
mathematics

Article

Computing a Group of Polynomials over a Galois Field in
FPGA Architecture

Sergei V. Shalagin

����������
�������

Citation: Shalagin, S.V. Computing a

Group of Polynomials over a Galois

Field in FPGA Architecture.

Mathematics 2021, 9, 3251. https://

doi.org/10.3390/math9243251

Academic Editors: Amir Mosavi,

Yaroslav Kholodov and Simeon Reich

Received: 18 October 2021

Accepted: 10 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Systems, Kazan National Research Technical University Named after
A.N.Tupolev—KAI, Kazan 420111, Russia; sshalagin@mail.ru

Abstract: For the most extensive range of tasks, such as real-time data processing in intelligent
transport systems, etc., advanced computer-based techniques are required. They include field-
programmable gate arrays (FPGAs). This paper proposes a method of pre-calculating the hardware
complexity of computing a group of polynomial functions depending on the number of input
variables of the said functions, based on the microchips of FPGAs. These assessments are reduced for
a group of polynomial functions due to computing the common values of elementary polynomials.
Implementation is performed using similar software IP-cores adapted to the architecture of user-
programmable logic arrays. The architecture of FPGAs includes lookup tables and D flip-flops.
This circumstance ensures that the pipelined data processing provides the highest operating speed
of a device, which implements the group of polynomial functions defined over a Galois field,
independently of the number of variables of the said functions. A group of polynomial functions
is computed based on common variables. Therefore, the input/output blocks of FPGAs are not a
significant limiting factor for the hardware complexity estimates. Estimates obtained in using the
method proposed allow evaluating the amount of the reconfigurable resources of FPGAs, required
for implementing a group of polynomial functions defined over a Galois field. This refers to both the
existing FPGAs and promising ones that have not yet been implemented.

Keywords: FPGAs; IP-cores; group of polynomials; Galois field

1. Introduction

To ensure the seamless operation of intelligent transport systems (ITSes), it is required
to process large amounts of monitoring information of various formats, purposes, and
confidentiality levels in the real-time mode [1–3]. General- and special-purpose computing
machinery is essential to information processing. Computer hardware (CHW) can be
speeded up in two ways. The first one is extensive, requiring continuously enhancing
computational capacities and developing special-purpose CHW focused on a predefined
scope of tasks. The second one is intensive, requiring a flexible adaptation of the CHW
hardware to a certain task, particularly rejecting the classical, von Neumann’s, CHW
common-bus architecture. Unlike the former, the latter way allows implementing devices
with higher speeds than that for general-purpose CHW. Examples of special purpose
computing devices that use field-programmable gate arrays (FPGAs) [4] are given in [5,6].
Using high-speed CHW devices that allow implementing various algorithms of distributed
data processing at different times is relevant in solving various ITS-related tasks, such
as data processing in large databases [7], analysis of discrete Markovian processes [8,9],
nonlinear filtering of data [10], etc.

To solve the above scope of problems, FPGAs [4] can be used that include reconfig-
urable logical elements, i.e., lookup tables (LUTs(x)), D flip-flops, and input/output blocks
(IOBs). In [11–13], an approach is presented based on reducing the problem of processing
data arrays (exemplified by maps) to implementing similar FPGA-based operations. Sev-
eral studies [14–16] show that the problem of implementing arbitrary maps of one set of

Mathematics 2021, 9, 3251. https://doi.org/10.3390/math9243251 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2591-2749
https://doi.org/10.3390/math9243251
https://doi.org/10.3390/math9243251
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9243251
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9243251?type=check_update&version=1

Mathematics 2021, 9, 3251 2 of 10

elements into another set is reduced to the distributed computation of a group of nonlinear
polynomial functions (polynomials, functions) of a given number of variables defined
over a Galois field GF(2k) of a certain power [17]. A cooperative distributed FPGA-based
computation method is proposed for the said polynomials. We obtained the estimates of
hardware complexity for a group of polynomials by the number of reconfigurable FPGA
elements. It is shown that the computations of elementary polynomials common for the
functions from the set to be implemented considerably save the reconfigurable logical re-
sources of FPGA. Due to the pipelined implementation of computing a group of functions
based on similar IP-cores, estimates of operation delays of pipeline devices computing the
set of polynomials on FPGA are weakly dependent on the number of variables at the input
of these functions.

The article is contained three basic Sections: (1) Basic Terms and Definitions; (2) Hard-
ware Complexity of Implementing a Group of Polynomials in the FPGA Architecture and
(3) Discussion. In Section 1, the concept of a polynomial of m variables and operations on
elements of the Galois field is introduced in accordance with [17]. Statements are made
regarding the hardware and time complexity of the pipeline implementation of operations
on elements of the Galois field in the FPGA architecture. The concept of a similar IP-core
corresponding to FPGA architecture is introduced [16]. According to [14–16], the sepa-
rate computation of a group of polynomials involves multiple recomputations of partial
polynomial functions common to a group of polynomials. This significantly increases the
complexity estimates by the number of such IP-cores. Section 2 presents and theoretically
supports representing a group of polynomials over a Galois field. Estimates of the com-
plexity of the implementation of this group by the number of similar IP cores are calculated.
The proportion of IP-cores required to calculate parts of elementary polynomial functions
common to a group of polynomials is determined. Section 3 defines the possibilities for
using the proposed method to evaluate the characteristics of a group of polynomials (the
number of variables and polynomials, the dimension of the Galois field) that are acceptable
for implementation on a given FPGA-devices, both for existing and prospective.

2. Basic Terms and Definitions

Let us define a polynomial of m variables over a Galois field represented as GF(2k) [17]

f (x1, . . . , xm) =
r

∑
i1=0
· · ·

r

∑
im=0

ai1 ...im xi1
1 · . . . ·xim

m . (1)

By defining the values of an m-dimensional matrix of coefficients A =
(
ai1 ...im

)
,

r = 2k − 1. Symbol Σ in (1) means the bitwise sum of elementary modulo-2 polynomials
ai1 ...im xi1

1 · . . . ·xim
m , ij = 0, r.

A polynomial function of the form (1) is representable as a self-similar formula:

f (x1, . . . , xm) =
r
∑

i1=0
xi1

1 f̃i1(x2, . . . , xm), where f̃i1(x2, . . . , xm) is a function of m − 1

variables defined according to (1).

Example 1. Let for (1) m = 2 and k = 2 the elements of GF(22) be representable in both exponen-
tial

(
0 ξ ξ2 1

)
and vector

(
(00) (10) (11) (01)

)
forms equivalent to each other;

the multiplication operation over the elements of GF(22) is defined as ξaξb = ξ(a+b)mod3, and
the addition operation is defined as the bitwise sum of elementary modulo-2 [17]. f (x1, x2) =

3
∑

i1=0
xi1

1 f̃i1(x2) =
3
∑

i1=0
xi1

1
(
ai1, 0 + ai1, 1x2 + ai1, 2x2

2 + ai1, 3x3
2
)

The coefficients of this polynomial

are given by a two-dimensional matrix A =
(
ai1i2

)
=

ξ 0 0 ξ2

1 0 ξ 0
0 ξ2 0 1
1 1 0 0

. Then f (x1, x2) =

Mathematics 2021, 9, 3251 3 of 10

(
ξ + ξ2x3

2
)
+ x1

(
ξ2x2 + ξx2

2
)
+ x2

1
(
ξ2x2 + x3

2
)
+ x3

1(1 + x2), and the values f (0, 0) = ξ,
f (ξ2, 0) = 0, f (0, ξ2) = 1.

Let us consider a polynomial represented as (1) on FPGA. According to [14], let us
introduce the following statements:

Statement 1. k LUTs (x), x ≥ 2k, allow performing the following operations: raising to power
i, i = 1, r, and multiplying two elements of GF(2k); multiplying two elements of GF(2k) by a
constant, followed by addition; and bitwise modulo-2 sum operation for x elements of GF(2k).

Statement 2. The basic element for implementing a polynomial represented as (1) on FPGA is an
IP-core that includes k LUTs (x), x ≥ 2k, and k D flip-flops.

Statement 2 defines the hardware complexity of the basic element by the number of
the programmable FPGA elements, i.e., k LUTs (x) and k D flip-flops, respectively. The
pipelined operation delay time of a device implemented on these moduli does not depend
on the number of variables of polynomial (1) and is defined by formula:

T = tD + tIC + max
(

tin, tLUT(x), tout

)
, (2)

where tD, tIC, and tLUT(x) are operation delay times of D flip-flops, interconnections, and
LUTs (x) for a given FPGA, while tin and tout are the delay times of IOBs that function to
information input/output within the package of a given FPGA, respectively. Delay time of
interconnections, tIC, is computed for a given device using a particular computer-aided
design system. Such as Vivado 2020.1 CAD system (Xilinx, Inc., San Jose, CA, USA),
Quartus II (Intel, Inc., Santa Clara, CA, USA), etc.

For example, according to [4], for FPGA Virtex UltraScale, device XCVU065, in formula
(2) operation delay time tD, is 2.36 ns. tin and tout are equal to approximately 0.42 ns and
0.66 ns. The value of the value tLUT(x) (x = 6) is less than the values tin and tout. According
to [15,18], the interconnections’ delay time does not exceed 70% of the total delay time of
operation. As a result, according to (2), the upper bound of pipelined operation delay time
of XCVU065 device is 2.36 + (2.36 + 0.66)·0.7 + 0.66 = 5.134 ns.

Problem of implementing a broad class of digital CHW devices is reduced to the
problem of implementing an arbitrary map of the elements of set F1 into set F2. In [15],

it is shown that, in case of |F1| ≤
(

2k
)m

, |F2| ≤
(

2k
)E

, this map can be represented by E

polynomials of m variables over Galois field represented as GF(2k).

3. Hardware Complexity of Implementing a Group of Polynomials in the
FPGA Architecture

According to Statement 1, let us find the hardware complexity estimates of implement-
ing a group of E polynomials represented as (1) of m variables over the field GF(2k). Each

of E polynomials represented as (1), generally speaking, is computed when using
(

2k
)m

identical elementary polynomials. Let us introduce the following definitions of subsets of
this set:

Definition 1. First subset of elementary polynomials, power Z1−E, includes elementary polynomi-
als that are not used in computing each of E polynomials f1, . . . , fE because of multiplying it by
the zero coefficient of matrix A(e) =

(
a(e)i1 ...im

)
, e = 1, E.

Definition 2. First subset of elementary polynomials is divided into non-overlapping subsets,

power Z(j)
1−E, including elementary polynomials of j variables, j = 1, m, Z1−E =

m
∑

j=1
Z(j)

1−E.

Mathematics 2021, 9, 3251 4 of 10

Definition 3. Each of E subsets of elementary polynomials, power Ze, that are not overlapped
with the first subset include elementary polynomials that are not used in computing fe because of
multiplying it by the zero coefficient of matrix A(e) =

(
a(e)i1 ...im

)
, e = 1, E.

A method is proposed to compute the hardware complexity estimates for a group of E
polynomials of m variables represented (1) in the FPGA architecture. The method includes
three stages:

Stage 1. Computing common elementary polynomials, among which there are at most
rm of m variables and at most rm−jCm−j

m of (m− j) variables, j = 1, m.
Stage 2. Obtaining the values of the products of elementary polynomials and nonzero

constants A(e) =
(

a(e)i1 ...im

)
, e = 1, E.

Stage 3. Bitwise modulo-2 addition of values obtained at Stage 2.
Let us define the hardware complexity estimates for computing a group of E polynomi-

als represented as (1) in the FPGA architecture in using the basic elements, IP-cores, based
on Statements 1 and 2. Due to the fact that the said IP-cores form a pipeline, operation
delay time estimates do not practically depend on the number of variables m of each of
E polynomials. The number of basic elements required at Stages 1, 2, and 3 is defined
according to formulas:

N1 =
m−1

∑
j=0

(
(m− j− 1)rm−jCm−j

m − Z(j)
1−E

)

N2 =
E

∑
e=1

]
((

2k
)m
− Ze

)
/2[=

E

∑
e=1

N(e)
2

N3 =
E

∑
e=1

]N(e)
2 /x[, x ≥ 2k.

Values of Z(j)
1−E and Ze, j = 1, m, e = 1, E, are defined in accordance with the

definitions 1–3. The total number of IP cores required to compute a group of E polynomials
represented as (1) is:

NEP = N1 + N2 + N3. (3)

Based on definitions 1–3 and the above true is the Theorem 1.

Theorem 1. Hardware complexity of computing a group of E polynomials represented as (1) of m
variables over GF(2k) in the FPGA architecture by the number of IP-cores is calculated according
to (3), the operation time delay was estimated according to (2), while the number of FPGA pins is
defined as k(m + E).

Let us analyze the hardware complexity estimates of implementing a group of poly-
nomials in the FPGA architecture. Figures 1 and 2 represent diagrams that show the
dependency of the total number of IP-cores, NEP, for a group of polynomials represented as
(1) over GF(22) and GF(23), respectively, on the number of variables m and on the power of
a group of polynomials E. According to the data given in Figure 1, the spread of estimates
of the number of IP-cores for a group of polynomials represented as (1) over GF(22) varies
from 59 (m = 2, E = 5) to approximately 3.44·106 (m = 9, E = 12). For a group implemented
over GF(22) (see Figure 2) these estimates range from 163 (m = 2, E = 5) to approximately
23.0·106 (m = 7, E = 10). With the increase in the number of the variables of polynomials, an
exponential increase in the estimate, NEP, is observed, while the growth of E results in the
practically linear increase in this estimate.

Mathematics 2021, 9, 3251 5 of 10

Figure 1. Total number of IP-cores for a group of polynomials over GF(22).

Figure 2. Total number of IP-cores for a group of polynomials over GF(23).

Of interest is also the contribution of the hardware complexity estimates for computing
elementary polynomials common for each of E functions of N1 to the total complexity
estimate, NEP. According to diagrams shown in Figures 3 and 4, linear growth of the
N1/NEP ratio is observed in increasing the number of variables. However, the higher the
value of E, the slower N1/NEP grows. This observation is true for both GF(22) and GF(23).
This is explained by the fact that the number of IP-cores required for computing elementary
polynomials increases exponentially with the linear increase in the number of variables m.

Mathematics 2021, 9, 3251 6 of 10

Figure 3. Contribution to the total complexity estimate NEP for a group of polynomials over GF(22).

Figure 4. Contribution to the total complexity estimate NEP for a group of polynomials over GF(23).

The value N1/NEP shows what effect will be in the case of the implementation of a
group of E polynomials according to the proposed method compared with the separate
implementation of each of their E polynomials over GF(22) and GF(23). For GF(22) (see
Figure 3) the spread of values of magnitude N1/NEP varies from 15.3% (m = 2, E = 5) to
42.8% (m = 9, E = 12). For GF(22) (see Figure 3)—from 30.1% (m = 2, E = 5) to 46.8% (m = 7,
E = 10).

According to [15], implementing the given system from E polynomials of m variables
over GF(2k) on one FPGA microcircuit is allowed, provided that the following conditions
are met:

NLUT(x) ≤ kLUT(x)·QLUT(x)
ND ≤ kD·QD
NIOB ≤ kIOB·QIOB

, (4)

where NLUT(x), ND, and NIOB are the number of reconfigurable resources, LUTs(x), D
flip-flops, and IOBs, respectively, required for implementing a group of E polynomials of
m variables; QLUT(x), QD, and QIOB are the number of similar resources available to the

Mathematics 2021, 9, 3251 7 of 10

user within the given FPGA, while kLUT(x), kD, and kIOB are the use factors of the said
reconfigurable resources.

Example 2. Joint implementation of a group of two polynomials, f (1)(x1, x2) and f (2)(x1, x2),
having the structure given in Example 1, and given by the matrices of coefficients A(1) =

ξ 0 0 ξ2

1 0 ξ 0
0 ξ2 0 1
1 1 0 0

 and A(2) =

1 1 0 0
ξ 0 ξ2 0
ξ ξ 0 0
0 ξ 1 0

. The implementation of step 1 of the pro-

posed method is represented in the form of a two-dimensional matrix:
1 x2 − x3

2 = 1
x1 − x1x2

2 −
x2

1 x2
1x2 − x2

1·1
x3

1 = 1 1·x2 1·x2
2 −

. Five elementary polynomials do not need to be calculated,

since the coefficients for them and in f (1)(x1, x2) and in f (2)(x1, x2) are zero; according to the defi-
nition of 2, Z(0)

1−E = 1, Z(1)
1−E = 2, Z(2)

1−E = Z(3)
1−E = 1; for any value xj ∈ GF(22) x3

j = 1, therefore,

it is not necessary to raise to the power of xj, j = 1, 2. The result of stage 2 for each of the polyno-

mials f (1)(x1, x2) and f (2)(x1, x2) is represented as matrices:

ξ 0 − ξ2

x1 − ξx1x2
2 −

0 ξ2x2
1x2 − x2

1
1 x2 0 −

and

1 x2 − 0

ξx1 − ξ2x1x2
2 −

ξx2
1 ξx2

1x2 − 0
0 ξx2 x2

2 −

, respectively, for which Z1 = Z2 = 3 (see Definition 3).

Stage 3 consists of the bitwise addition of elementary polynomials and constants represented in the
specified matrices:

f (1)(x1, x2) = ξ + ξ2 + x1 + ξx1x2
2 + ξ2x2

1x2 + x2
1 + 1+ x2 = x1 + ξx1x2

2 + ξ2x2
1x2 + x2

1 + x2,

f (2)(x1, x2) = 1 + x2 + ξx1 + ξ2x1x2
2 + ξx2

1 + ξx2
1x2 + ξx2 + x2

2

4. Discussion

What is the advantage of the proposed approach to the implementation of a group of
polynomials over a Galois field? Let us return to formula (3). Suppose the elements of this
group of E polynomials are calculated separately. In that case, the hardware complexity will
be defined as NS

EP = E·N1 + N2 + N3, that is, the value of N1 will be increased by E times.
As a result, the assessment of the complexity NEP of the joint implementation of a group of
E polynomials over a Galois field in comparison with their separate implementation NS

EP
will be reduced in time.

NS
EP/NEP = 1 + (E− 1)N1/NEP (5)

The value N1/NEP is given for a group of E polynomials over a Galois field GF(22)
and GF(23) given m and E on Figures 3 and 4, respectively. By analogy, the estimate (5) has
a range of values for GF(22) from 1.61 (m = 2, E = 5) to 5.71 (m = 9, E = 12) and for GF(23)
from 1.90 (m = 2, E = 3) to 5.68 (m = 7, E = 9). These estimates are shown in Figures 5 and 6.

Mathematics 2021, 9, 3251 8 of 10

Figure 5. The values of the estimate (5) for a group of polynomials over GF(22).

Figure 6. The values of the estimate (5) for a group of polynomials over GF(23).

For example, let us consider the FPGA XC7V585T of the Virtex-7 family. This FPGA
includes 585,720 LUTs (6), 728,400 D flip-flops, and 850 IOBs. Use factors of each of the
reconfigurable elements specified are 0.5. According to Theorem 1, FPGA-based imple-
mentation of a group of E polynomials of m variables over GF(22) requires 2(m + E) IOBs,
while that over GF(23) requires 3(m + E) IOBs. According to Statement 1, implementing
each IP-core over the elements of GF(22) requires two LUTs (6) and two D flip-flops, while
implementing over GF(23) requires three LUTs (6) and three D flip-flops each. According
to inequality (4) and formula (3), it is possible to implement on one FPGA XC7V585T the
groups of, at most:

• Seven polynomials of seven variables over GF(22), which correspond with mapping
set F1 : |F1| ≤ 214 into set F2 : |F2| ≤ 214;

• 51 polynomials of six variables over GF(22), which correspond with mapping set
F1 : |F1| ≤ 212 into set F2 : |F2| ≤ 2102; and

Mathematics 2021, 9, 3251 9 of 10

• 36 polynomials of four variables over GF(23), which correspond with mapping set
F1 : |F1| ≤ 212 into set F2 : |F2| ≤ 2108.

In all the above cases of implementing the maps on FPGA XC7V585T, the limiting
factor is the number of reconfigurable LUTs (6).

The proposed method allows us to estimate for a given group of E polynomials defined
over GF(2k) and from m variables each the possibility of its implementation on a given
FPGA-device. The degree of the field GF(2k), k = 2, 3, is determined with reference to the
features of existing FPGA-devises that implement LUT(4) and LUT(6) (see. Statement 1).
The proposed method allows us to perform a similar study for any FPGA, both for existing
and prospective.

5. Conclusions

Using the method proposed, we obtained the hardware complexity estimates for the
distributed computation of a group of E polynomials of m variables over field GF(2k).
Based on the above estimates, the values of E and m, can be defined. This group of
polynomials can be implemented on an FPGA with the predefined characteristics by the
number of reconfigurable elements available to the user. The method suits for estimating
the hardware complexity of implementing a group of polynomials on both the existing and
promising would-be FPGAs.

In arranging a pipeline, the average estimate of the operating delay of a device
implementing the FPGA-based computation of a group of polynomials is weakly dependent
on the power of a group of polynomials and on the number of their variables at the input.
Due to the cooperative computing of polynomials from the group, the logical resources of
FPGA are saved considerably. A relatively small set of elements, defined by input variables
that are common for a group of polynomials, can be mapped in quite a large output set of
values, the power of which exceeds considerably that of the input set.

The technique presented herein is a tool that allows the FPGA-based implementation
of a frantic way to increase the data array processing speed in using the focused hardware
basis. Due to reconfigurable elements available in the FPGA architecture, different maps
of one set into another one can be implemented at different time intervals. This result is
relevant in developing a hardware platform of intelligent transport systems, the role of
which becomes increasingly important in the modern information society.

Funding: The publication of this work was funded by the Association for the Advancement of Digital
Development (https://aсцр.рф, accessed on 18 October 2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Terent’ev, V.V. Vnedrenie intellektual’nyh sistem na avtomobil’nom transporte [Introduction of intelligent systems in road

transport]. Nadezhnost’ I Kachestvo Slozhnyh Sist. 2018, 21, 117–122. (In Russian)
2. Minnikhanov, R.N.; Anikin, I.V.; Dagaeva, M.V.; Faizrakhmanov, E.M.; Bolshakov, T.E. Modeling of the effective environment in

the Republic of Tatarstan using transport data. Comput. Res. Model. 2021, 13, 395–404. [CrossRef]
3. Ermagun, A.; Levinson, D. Spatiotemporal traffic forecasting: Review and proposed directions. Transp. Rev. 2018, 38, 786–814.

[CrossRef]
4. FPGA Leadership across Multiple Process Nodes/ Xilinx Inc. Cop. 2021. Available online: https://www.xilinx.com/products/silicon-

devices/fpga.html (accessed on 1 May 2021).
5. Alekseev, K.; Levin, I.; Sorokin, D. Application of the methodology of creating parallel-pipeline programs for reconfigurable

computer systems on the example of implementation of surface-related multiple prediction problem in real time. AIP Conf. Proc.
2019, 2188. [CrossRef]

6. Dordopulo, A.I.; Levin, I.I. Performance reduction for automatic development of parallel applications for reconfigurable computer
systems. Supercomput. Front. Innov. 2020, 7, 4–23. [CrossRef]

https://xn--80a6acu.xn--p1ai/
http://doi.org/10.20537/2076-7633-2021-13-2-395-404
http://doi.org/10.1080/01441647.2018.1442887
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
http://doi.org/10.1063/1.5138466
http://doi.org/10.14529/jsfi200201

Mathematics 2021, 9, 3251 10 of 10

7. Gibadullin, R.F.; Vershinin, I.S.; Minyazev, R.S. Development of Load Balancer and Parallel Database Management Module. In
Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow,
Russia, 15–18 May 2018. [CrossRef]

8. Zakharov, V.M.; Shalagin, S.V.; Eminov, B.F. Representing Autonomous Probabilistic Automata by Minimum Characteristic
Polynomials over a Finite Field. In Futuristic Trends in Network and Communication Technologies; Singh, P.K., Veselov, G., Vyatkin, V.,
Pljonkin, A., Dodero, J.M., Kumar, Y., Eds.; Springer: Singapore, 2021; Volume 1395, pp. 215–224. [CrossRef]

9. Shalagin, S.V.; Nurutdinova, A.R. Recognition of multiple sequences by subgroups of autonomous probabilistic automata.
Laplage J. 2020, 6, 160–168. [CrossRef]

10. Kosachev, I.M.; CHugaj, K.N.; Rybakov, K.A. Perspektivnye napravleniya nelinejnoj fil’tracii sluchajnyh processov v nepreryvnyh
stohasticheskih sistemah [Promising directions of nonlinear filtering of random processes in continuous stochastic systems]. Data
Modeling Anal. 2019, 9, 73–79. Available online: https://psyjournals.ru/files/106641/mda_2019_n3_Kosachev_Chugai_Rybakov.
pdf (accessed on 28 September 2021). (In Russian).

11. Zakharov, V.M.; Shalagin, S.V. Executing discrete orthogonal transformations based on computations on the Galois field in the
FPGA architecture. In Proceedings of the International Siberian Conference on Control and Communications, Moscow, Russia,
12–14 May 2016; pp. 1–4. Available online: https://ieeexplore.ieee.org/document/7491652 (accessed on 1 May 2021).

12. Zakharov, V.M.; Shalagin, S.V.; Eminov, B.F. Using the same type of IP-cores in the Virtex-6 family FPGA-architecture for
distributed image processing. J. Phys. Conf. Ser. 2020, 1658. [CrossRef]

13. Lyasheva, M.M.; Lyasheva, S.A.; Shleymovich, M.P. Image Weight Models Based on Discrete Wavelet Transforms. In Proceedings
of the International Russian Automation Conference, Sochi, Russia, 5–11 September 2021; pp. 256–260. [CrossRef]

14. Zaharov, V.M.; Shalagin, S.V. Raspredelennoe vychislenie nelinejnyh mnogochlenov nad polem Galua v arhitekture FPGA
[Distributed computation of nonlinear polynomials over the Galois field in FPGA architecture]. Her. Technol. Univ. 2018, 21,
146–149. Available online: https://elibrary.ru/item.asp?id=36815900 (accessed on 28 September 2021). (In Russian).

15. Shalagin, S.V. Realizaciya Cifrovyh Ustrojstv v Arhitekture PLIS/FPGA pri Ispol’zovanii Raspredelennyh Vychislenij v Polyah Galua
[Implementing Digital Devices in FPGA Architecture When using Distributed Computing in Galois Fields]; KNRTU-KAI Press: Kazan,
Russia, 2016; p. 228. Available online: https://elibrary.ru/item.asp?id=27287609 (accessed on 1 May 2021). (In Russian).

16. Shalagin, S. Computing Nonlinear Polynomial Functions on FPGA-Class PLD Arrays. In Proceedings of the International Seminar
on Electron Devices Design and Production (SED), Prague, Czech, 27–28 April 2021. [CrossRef]

17. Lidl, R.; Niederreiter, H. Finite Fields (Encyclopedia of Mathematics and its Applications), 2nd ed.; Cambridge University Press:
Cambridge, UK, 2008; p. 772.

18. Shalagin, S.V. Computer Evaluation of a Method for Combinational-Circuit Synthesis in FPGAs. Russ. Microelectron. 2004, 33,
46–54. [CrossRef]

http://doi.org/10.1109/ICIEAM.2018.8728629
http://doi.org/10.1007/978-981-16-1480-4_19
http://doi.org/10.24115/S2446-622020206Extra-B608p.160-168
https://psyjournals.ru/files/106641/mda_2019_n3_Kosachev_Chugai_Rybakov.pdf
https://psyjournals.ru/files/106641/mda_2019_n3_Kosachev_Chugai_Rybakov.pdf
https://ieeexplore.ieee.org/document/7491652
http://doi.org/10.1088/1742-6596/1658/1/012078
http://doi.org/10.1109/RusAutoCon52004.2021.9537551
https://elibrary.ru/item.asp?id=36815900
https://elibrary.ru/item.asp?id=27287609
http://doi.org/10.1109/SED51197.2021.9444506
http://doi.org/10.1023/B:RUMI.0000011100.81232.da

	Introduction
	Basic Terms and Definitions
	Hardware Complexity of Implementing a Group of Polynomials in the FPGA Architecture
	Discussion
	Conclusions
	References

