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Abstract: According to the Frenet equations of the null curves in semi-Euclidean 4-space, the existence
conditions and the geometrical characterizations of the Bertrand curves of the null curves are given
in this paper. The examples and the graphs of the Bertrand pairs with two different conditions are
also given in order to supplement the conclusion of this paper more intuitively.
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1. Introduction

The study on the local and global geometric properties of curves has attracted the
attention of many researchers. In case of semi-Euclidean space, there are three categories of
curves: spacelike curves, timelike curves, and null (lightlike) curves. The spacelike curves
and timelike curves are called non-degenerated curves, which have many similar properties
with the curves in Euclidean space [1,2]. However, for the null curves (degenerate curves),
with the reason of no length, compared with non-degenerate curves, there are many
different geometrical properties. Seeing that, from the differential geometry point of view,
the null curves have their own research value. Many researchers had focused their attention
on the null curves [3–10]. The first author and Pei, D.H., obtained the singularities and
other characterizations of null curves on the 3-null cone in [4,6]. The authors focused their
attention on the characterizations of the pseudo-spherical null curves and Bertrand null
curves in [8].

On the other hand, Bertrand stated the fact that the principal normal vector of a curve
can also be the principal normal vector of another curve in Euclidean 3-space [11], and
he gave a necessary and sufficient condition for the existence of the Bertrand mate. From
then on, many researchers began to study the Bertrand curves and got many interesting
properties [12–14]. The authors gave the relationship between the curvatures and the
torsions of the Bertrand curve pairs in [12]. However, due to the increase of dimension, the
authors gave the new definitions of the Bertrand curves in 4-space [15–17]. The definitions
of the new Bertrand curves ((1,3)-type) and some characterizations were obtained in [15].
The characterizations of the general surfaces and generalized Bertrand curves in Galilean
space were studied in [17,18].

Synthesizing the above views, in this paper, we study the existence conditions of the
Bertrand curves of the null curves in semi-Euclidean 4-space. Firstly, we provide some
fundamental concepts on the null curves and the semi-Euclidean 4-space. Then, we present
some geometrical properties of the Bertrand curves of the null curves in Section 3, and we
provide the existence conditions of the Bertrand curves for two different cases. In the last
section, two examples are given to demonstrate the correctness of the conclusions in view
of the geometric intuition.

2. Preliminaries

Let R4 = {(x1, x2, x3, x4)|xi ∈ R (i = 1, 2, 3, 4)} be a 4-dimensional vector space. For
any vectors x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in R4, the pseudo scalar product of x
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and y is defined by 〈x, y〉 = −x1y1 − x2y2 + x3y3 + x4y4. (R4, 〈, 〉) is called semi-Euclidean
4-space and denoted by R4

2.
A vector x in R4

2 \ {0} is called a spacelike vector, a lightlike vector or a timelike vector if
〈x, x〉 is positive, zero or negative, respectively. The norm of a vector x ∈ R4

2 is defined by
‖x‖ =

√
|〈x, x〉|. For any two vectors x and y in R4

2, we say that x is pseudo-perpendicular to
y if 〈x, y〉 = 0. The pseudo vector product of vectors x, y, and z is defined by

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣
−e1 −e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣,
where {e1, e2, e3, e4} is the canonical basis of R4

2. One can easily show that 〈a, x ∧ y ∧
z〉 = det(a, x, y, z). For a real number c, we define the hyperplane with pseudo normal
vector n by HP(n, c) = {x ∈ R4

2 | 〈x, n〉 = c}. We call HP(n, c) a spacelike hyperplane, a
timelike hyperplane or a lightlike hyperplane if n is a spacelike, timelike or null (lightlike)
vector, respectively.

Definition 1. Let γ : I → R4
2 be a curve in R4

2. Then γ(s) is called a null (lightlike) curve, a
spacelike curve or a timelike curve if its tangent vector γ′(s) = ξ(s) is null vector, spacelike vector
or timelike vector for s ∈ I, respectively.

In this paper, we consider the null curve γ(s) with pseudo parameter s satisfying
〈ξ(s), ξ(s)〉 = 0 and 〈ξ

′(s),ξ′(s)〉
‖ξ′(s)‖2 = ε1, ε2

1 = 1.

For a non-null curve C(t) in R4
2, we have a non-null bundle subspace of TR4

2 satisfying

TR4
2 = TC⊥TC⊥, TC

⋂
TC⊥ = ∅.

However, for a null curve γ ∈ R4
2, the tangent bundle TR4

2 can be split into three
non-intersecting complementary vector bundles. For this purpose, we consider a comple-
mentary vector bundle (screen vector bundle) S(Tγ⊥) to Tγ in Tγ⊥, which means

Tγ⊥ = Tγ
⊕

S(Tγ⊥).

We know S(Tγ⊥) is non-degenerate. Since R4
2 is para compact, there exists a screen

bundle, such that
TR4

2 |γ= S(Tγ⊥)
⊕

S(Tγ⊥)⊥. (1)

Notice that since S(Tγ⊥)⊥ is of rank 2 and contains Tγ, there exists a unique null
vector bundle of rank 1, which plays a similar roll like the unique normal vector bundle of
the non-null curve. Hence, the unique transversal vector N is obtained by the following
lemma [3]:

Lemma 1. Let γ : I → R4
2 be a null curve in R4

2, π : ntr(γ) → R4
2 be a sub bundle of a screen

vector bundle S(Tγ⊥)⊥, such that S(Tγ⊥)⊥ = Tγ
⊕

ntr(γ), where ntr(γ) stands for the null
transverse of vector Tγ. Let V ∈ Γ∞(R4

2, ntr(γ)) be a locally defined nowhere zero section.

1. Then 〈ξ, V〉 6= 0 everywhere in R4
2.

2. If we consider N ∈ Γ∞(R4
2, S(Tγ⊥)⊥) given by

N =
1
〈ξ, V〉 {V −

〈V , V〉
2〈ξ, V〉 ξ}, (2)
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then ntr(γ) is a unique vector bundle over γ of rank 1, and, there is a unique vector field
N ∈ Γ(ntr(Tγ) |R4

2
) satisfying

〈N, N〉 = 0, 〈ξ, N〉 = 1.

3. The tangent bundle TR4
2 splits into the following three bundle spaces:

TR4
2|γ = Tγ

⊕
ntr(γ)

⊕
S(Tγ⊥).

For a null curve γ in R4
2, and N(s) the unique null transversal vector field to ξ(s),

the screen vector bundle S(Tγ⊥) is Lorentz. Hence, the two null vectors ξ(s) and N(s)
are two Frenet frames of γ. Then, κ1(s) = ‖ξ′(s)‖, and we construct a non null frame
B(s) = 1

κ1(s)
ξ′(s) ∈ span{ξ(s), N(s)}⊥, and W(s) = ξ(s)∧N(s)∧B(s)

‖ξ(s)∧N(s)∧B(s)‖ .

A null curve γ : I → R4
2 with the Frenet frame {ξ(s), N(s), B(s), W(s)}, satisfies

〈ξ(s), ξ(s)〉 = 〈N(s), N(s)〉 = 0,

〈ξ(s), N(s)〉 = 1,

〈B(s), B(s)〉 = ε1, 〈W(s), W(s)〉 = ε2, ε2
1 = ε2

2 = 1, ε1ε2 = −1,

〈N(s), B(s)〉 = 〈N(s), W(s)〉 = 〈ξ(s), B(s)〉 = 〈ξ(s), W(s)〉 = 〈B(s), W(s)〉 = 0,

where ξ(s) = γ′(s) is the tangent vector, N(s) is the normal vector, B(s) is the first binormal
vector, and W(s) is the second binormal vector. The Frenet Equations of γ(s) are given as
follows [3], 

ξ′(s) = κ1(s)B(s)
N ′(s) = κ2(s)B(s) + κ3(s)W(s)
B′(s) = −κ2(s)ε1ξ(s)− κ1(s)ε1N(s)
W ′(s) = −κ3(s)ε2ξ(s)

, (3)

where κ1(s) = ε1〈ξ′(s), B(s)〉, κ2(s) = ε1〈B(s), N ′(s)〉 and κ3(s) = ε2〈W(s), N ′(s)〉 are
called the first curvature function, the second curvature function and the third curvature
function of γ(s), respectively.

As in [15,17], we give the definition of the Bertrand curve as following,

Definition 2. Let γ and γ̃ be two curves in semi-Euclidean 4-space and ϕ : I → Ĩ a regular
C∞-map, such that each point γ(s) of γ corresponds to the point γ̃(s̃) = γ̃(ϕ(s)) of γ̃ for all s ∈ I.
If the Frenet–Serret normal plane spanned by {N(s), W(s)} at each point of γ coincides with the
Frenet–Serret normal plane spanned by {Ñ(s̃), W̃(s̃)} at each corresponding point of γ̃, then γ̃(s̃)
is called the Bertrand curve (mate) of γ(s).

3. The Bertrand Curves of Null Curves

In this section, we present some geometrical characterizations and provide the exis-
tence conditions of the Bertrand curves of the null curves in semi-Euclidean 4-space. We
also give the existence of the Bertrand curves for two cases (κ2 6= 0, κ2 = 0) respectively.

For γ(s) be a null curve in semi-Euclidean 4-space, the Bertrand curve γ̃(s̃) of γ(s)
can be written as following,

γ̃(s̃) = γ̃(ϕ(s)) = γ(s) + λ(s)N(s) + µ(s)W(s), s ∈ I, (4)

where λ(s) and µ(s) are C∞−functions on I, λ2(s) + µ2(s) 6= 0, and s̃ = ϕ(s) is the pseudo
parameter of γ̃(s̃).

Differentiating the Equation (4) with respect to s, we can obtain
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ϕ′(s)ξ̃(s̃) = γ′(s) + λ′(s)N(s) + λ(s)N ′(s) + µ′(s)W(s) + µ(s)W ′(s)
= (1− ε2κ3µ(s))ξ(s) + λ′(s)N(s) + λ(s)κ2B(s) + (λ(s)κ3 + µ′(s))W(s).

(5)

Since the plane spanned by N(s) and W(s) is parallel with the plane spanned by Ñ(s̃)
and W̃(s̃), we have

Ñ(s̃) = f (s)N(s), f (s) 6= 0, (6)

W̃(s̃) = g(s)N(s) + W(s), (7)

where f (s), g(s) are two C∞−functions. By the fact

〈ξ̃(s̃), ξ̃(s̃)〉 = 0, 〈ξ̃(s̃), Ñ(s̃)〉 = 1, (8)

we get

ϕ′(s) = 〈ϕ′(s)ξ̃(s̃), Ñ(s̃)〉
= 〈(1− ε2κ3µ(s))ξ(s) + λ′(s)N(s) + λ(s)κ2B(s) + (λ(s)κ3 + µ′(s))W(s), f (s)N(s)〉
= (1− ε2κ3µ(s)) f (s).

(9)

Since
〈ξ̃(s̃), W̃(s̃)〉 = 0,

we obtain

〈ϕ′(s)ξ̃(s̃), Ñ(s̃)〉
= 〈(1− ε2κ3µ(s))ξ(s) + λ′(s)N(s) + λ(s)κ2B(s) + (λ(s)κ3 + µ′(s))W(s), g(s)N(s) + W(s)〉
= (1− ε2κ3µ(s))g(s) + ε2(λ(s)κ3 + µ′(s))
= 0.

(10)

Together with the Equations (9) and (10), when 1− ε2κ3µ(s) 6= 0, we obtain

λ(s)κ3 + µ′(s) = − ε2 ϕ′(s)g(s)
f (s)

. (11)

From
〈ϕ′(s)ξ̃(s̃), ϕ′(s)ξ̃(s̃)〉
= 2λ′(s)(1− ε2κ3µ(s)) + ε1κ2

2λ2(s) + ε2(λ(s)κ3+µ′(s)),
(12)

together with the Equations (3) and (7), we can obtain

ϕ′(s)W̃(s̃) = −ε2κ̃3 ϕ′(s)ξ̃(s̃) = g′(s)N(s) + g(s)N ′(s) + W ′(s), (13)

and

−ε2κ̃3[(1− ε2κ3µ(s)) + λ′(s)N(s) + λ(s)κ2B(s) + (λ(s)κ3 + µ′(s))W(s)]
= −ε2κ̃3ξ(s) + g′(s)N(s) + κ2g(s)B(s) + κ3g(s)W(s).

(14)

Hence, 
−ε2κ̃3(1− ε2κ3µ(s)) = −ε2κ3,
−ε2κ̃3λ′(s) = g′(s),
−ε2κ̃3λ(s)κ2 = κ2g(s),
−ε2κ̃3(λ(s)κ3 + µ′(s)) = κ3g(s).

(15)

Theorem 1. Let γ(s) be a null curve in semi-Euclidean 4-space with the frames {ξ(s), N(s), B(s),
W(s), κ1, κ2, κ3}, and the Bertrand curve γ̃(s̃) of γ(s) with the frames {ξ̃(s̃), Ñ(s̃), B̃(s̃), W̃(s̃), κ̃1,
κ̃2, κ̃3}, where s̃ = ϕ(s). When κ2 6= 0, there exist three functions f (s), g(s), λ(s) as in the formu-
las (4), (6) and (7) such that:

Case 1: when κ̃3
′ = 0, the following conclusions are established:

1. g(s) = C1ε1λ(s), and f (s) = C1
C3

, where C1, C3 are constants;
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2. C2
1(κ

2
2 − 2C2

3)
2 = C2

1κ2
2 + C2

3 κ̃2
2 − κ2

2 κ̃2
2;

3. λ(s) = ζ(s)(κ2
2−C2

3)−2[C1C3+ζ(s)]κ2κ′2
(κ2

2−C2
3)[M0(κ

2
2−C2

3)+(ε1κ2
2+ε2C2

3)(C1C3+ζ(s))]
, where ζ(s) =

√
C2

1κ2
2 + C2

3 κ̃2
2 − κ̃2

2κ2
2,

M0 = (1− ε2C2C3)ε1C2
1 + ε2C3C1.

Case 2: when κ̃3
′ 6= 0, the following conclusions are established:

1. λ(s) = 0, µ(s) = K, where K is a constant;
2. κ̃3 = K1(1− ε2κ3K)κ3;
3. κ̃2

2 = (K2
1κ2

2 − κ2
3)(1− ε2Kκ3)

2κ2
2 + 2κ2

3K1(1− ε2Kκ3)− κ4
3.

Proof. When κ2 6= 0, by the Equations (10) and (15), we can obtain

κ̃3
′λ(s) = 0.

Case 1: when κ̃3
′ = 0, λ(s) 6= 0, κ̃3 = C1, where C1 is a constant, from the third

equation of (15), we have
g(s) = C1ε1λ(s). (16)

By differentiating the Equation (16), we obtain

C1ε1(λ(s)κ3 + µ′(s)) = C1ε1κ3λ(s),

and we get µ′(s) = 0 and µ(s) = C2. Substituting µ(s) to the first equation of (15) gives us

κ3 =
C1

1 + ε2C1C2
:= C3,

where C1, C2 are two constants.
By the Equations (5)–(7), (11) and (16), we can obtain

ϕ′(s)
f (s)

= 1− ε2C3C2.

By differentiating the vector Ñ(s̃), we get

dÑ(s̃)
ds = ϕ′(s) dÑ(s̃)

ds̃
= κ̃2(s̃)B̃(s̃) + κ̃3(s̃)W̃(s̃) = κ̃2(s̃)B̃(s̃) + C1W̃(s̃)
= κ̃2(s̃)B̃(s̃) + C1g(s)N(s) + C1W(s).

(17)

Meanwhile,

dÑ(s̃)
ds

= f ′(s)N(s) + f (s)N ′(s) = f ′(s)N(s) + f (s)κ2B(s) + f (s)κ3W(s),

hence,

B̃(s̃) =
1
κ̃2

[( f ′(s)− C1g(s))N(s) + f (s)κ2B(s) + ( f (s)κ3 − C1)W(s)]. (18)

By 〈B̃(s̃), ξ̃(s̃)〉 = 0, we find

〈B̃(s̃), ϕ′(s)ξ̃(s̃)〉
= 1

κ̃2
[( f ′(s)− C1g(s))(1− ε2C2C3) + ε1 f (s)κ2λ(s) + ε2λ(s)C3( f (s)κ3 − C1)W(s)]

= 0.
(19)

Similarily,
〈B̃(s̃), W̃(s̃)〉 = 0 = ε2( f (s)C3 − C1),
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and we get

f (s) =
C1

C3
. (20)

From, 〈B̃(s̃), B̃(s̃)〉 = ε1, we have

〈B̃(s̃), B̃(s̃)〉 = 1
κ̃2

[ε1 f 2(s)κ2
2 + ε2( f (s)κ3 − C1)

2] = ε1,

and we obtain

f (s) =
C3C1 +

√
C2

1κ2
2 + C2

3 κ̃2
2 − κ̃2

2κ2
2

κ2
2 − C2

3
. (21)

By substituting (21) in (19) and (20), we have

C2
1(κ

2
2 − 2C2

3)
2 = C2

1κ2
2 + C2

3 κ̃2
2 − κ2

2 κ̃2
2, (22)

ϕ′(s) = f (s)C3
C1

= 1, ϕ(s) = s + C. Hence,

λ(s) =
ζ(s)(κ2

2 − C2
3)− 2[C1C3 + ζ(s)]κ2κ′2

(κ2
2 − C2

3)[M0(κ
2
2 − C2

3) + (ε1κ2
2 + ε2C2

3)(C1C3 + ζ(s))]
,

κ2
2 =

M0C3 − ε2C2
3

ε1C1
,

κ̃2
2 =

M0C1 − ε2C2
3C1

ε1C3
,

where ζ(s) =
√

C2
1κ2

2 + C2
3 κ̃2

2 − κ̃2
2κ2

2, M0 = (1− ε2C2C3)ε1C2
1 + ε2C3C1.

Case 2: When κ̃3
′ 6= 0, λ(s) = 0, and λ′(s) = 0, we can obtain g(s) = 0, µ′(s) = 0, and

µ(s) = K, where K is a constant.
By substituting the above to Equation (9),

κ̃3 − ε1κ̃3κ3K− κ3 = 0,

we find
ϕ′(s)ξ̃(s̃) = (1− ε2κ3K)ξ(s),

Ñ(s̃) = f (s)N(s), f (s) 6= 0,

W̃(s̃) = W(s),

f (s)ϕ′(s) = 1− ε2κ3K. (23)

By differentiating Ñ(s̃), we get

dÑ(s̃)
ds = ϕ′(s) dÑ(s̃)

ds̃
= ϕ′(s)(κ̃2(s̃)B̃(s̃) + κ̃3(s̃)W̃(s̃))
= ϕ′(s)(κ̃2(s̃)B̃(s̃) + κ̃3(s̃)W̃(s̃))
= f ′(s)N(s) + f (s)(κ2B(s) + κ3W(s)),

(24)

hence, we obtain

B̃(s̃) =
1

ϕ′(s)κ̃2
[ f ′(s)N(s) + f (s)κ2B(s) + (κ3 − ϕ′(s)κ̃3)W(s)].

By the fact 〈B̃(s̃), ξ̃(s̃)〉 = 0, 〈B̃(s̃), Ñ(s̃)〉 = 0, and 〈B̃(s̃), W̃(s̃)〉 = 0, we can obtain

f (s)(1− ε2κ3K)κ3 = κ̃3. (25)
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(1). When 1− ε2κ3K = 0, from (23), we know ϕ′(s) = 0, which contradicts with ϕ(s) =
s + C. Hence, we omit this case.

(2). When 1− ε2κ3K 6= 0, we know f ′(s) = 0 and f (s) = K1, where K1 is a constant. By
substituting this in the Equation (23), we have

κ̃3 = K1(1− ε2κ3K)κ3.

By the fact that 〈B̃(s̃), B̃(s̃)〉 = ε1, we can obtain

κ̃2
2 = (K2

1κ2
2 − κ2

3)(1− ε2Kκ3)
2κ2

2 + 2κ2
3K1(1− ε2Kκ3)− κ4

3. (26)

Theorem 2. Let γ(s) be a null curve in semi-Euclidean 4-space with the frames {ξ(s), N(s), B(s),
W(s), κ1, κ2, κ3}, and the Bertrand curve γ̃(s̃) of γ(s) with the frames {ξ̃(s̃), Ñ(s̃), B̃(s̃), W̃(s̃), κ̃1,
κ̃2, κ̃3}, where s̃ = ϕ(s). When κ2 = 0, there exist three functions f (s), λ(s), µ(s) as in the formu-
las (4), (6) and (7) such that:

1. f (s) = K1, K1 is a constant, and ϕ(s) =
∫ 1

(1−Kε2κ3)K1
;

2. µ′(s) + κ3λ(s) = κ1(1−ε2κ3µ(s))(λ(s)κ3+µ′(s))

κ̃1e

∫ κ3
ε1κ1(λ(s)κ3+µ′(s)) ds

;

3. µ′′(s)(1 + µ(s)) + µ′2(s)− (µ(s)λ(s))′ − λ′(s)− µ(s) = 1.

Proof. By the Equation (15) , we can obtain

(κ′3λ(s) + κ3λ′(s) + µ′′(s))(1− ε2κ3µ(s)) + ε2(λ(s)κ3 + µ′(s))(κ′3µ(s) + κ3µ′(s)) = κ̃3λ′(s)(1− ε2κ3µ(s))2)2

By differentiating Ñ(s̃), we get

dÑ(s̃)
ds = ϕ′(s) dÑ(s̃)

ds̃
= ϕ′(s)κ̃3(s̃)W̃(s̃)
= ϕ′(s)κ̃3(s̃)(g(s)N(s) + W(s))
= f ′(s)N(s) + f (s)κ3W(s).

(27)

Hence,
κ̃3(s̃)ϕ′(s)g(s) = f ′(s),

κ̃3(s̃)ϕ′(s)g(s) = f (s)κ3,

and,
f ′(s)
f (s)

=
κ3

g(s)
, (28)

f (s) = e
∫ κ3

g(s) ds. (29)

Since

ϕ′(s) =
κ3

κ̃3
e
∫ κ3

g(s) ds
= ε1

f (s)
g(s)

(λ(s)κ3 + µ′(s)), (30)

we obtain

g(s) =
κ̃3

κ3
(λ(s)κ3 + µ′(s)). (31)

Meanwhile,

ξ̃′(s̃) = κ̃1B̃(s̃)
= a(s)ξ(s) + b(s)N(s) + c(s)B(s) + d(s)W(s),

(32)

B̃(s̃) =
1
κ̃1

(a(s)ξ(s) + b(s)N(s) + c(s)B(s) + d(s)W(s)),
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where

a(s) = − ϕ′′(s)
ϕ′2(s)

(1− ε2κ3µ(s)) +
1

ϕ′(s)
(1− ε2κ3µ(s))′ − ε2κ3(λ(s)κ3 + µ′(s)),

b(s) = − ϕ′′(s)
ϕ′2(s)

λ′(s) +
1

ϕ′(s)
λ′′(s),

c(s) =
1

ϕ′(s)
(1− ε2κ3µ(s))κ1,

d(s) = − ϕ′′(s)
ϕ′2(s)

(λ(s)κ3 + µ′(s)) +
1

ϕ′(s)
(λ′(s)κ3 + λ(s)κ′3 + µ′′(s).

By the fact 〈B̃(s̃), ξ̃(s̃)〉 = 0, 〈B̃(s̃), Ñ(s̃)〉 = 0, and 〈B̃(s̃), W̃(s̃)〉 = 0, we can obtain

a(s) = 0, d(s) = 0.

Since 〈B̃(s̃), B̃(s̃)〉 = ε1, we have

κ̃1
2 = (

(1− ε2κ3µ(s))κ1

ϕ′(s)
)2. (33)

By substituting Equations (30), (31) and (33) into Equation (11), we obtain that there
exist two functions λ(s) and µ(s) satisfying

µ′(s) + κ3λ(s) =
κ1(1− ε2κ3µ(s))(λ(s)κ3 + µ′(s))

κ̃1e
∫ κ3

ε1κ1(λ(s)κ3+µ′(s)) ds
. (34)

By substituting the Equations (29), (31) and (33) into Equation (34), we can obtain

µ′′(s)(1 + µ(s)) + µ′2(s)− (µ(s)λ(s))′ − λ′(s)− µ(s) = 1.

When we choose µ(s) = s, then λ(s) = e−s

2 (ses − es + C).

4. Some Examples

In this section, we give two examples of the Bertrand curves of the null curves in
semi-Euclidean 4-space to certificate our main conclusions. The graphics of the null curves
and the Bertrand curves are described in the followings. Moreover, for the reason that it
cannot draw the high dimension graph, and here, we give the projection graph of the null
curve and the Bertrand curves for two cases (κ2 6= 0, κ2 = 0), respectively.

Example 1. Let γ(s) be a null curve in semi-Euclidean 4-space with κ2 6= 0, and γ̃(s̃) be the
Bertrand curve of γ(s). The equation is as following [3],

γ(s) =
{1

3
(2s− 1)

3
2 ,

1
2

s2 − s, s sin s + cos s, sin s− s cos s
}

,

and we can choose the frame of the null curve γ(s):

ξ(s) =
{
(2s− 1)

1
2 , s− 1, s cos s, s sin s

}
;

N(s) = − 1
2s2

{
(2s− 1)

1
2 , s− 1,−s cos s,−s sin s

}
;

B(s) =
√

2s− 1√
2s3 − s2 − 1

{ 1√
2s− 1

, 1, cos s− s sin s, sin s + s cos s
}

;
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W(s) =
1√

2s3 − s2 − 1

{
(1− s)

√
2s− 1, 2s− 1,− sin s, cos s

}
.

The curvatures are the following

κ1 =

√
2s3 − s2 − 1√

2s− 1
,

κ2 =
2s3 − s2 + 1

2s2
√

2s3 − s2 − 1
√

2s− 1
,

κ3 =
6s4 − 5s3 + s2 − 3s + 1
(2s3 − s2 − 1)2

√
2s− 1

.

By the analysis in Section 3, we can obtain µ(s) = constant. We might as well choose
µ(s) = 1. We can get

λ(s) =
( (2s3−s2+1)2

4s4(2s3−s2−1)(2s−1) − 1)− 2(1 +
√

8s4(2s3−s2−1)(2s−1)−(2s3−s2+1)2

4s4(2s3−s2−1)(2s−1)
2s3−s2+1

2s2
√

2s3−s2−1
√

2s−1
)

(2s3−s2+1)2

4s4(2s3−s2−1)(2s−1) [(
(2s3−s2+1)2

4s4(2s3−s2−1)(2s−1) − 1) +
√

8s4(2s3−s2−1)(2s−1)−(2s3−s2+1)2

4s4(2s3−s2−1)(2s−1) ]

.

Hence, we have

γ̃(s̃) = γ(s) + λ(s)N(s) + µ(s)W(s)

=
{

1
3 (2s− 1)

3
2 − λ(s)

√
2s−1
2s2 + (s−1)

√
2s−1√

2s3−s2−1
,

− 1
2S2 − λ(s) s−1

2s2 − 2s−1√
2s3−s2−1

,

s sin s + cos s + λ(s) s cos s
2s2 + sin s√

2s3−s2−1
,

sin s− s cos s + λ(s) s sin s
2s2 + cos s√

2s3−s2−1

}
.

(35)

We draw four graphics from four different projection angles in the following (Figures 1–4).

Figure 1. The blue curve is γ(s) and the red curve is the γ̃(s̃) in the projection space spanned by
{N, B, W}.
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Figure 2. The blue curve is γ(s) and the red curve is the γ̃(s̃) in the projection space spanned by
{ξ, B, W}.

Figure 3. The blue curve is γ(s) and the red curve is the γ̃(s̃) in the projection space spanned by
{ξ, N, W}.
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Figure 4. The blue curve is γ(s) and the red curve is the γ̃(s̃) in the projection space spanned by
{ξ, N, B}.

Example 2. Let γ(s) be a null curve in the semi-Euclidean 4-space with κ2 = 0, and γ̃(s̃) be the
Bertrand curve of γ(s). The equation is as follows

γ(s) =
{1

3
s3 − 2s, s2,

1
3

s3, 2s
}

,

and we can choose the frame of the null curve γ(s):

ξ(s) =
{

s2 − 2, 2s, s2, 2
}

;

N(s) =
−1
8

{
s2 − 2, 2s, s2,−2

}
;

B(s) =
{

s, 1, s, 0
}

;

W(s) =
1
2

{
s2, 2s, s2 + 2, 0

}
.

The curvatures are κ1 = 2, κ2 = 0, κ3 = −1. By the analysis in Section 3, when choos-
ing g(s) = s, we draw two graphics from two different projection angles in the following
(Figures 5 and 6).
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Figure 5. The blue curve is γ(s) and the red curve is the γ̃(s̃) in the projection space spanned by
{ξ, N, W} when we choose µ(s) = s.

Figure 6. The blue curve is γ(s) and the red curve is the γ̃(s̃) in the projection space spanned by
{ξ, N, B} when we choose µ(s) = s.
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