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Abstract: The order of appearance (in the Fibonacci sequence) function z : Z≥1 → Z≥1 is an
arithmetic function defined for a positive integer n as z(n) = min{k ≥ 1 : Fk ≡ 0 (mod n)}. A topic
of great interest is to study the Diophantine properties of this function. In 1992, Sun and Sun showed
that Fermat’s Last Theorem is related to the solubility of the functional equation z(n) = z(n2), where
n is a prime number. In addition, in 2014, Luca and Pomerance proved that z(n) = z(n + 1) has
infinitely many solutions. In this paper, we provide some results related to these facts. In particular,
we prove that lim sup

n→∞
(z(n + 1)− z(n))/(log n)2−ε = ∞, for all ε ∈ (0, 2).
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1. Introduction

Let (Fn)n be the Fibonacci sequence. The arithmetic function z : Z≥1 → Z≥1 defined
by z(n) = min{k ≥ 1 : n | Fk} is known as the order of appearance (or rank of apparition)
in the Fibonacci sequence. This function is well-defined (i.e., z(n) is finite for all n ≥ 1),
as showed by Lucas ([1], p. 300). Furthermore, its sharpest upper bound is z(n) ≤ 2n as
proved by Sallé [2] (the sharpness follows from z(6 · 5k) = 12 · 5k, for all k ≥ 0).

The first 30 values of z(n) are the following (see sequence A001177 in the Online
Encyclopedia of Integer Sequences [3]):

1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, 8, 30, 24, 12, 25, 21, 36, 24, 14, 60.

In the last decades, many authors have considered, in varying degrees of generality,
Diophantine problems involving the z-function (see, for instance, the recent works [4–10]).
However, this function gained great interest in 1992, when Z. H. Sun and Z. W. Sun [6]
proved that z(p) 6= z(p2), for all prime numbers p, implies the first case of Fermat’s Last
Theorem (i.e., that xp + yp = zp has no solution with p - xyz). In fact, this is related to an
old conjecture expressed by Wall [11] (see also [12]), that is, e(p) := νp(Fz(p)) is equal to 1,
for all prime numbers p. Here, νp(r) denotes the p-adic valuation (or order) of r, that is, the
largest non-negative integer k for which pk divides r (see [13–15] for more facts on p-adic
valuation of the Fibonacci sequence and its generalizations). We remark that this conjecture
was verified for all prime numbers p < 3× 1017 (PrimeGrid—December 2020).

We point out to the existence of some conditional results relating Wall’s conjecture to
other Diophantine problems. For instance, Marques [16] proved that there is no non-trivial
s-Cullen number (i.e., a number of the form msm + 1 with m > 1) in the Fibonacci sequence
provided that e(p) = 1, for all prime factors p of s.

Let P(n) be the greatest prime factor of n. Now, for any integer k ≥ 2, let us provide the
following weaker consequence of Wall’s conjecture.

k-Weak Wall Conjecture. Let n > 1 be an integer. Then,

νP(n)(n) >
e(P(n))

k
. (1)
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For the sake of simplicity, we indicate the previous conjecture as (k-WWC). Clearly,
Wall’s conjecture implies (k-WWC), since p | n implies νp(n) ≥ 1 > 1/k = e(p)/k. Note
that, if (k-WWC) is true, then, for any prime p, one obtains 1 = νp(p) > e(p)/k; therefore,
e(p) ∈ {1, 2, . . . , k− 1}. In particular, Wall’s conjecture is equivalent to (2-WWC).

Our first result is a purely theoretical result on the counting function of positive
integers satisfying (1).

Theorem 1. Let k ≥ 2 be an integer. Then, we have

#{n ≤ x : n satisfies (k-WWC)} ≥ ∑
p≥2

pp/k

π(p)!
(log(x/p(p+k)/k))π(p)

(
∏
q≤p

log q

)−1

, (2)

where p and q run over the set of prime numbers. Here, as usual, π(z) is the prime counting
function.

Remark 1. We remark that the left-hand side of (2) is larger than any truncation of the series on
the right-hand side. For instance, by truncating at p = 3, one obtains

#{n ≤ x : n satisfies (2-WWC)} > 2.8 log(0.25x) + 1.7 log2(0.06x).

Remark 2. Let pn be the nth prime number. We still point out that (2) can be written as

#{n ≤ x : n satisfies (k-WWC)} ≥ ∑
j≥1

p
pj/k
j

j!
(log(x/p

(pj+k)/k
j ))j((log p1) · · · (log pj))

−1.

By using the weak (but enough) inequalities j log j < pj < j2, (log p1) · · · (log pj) ≤
(log pj)

j and j! ≤ (j/2)j, after a straightforward calculation, one arrives at the cleaner inequality

#{n ≤ x : n satisfies (k-WWC)} ≥
∞

∑
j=2

 (log j)(log j)/k · log
(

x
j3j2/k

)
log j


j

.

The main goal of this paper is to study some analytic and Diophantine aspects of some
functional equations involving z(n). Our first result relates the k-Weak Wall’s Conjecture
to the Wall and Sun–Sun works. More precisely, see the following theorem.

Theorem 2. Let us suppose that (`-WWC) is true. Then, for any integer k ≥ `, the functional
equation z(n) = z(nk) has solution only if k = ` = 2 and n ∈ {1, 6, 12}.

Another interesting problem concerns the behavior of the order of appearance at
consecutive arguments. In 2010, Han et al. [17] conjectured that z(n) 6= z(n + 1), for all
positive integers n. However, in 2014, Luca and Pomerance [18] disproved this conjecture
by proving that z(n) = z(n + 1) holds for infinitely many positive integers n. The first few
positive integers with the previous property are following: Please leave it this way, it is
necessary for the correct structure of the hypothesis

107, 493, 495, 600, 667, 1935, 1952, 2169, 2378, 2573, 2989, 3382.

Note that, in particular, their result implies that

lim inf
n→∞

|z(n + 1)− z(n)| = 0.
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Therefore, an obvious question to ask concerns lim supn→∞ |z(n + 1) − z(n)|. Is it
finite? If not, what is its order of growth?

In the next theorem, we prove that this lim sup is infinite; moreover, we partially
answer the second question (about its growth order).

Theorem 3. For any real number ε ∈ (0, 2), we have that

lim sup
n→∞

|z(n + 1)− z(n)|
(log n)2−ε

= ∞. (3)

2. Auxiliary Results

In this section, we present some results which are essential tools in the proof.
The first ingredient is a kind of “closed formula” for z(n) depending on z(pa) for all

prime factors p of n. The proof of this fact may be found in [19].

Lemma 1 (Theorem 3.3 of [19]). Let n > 1 be an integer with prime factorization n = pa1
1 · · · p

ak
k .

Then,
z(n) = lcm(z(pa1

1 ), . . . , z(pak
k )).

In general, one has that

z(lcm(m1, . . . , mk)) = lcm(z(m1), . . . , z(mk)).

Lemma 2. Let p be a prime number and let n be a positive integer. We have the following:

(a) (Theorem 2.4 of [20]) z(p) divides p−
(

5
p

)
;

(b) (Theorem 2.4 of [20]) z(pn) = pmax{n−e(p),0}z(p), if p > 2;
(c) (Theorem 1.1 of [21]) z(2n) = 3 · 2n−2, for n ≥ 3,

where
(
·
p

)
denotes the Legendre symbol and e(p) = max{k ≥ 0 : pk | Fz(p)}.

Remark 3. We remark that, in the light of the previous lemma, the conjecture z(p) 6= z(p2), for
all prime numbers p (which is discussed in the previous section) is equivalent to e(p) = 1. In
fact, z(p) 6= z(p2) if and only if z(p) 6= z(p2) = pmax{2−e(p),0}z(p), which holds if and only if
e(p) = 1.

We cannot go far in the lore of Fibonacci sequence without encountering its companion,
Lucas sequence (Ln)n≥0, which is defined by the same recursion as the Fibonacci numbers,
but with initial values L0 = 2 and L1 = 1. The next lemma provides well-known arithmetic
properties of Fibonacci and Lucas numbers.

Lemma 3. We have the following:

(a) Fn | Fm if and only if n | m;
(b) Ln | Fm if and only if n | m and m/n is even;
(c) Ln | Lm if and only if n | m and m/n is odd;
(d) F2n = FnLn;
(e) If d = gcd(m, n), then

gcd(Fm, Ln) =

{
Ld, if m/d is even and n/d is odd;
1 or 2, otherwise.

(f) 2 | Fm if and only if 3 | m; 3 | Fm if and only if 4 | m;
(g) 2 | Lm if and only if 3 | m.

The previous items can be proved by using Binet’s formulas:
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Fn =
αn − βn

α− β
and Ln = αn + βn for n ≥ 0,

where α = (1 +
√

5)/2 and β = (1−
√

5)/2 (indeed, they can be found in [22]).
Since Binet’s formulas are still valid for Fibonacci and Lucas numbers with negative

indices (and by using α = (−β)−1), one can deduce the following useful identity.

Lemma 4. Let a and b be integers. Then,

FaLb = Fa+b + (−1)bFa−b.

Our last tool is the following known bound for the nth Fibonacci number.

Lemma 5. We have that
αn−2 ≤ Fn ≤ αn−1,

for all n ≥ 1.

We are now ready to proceed with the proof of the theorems.

3. The Proofs
3.1. Proof of Theorem 1

First, note that, by definition, pe(p) divides Fz(p). In particular, pe(p) ≤ Fz(p) and, by
combining Lemma 2 (a) and Lemma 5, we obtain

pe(p) ≤ Fz(p) ≤ αz(p)−1 ≤ α(p+1)−1 = αp.

Thus,
e(p) ≤ p

log p
log α. (4)

Now, we provide a recipe to construct positive integers satisfying (k-WWC). For that,
let us recall that an m-smooth number is a positive integer whose prime factors are all less
than or equal to m, i.e., the set of m-smooth numbers can be written as S(m) = {n ≥ 1 :
P(n) ≤ m} (we adhere to the convention that S(0) = ∅). We claim that, for any prime
number p ≥ 2, the number n = rpηp,k (where ηp,k := bp/kc+ 1) satisfies (k-WWC), for any
r ∈ S(p), that is,

{rpηp,k : r ∈ S(p)} ∩ [1, x] ⊆ {n ≤ x : n satisfies (k-WWC)}. (5)

In order to prove that, note that the largest prime factor of such an n = rpηp,k is p
(since P(r) ≤ p). In addition, the p-adic order of n is at least ηp,k; then, by (4), one has

e(p)
k
≤ p

k log p
log α ≤ p

k log 2
log α < 0.7 · p

k
< ηp,k ≤ νP(n)(n).

Therefore, n satisfies (k-WWC); therefore, (by (5))

#{n ≤ x : n satisfies (k-WWC)} ≥ #{rpηp,k : r ∈ S(p)}.

Further, note that the set on the left-hand side of (5) can be written as the disjoint
union

{rpηp,k : r ∈ S(p)} =
⋃
p≥2

⋃
i≥1

W (k)
p,i , (6)

whereW (k)
p,i := {rpηp,k+i : r ∈ S(p− 1)}.
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It is known that the number of y-smooth numbers less than or equal to x, denoted by
Ψ(x, y), satisfies

Ψ(x, y) =
1

π(y)! ∏
p≤y

(
log x
log y

)(
1 + O

(
y2

log x log y

))

whenever y ≤
√

log x log log x (for this and more similar results, we refer the reader to [23]
and its extensive annotated bibliography). In fact, by ([23], (1.24)), the lower bound

Ψ(x, y) ≥ 1
π(y)! ∏

p≤y

(
log x
log y

)
(7)

holds. By noting that ∪i≥1W
(k)
p,i = pηp,k S(p), we obtain

#({rpηp,k : r ∈ S(p)} ∩ [1, x]) = ∑
p≥2

∑
i≥1

#W (k)
p,i (x) = ∑

p≥2
pηp,k Ψ

(
x

pηp,k
, p
)

as x → ∞. Thus,

#{n ≤ x : n satisfies (k-WWC)} ≥ ∑
p≥2

pηp,k Ψ
(

x
pηp,k

, p
)

. (8)

By using (7), we have

Ψ
(

x
pηp,k

, p
)
≥ 1

π(p)! ∏
q≤p

(
log(x/pηp,k )

log q

)
,

where q runs over the set of prime numbers. In conclusion, we obtain

#{n ≤ x : n satisfies (k-WWC)} ≥ ∑
p≥2

pηp,k

π(p)!
(log(x/pηp,k ))π(p)

(
∏
q≤p

log q

)−1

which, combined with p/k < ηp,k < (p + k)/k, finishes the proof.

3.2. Proof of Theorem 2

Clearly, if (`-WWC) is true, then so is (k-WWC), for all k ≤ `. One has that n = 1 is
a solution of z(n) = z(nk). Therefore, for an integer n > 1, let n = pa1

1 · · · p
at
t be its prime

factorization, where p1 < · · · < pt and ai ≥ 1, for all i ∈ [1, t].
By Lemma 1 and (2), we have that

z(n) = lcm(pα1
1 z(p1), . . . , pαt

t z(pt)),

where αi := max{ai − e(pi), 0} (for i ∈ [1, t]) and

z(nk) = lcm(pβ1
1 z(p1), . . . , pβt

t z(pt)),

where βi := max{kai − e(pi), 0} (for i ∈ [1, t]). Thus, z(n) = z(nk) implies

lcm(pα1
1 z(p1), . . . , pαt

t z(pt)) = lcm(pβ1
1 z(p1), . . . , pβt

t z(pt)). (9)

If t = 1, then, supposing (k-WWC), one has that a1 > e(p1)/k; therefore,

z(pka1
1 ) = pmax{ka1−e(p1),0}

1 z(p1) = pka1−e(p1)
1 z(p1).
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On the other hand,
z(pa1

1 ) = pmax{a1−e(p1),0}
1 z(p1)

therefore, z(pa1
1 ) 6= z(p2a1

1 ), since ka1 − e(p1) ≥ 2a1 − e(p1) > max{a1 − e(p1), 0}. Thus,
from now on, we may assume that t > 1.

Now, the proof conveniently splits into two cases.

The Case in which P(n) = 5.

In this case, we have that n can be written as n = 2a1 · 3a2 · 5a3 , with (a1, a2, a3) ∈
Z2
≥0 ×Z≥1. Thus, (9) becomes

lcm(3 · 2δ1 , 4 · 3δ2 , 5a3) = lcm(3 · 2kδ1 , 4 · 3kδ2 , 5ka3),

where δi := max{ai − 1, 0}, for i ∈ {1, 2}. However, the above relation cannot be true,
since its right-hand side is a multiple of 5ka3 , while the left-hand side has a 5-adic valuation
that equals to a3 (note that ka3 ≥ 2a3 > a3). Therefore, there is no value of n (for which
z(n) = z(nk)) whose greatest prime factor is 5.

The Case in which P(n) 6= 5.

In this case, by assuming (k-WWC), we have that at = νpt(n) > e(pt)/k; there-

fore, βt = kat − e(pt) (since kat > e(pt)). Thus pkat−e(pt)
t divides z(nk) = z(n) =

lcm(pα1
1 z(p1), . . . , pαt

t z(pt)). Since pt 6= 5, then, by Lemma 2 (a), z(pt) divides either
pt − 1 or pt + 1. In particular, gcd(pt, z(pt)) = 1; therefore, pat

t divides

lcm(pα1
1 z(p1), . . . , pαt−1

t−1 z(pt−1)),

because t > 1. Therefore, pt must divide z(pi), for some i ∈ [1, t− 1]. However z(pi) |
pi − (5/pi) (Lemma 2 (b)) yields

pi < pt ≤ z(pi) ≤ pi + 1.

Thus, pt = pi + 1; therefore, pt = 3 and pi = 2 (the only two consecutive prime
numbers), i.e., P(n) ≤ 3. Thus, n = 2a1 · 3a2 , with a1, a2 ≥ 0. Clearly, if (a1, a2) = (0, 0), we
have n = 1 as a solution of z(n) = z(n2). In addition, if a1 ≥ 1 and a2 = 0, we have (by
Lemma 2 (c)) that z(2a1) = 3, 6 or 3 · 2a1−2 according to a1 = 1, 2 or ≥ 3, respectively. On
the other hand, z(22a1) ≥ 6, 12 or 3 · 2ka1−2 according to a1 = 1, 2 or ≥ 3. By comparing
the above respective values, we infer that there is no solution in these cases. Now, let us
suppose that a1 = 0 and a2 ≥ 1. Then, z(3a2) = 4 · 3a2−1 6= 4 · 3ka2−1 = z(3ka2)), for all
k ≥ 2. Therefore, let us assume that min{a1, a2} ≥ 1; by splitting into some sub-cases, one
has the following:

• If a1 = 1, then z(n) = lcm(3, 4 · 3a2−1) = 4 · 3δ2 , where δ2 := max{a2 − 1, 1}. On the
other hand,

z(nk) = lcm(z(2k), z(3ka2)) = lcm(z(2k), 4 · 3ka2−1) ≡ 0 (mod 3ka2−1),

therefore, 3ka2−1 divides 3δ2 . Thus, ka2 − 1 ≤ max{a2 − 1, 1} and (since k ≥ 2) the
only possibility is (k, a2) = (2, 1) which correspond to n = 6 as the only solution to
z(n) = z(n2) with P(n) ≤ 3 and ν2(n) = 1.

• If a1 = 2, then z(n) = lcm(6, 4 · 3a2−1) = 4 · 3δ2 . Therefore,

z(nk) = lcm(z(22k), z(3ka2)) = lcm(z(22k), 4 · 3ka2−1) ≡ 0 (mod 3ka2−1),

therefore, 3ka2−1 divides 3δ2 . As in the previous case, we infer that (k, a2) = (2, 1)
which implies that n = 12 is the only solution of z(n) = z(n2) with P(n) ≤ 3 and
ν2(n) = 2.
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Therefore, it remains to prove that the there is no solution when a1 ≥ 3. Indeed, by
Lemma 2 (c), we have

z(n) = lcm(z(2a1), z(3a2))

= lcm(3 · 2a1−2, 4 · 3a2−1)

= 2δ1 · 3δ2 , (10)

where δ1 := max{a1 − 2, 2}. However,

z(n2) = lcm(z(2ka1), z(3ka2))

= lcm(3 · 2ka1−2, 4 · 3ka2−1)

= 2ka1−2 · 3ka2−1, (11)

where ka1 − 2 ≥ 2a1 − 2 ≥ 2 · 3− 2 ≥ 4. By combining (10) and (11) in z(n) = z(nk), we
arrive at the absurdity that ka1 − 2 = δ1 = max{a1 − 2, 2} < a1 < 2a1 − 2. This finishes
the proof of the theorem.

3.3. Proof of Theorem 3

Let m > 1 be an integer and let us define n = F4m. By definition, one has that
z(F4m) = 4m (indeed, z(Fj) = j, for all j > 2). Now, by taking (a, b) = (2m− 1, 2m + 1) in
Lemma 4, we have

F2m−1L2m−1 = F4m + (−1)2m−1F−2.

Since F−2 = −1 (in fact, F−j = (−1)j+1Fj, for j > 0), we arrive at

F4m + 1 = F2m−1L2m+1.

By Lemma 3 (e), one has gcd(F2m−1, L2m+1) = 1 or 2 (since 2m− 1 and 2m + 1 are odd
numbers). Moreover, by Lemma 3 (f) and (g), F2m−1 and L2m+1 are both even numbers if
and only if 3 divides both 2m− 1 and 2m + 1. However, the last sentence cannot happen,
since (2m+ 1)− (2m− 1) = 2. Then, we infer that F2m−1 and L2m+1 are coprime. Therefore,
Lemma 1 yields

z(F4m + 1) = z(F2m−1L2m+1) = lcm(z(F2m−1), z(L2m+1)) = lcm(2m− 1, z(L2m+1)), (12)

since z(F2m−1) = 2m − 1 (because 2m − 1 > 2). The next step is to calculate z(L2m+1).
For that, by Lemma 3 (b), L2m+1 divides Fj if and only if 2m + 1 | j and j/(2m + 1) is
an even number. The minimal j with the required properties is j = 2(2m + 1). Thus,
z(L2m+1) = 2(2m + 1) and, by substituting in (12), we deduce that

z(F4m + 1) = lcm(2m− 1, z(L2m+1)) = lcm(2m− 1, 2(2m + 1)) = 2(2m− 1)(2m + 1)

where gcd(2m− 1, 2(2m + 1)) = gcd(2m− 1, 2(2m− 1) + 4) = 1. Therefore,

z(n + 1)− z(n) = z(F4m + 1)− z(F4m)

= 2(4m2 − 1)− 4m

= 8m2 − 4m− 2

> 2m2, (13)

where 8m2 − 4m− 2 > 2m2 if and only if (3m + 1)(m− 1) = 3m2 − 2m− 1 > 0, which
holds whenever m < −1/3 or m > 1.

On the other hand, by Lemma 5, we have that n = F4m ≤ α4m < e2m (since α < e1/2).
Thus, log n < 2m. By combining this inequality with (13), we obtain
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z(n + 1)− z(n)
(log n)2−ε

=
z(F4m + 1)− z(F4m)

(log F4m)2−ε
>

2m2

(2m)2−ε
> 2ε−1mε.

Since mε tends to infinity as m→ ∞, we obtain that (F4m)m≥2 is an infinity sequence of
positive integers for which |z(F4m + 1)− z(F4m)|/(log F4m)

2−ε tends to infinity as m→ ∞.
In particular,

lim sup
n→∞

|z(n + 1)− z(n)|
(log n)2−ε

= ∞

as desired. The proof is complete.

4. Further Comments and Some Questions

We close this paper by offering some questions for further research. The first natural
question to ask is the following.

Question 1. Is

lim sup
n→∞

|z(n + 1)− z(n)|
(log n)2 = ∞?

This question has a positive answer if one replaces 1 (in z(n+ 1)) by any non-Fibonacci
number a. Indeed, a result due to Luca and Pomerance ([18], Proposition 3) is that

lim
k→∞

z(Fk + a)
k2 = ∞,

for all integers a such that |a| is not a Fibonacci number. An immediate consequence is that,
by taking nk := Fk and a = 4 (for example), we have

lim
k→∞

z(nk + 4)− z(nk)

(log nk)2 = lim
k→∞

z(Fk + 4)− z(Fk)

(log Fk)2 ≥ 1
(log α)2 lim

k→∞

z(Fk + 4)− k
k2 = ∞,

where z(Fk) = k and Fk ≤ αk (by Lemma 5). In particular,

lim sup
n→∞

z(n + 4)− z(n)
(log n)2 = ∞.

This leads us to consider the following general study. For any integer a 6= 0, let us set

σa := sup
{

ν ∈ R>0 : lim sup
n→∞

|z(n + 1)− z(n)|
(log n)ν

= ∞
}

.

Our previous discussion ensures that σa ≥ 2, for all non-zero integer a. We then list
some problems.

Question 2.

(i) σ1 = 2?
(ii) σa = 2, for any non-Fibonacci number a?
(iii) Is there a positive integer a for which σa = ∞?
(iv) Is there a positive integer a for which 2 < σa < ∞?
(v) Determine some topological properties of the set {σa : a ∈ Z\{0}}. Is it an infinite set? Does

it have a limit point? Is it dense in some open subset of [2, ∞)?

5. Conclusions

In this paper, we study some Diophantine problems related to the order of appearance
function z(n) = min{k ≥ 1 : n | Fk}. It is well known that, if p > 2 is a prime number for
which z(p) 6= z(p2) (this is related to Wall’s conjecture that the p-adic order of Fz(p) = 1, for
all prime numbers p), then the equation xp + yp = zp does not have solution (x, y, z) ∈ Z3
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with p - xyz (the is the first case of Fermat’s Last Theorem). In this work, we state a weaker
version of Wall’s conjecture, named (k-WWC), and we first prove the existence of infinitely
many positive integers satisfying this conjecture. After we show that, by supposing that
(WWC) is true, the functional equation z(n) = z(n2) has, in the set of positive integers,
only solutions n ∈ {1, 6, 12}. In addition, it was proved recently that z(n + 1) = z(n) has
infinitely many solutions, which implies, in particular, that lim inf

n→∞
(z(n + 1)− z(n)) = 0.

In this paper, we still prove that lim sup
n→∞

(z(n + 1) − z(n))/(log n)2−ε = +∞, for all

0 < ε < 2.

Funding: The research study was supported by the Excellence Project PřF UHK No. 2213/2021–2022,
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