculations above, for the function û := min(1− u, 0) we have the following:

cDα
t

∫
Ω

û2(x, t)dx .
∫

Ω
û2(x, t)dx. (27)

Hence,
∫

Ω û2(x, t)dx = 0, which implies u ≤ 1. The result follows as 0 ≤ u(x, 0) ≤ 1.
This completes the proof.
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4.2. Long-Time Behavior of the Global Solution

Lemma 3 ([3]). Let ω(t) ≥ 0 be a locally integrable non-negative function on [0,+∞), such that
cDα

t ω(t) ≤ λω(t) + b. Then, we have the following equation:

ω(t) ≤ ω0Eα(λtα) + btαEα, α+1(λtα). (28)

where Eα(z) and Eα, β(z) are defined in (8), which are the fractional generalizations of the exponen-
tial function and play an important role in fractional calculus.

Theorem 4. Assume that 0 ≤ u(x, 0) ≤ 1. Then, the solution of problems (1)–(3) satisfies the
estimate below:

‖u‖L2(Ω) ≤ ‖u0‖L2(Ω)Eα(−ztα) + C|Ω|Eα,α+1(−ztα), t > 0, (29)

where z = 2d
c0

and c0 = c0(Ω) > 0 are constant, and C is dependent on t.

Proof. Similar to Theorem 1 in [25], let f (u) = u(1− u), we can verify that there exists a
constant c1 > 0, such that:

〈 f (u), u〉 ≥ c1, (30)

where 〈 , 〉 denotes the L2-inner product. By multiplying scalarly in L2(Ω) Equation (1) by
u = u(x, t) and integrating over Ω, we get the following equation:

〈u,c Dα
t 〉 − d

∫
Ω

u∆udx + 〈 f (u), u〉 = 0. (31)

According to the energy inequality:

〈u, cDα
t u〉 =

∫
Ω

ucDα
t udx ≥ 1

2
cDα

t ‖u‖2
L2(Ω)

and from the estimation in (30), it follows that:

1
2

cDα
t ‖u‖2

L2(Ω) + d‖∇u‖2
L2(Ω) + c1|Ω| ≤ 0, (32)

where |Ω| denotes the measure of Ω. By applying Poincaré inequality, there exists a
constant c0 = c0(Ω) > 0, such that ‖u‖L2(Ω) ≤ c0‖∇u‖L2(Ω). Hence, we further infer that:

cDα
t ‖u‖2

L2(Ω) +
2d
c0
‖u‖2

L2(Ω) ≤ −2c1|Ω|. (33)

Via the fractional Grönwall inequality in Lemma 3, we get the following equation:

‖u‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω)Eα(−ztα) + C|Ω|Eα,α+1(−ztα), (34)

where z = 2d
c0

. The asymptotic decay of ‖u‖2
L2(Ω)

can be deduced from the above-mentioned
inequality. By the asymptotic property of the Mittag–Leffler function, for any ε > 0, there
exists t1 > 0, such that ‖u0‖2

L2(Ω)
Eα(−ztα) < ε for any t > t1. On the other hand, we know

that Eα,α+1(−ztα) ≤ 1
tαz . This completes the proof.

5. Conclusions

In the present paper, we analyze a reaction–diffusion equation with a Caputo fractional
derivative in time and with boundary conditions. Firstly, the existence and uniqueness
of a local solution are obtained in Theorem 1 by using the contraction mapping principle.
Then, by Jensen’s inequality and the Kaplan’s first eigenvalue method, we obtain some
sufficient conditions for a finite-time blow-up where a principal eigenvalue problem plays
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a crucial role. Meanwhile, based on the work of Cheng et al., after some modifications
to the equation, we prove the existence of global solutions under small initial conditions
by using the maximum principle. Finally, the long-time behavior of bounded solutions
are analyzed in Theorem 4. This enriches the application of fractional reaction–diffusion
equations in the field of blow-up problems.

By reading the relevant literature, we found that there are few studies on the free
boundary problem of fractional reaction–diffusion equations. Therefore, we will consider
doing some work in this regard in the future. Inspired by Fujita’s paper on critical exponent,
we will also consider adding an exponential term to F(u(t, x)) in order to analyze the blow-
up and global existence of solutions under the Dirichlet or Neumann condition and the
Stefan condition.
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