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Abstract: The swelling potentiality is a vital property of fine-grained soils strictly related to the
index properties and chemical composition. The integration of machine learning techniques and
geotechnical parameters provided a new integrative approach for predicting the free swelling index
(FSI) and the swelling pressure (SP). In this paper, an adaptive neuro-fuzzy inference system (ANFIS)
using named Reptile Search Algorithm (RSA) is presented to predict the swelling potentiality for fine-
grained soils in the foundation bed at El Sherouk city, Egypt. The developed predictive model, named
RSA-ANFIS, used as input measured 108 natural fine-grained soil samples of index geotechnical
parameters and chemical composition as input data and the measured data of the free swelling index
and the swelling pressure as output data. To justify the performance of the developed model, a
comparative study was carried out, and the results show that the developed RSA-ANFIS has a high
performance over the competitive methods in terms of coefficient of determination, root mean square
error (RMSE), and mean absolute error (MAE). This new integrative approach is considered at the
highly developed stage to predict and improve the analysis of multi-parameter soil behavior and
could be applied in other objective variable datasets.

Keywords: machine learning techniques; liquid limit; clay fraction; swelling potentiality

1. Introduction

Globally, swelling soils are considered as the more common problematic soils world-
wide, and the investigation of these soils has a high priority challenge. These soils are
composed of fine-grained soils. Therefore, these soils are essential in different geotechnical
practices. Consequently, the damages in swelling soils due to changing moisture contents
are a common problem, and the payments for this problem are reported frequently and
cannot be neglected. In general, the swelling potentiality for soils is considered a vital
property of fine-grained soils characterization.

Accordingly, the categorization of swelling potentiality can be undertaken by a lot
of methods [1]. Furthermore, volume changes are assessed by empirical methods with
various geotechnical parameters such as Atterberg limits. The Oedometer test signifies
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supplementary direct methods of assessing volume changes; nevertheless, they are expen-
sive and time-consuming, using disturbed samples only, which are expensive and difficult
to obtain [2]. However, the mineralogical and chemical composition effect are not clarified
and explicated on the index geotechnical properties of the clayey soils with the new and
effective methods [1,3,4]. At the moment, greater attention has been given to empirical
investigations of the swelling behavior of compacted and natural soils. In contrast, the
effects of mineralogical and chemical composition are not clarified and explicated on index
geotechnical properties of the clayey soils with the new and effective methods [5–7].

Recently, there has been increasing interest in integrating artificial neural networks
(ANNs) and fuzzy logic systems, resulting in an adaptive neuro-fuzzy inference (ANFIS)
system. This system combines the strength of fuzzy systems with the high learning capacity
of ANN [8]. The great performance of the ANFIS for predicting the swelling potentiality
has been shown in an increasing body of literature, including the works of [9–11]. However,
the performance of the ANFIS model depends on the value of its parameter, and this can
lead to degradation in the quality of the output when they are not determined to be optimal.
This motivated us to provide an alternative version of ANFIS using a new metaheuristic
(MH) technique named Reptile Search Algorithm (RSA). This MH technique (i.e., RSA),
emulates the behavior of a reptile to find its prey. In general, RSA has been applied to solve
different optimization problems, as in [12]. According to this behavior, we used RSA to
enhance the efficiency of ANFIS through determining the best configuration of ANFIS that
can lead to increasing the prediction accuracy. Many researchers have related swelling with
the index geotechnical properties of clayey soils [13–16]. However, few recent studies try
to predict the swelling potentiality [17,18]. On the other hand, the empirical methods that
assess volume changes in terms of simple soil properties are relatively simple, inexpensive,
and accepted as simple indicator methods. This study was conducted to predict the free
swelling index and swelling pressure of clay soils. For study persistence, the comparative
study of the RSA-ANFIS was applied to relate the free swelling index (FSI) and the swelling
pressure (SP) with datasets measured and the accompanied model with multi-parameters
of tested soil samples under the same conditions. Perceptibly, such an inquiry is essential
for engineers to verify the proper empirical relations. The main contributions of this study
can be summarized as follows:

1- Propose a modified ANFIS model and apply it to improve the prediction of the free
swelling index (FSI) and the swelling pressure (SP).

2- Enhance the performance of ANFIS using the operators of the new MH technique
named Reptile Search Algorithm (RSA).

3- Apply the developed prediction model, named RSA-ANFIS, to real collected data
from El Sherouk City, Egypt.

The paper is organized as follows: In Section 2, the Materials and Methods are
introduced. Section 3 presents the steps of prediction of the RSA-ANFIS model. The results
and discussion are given in Section 4. Finally, the conclusion and future work are given in
Section 5.

2. Materials and Methods
2.1. Geotechnical Data

Expansive soils are a combination of chemical and mineral composition and suffer
unpredictable volume change potentiality. The swelling properties of expansive soils are
accompanied by physical, index properties, and chemical composition. Here, 36 disturbed
high plastic clay samples were collected from the Miocene foundation level at El Shorouq
city. At this point, the physical properties of these samples were conducted including
water content, bulk density, and particle-size distribution. Atterberg limits were measured
for all samples [19]. Regarding the Unified Soils Classification [20], the soil samples were
classified.

The experimental program was applied according to the procedure of ISO/IEC
17025:2017 in Soil Research Unit (SRU) at Zagazig Environmental Geophysics Labora-
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tory (ZEGL). In addition, for uncertainty estimation, each test is to be performed (5) times,
First, we specified the uncertainty sources, such as the environmental conditions of the
lab. The major oxides of the tested samples were carried out using the ICP-OES technique
available at the Groundwater Research Institute, Al-Kanater Al-Khayria, Egypt. The Free
Swell Index (FSI) test was performed as one of the more important direct methods to
determine the free swell value. The FSI is calculated using the following equation

FSI = (VL − VS)/VS × 100

where VS is the volume of a given mass (10 g) of fully dried experimental soil (volume is
measured by reading the graduation mark up to which dry soil occupies in the cylinder),
and VL is the final equilibrium volume of this soil when it is immersed in water in the
100 mL graduated cylinder.

The swelling pressure was performed (Figure 1) using an Oedometer test by controlled
a sample laterally and axially with increasing stress [20].
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As a final point, the results were analyzed to propose suitable regression equations
recommended for predicting the swelling potentiality regarding the index properties.
Therefore, it was proposed by simple geotechnical parameters to give a preliminary esti-
mate of potential swelling, and if this was extensive, further testing such as the Oedometer
test could be carried out.

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Honey Badger Algorithm Are
Discussed Briefly in this Section
2.2.1. Adaptive Neuro-Fuzzy Inference System

The ANFIS system is considered as a type of ANN that depends on the Takagi–Sugeno
fuzzy inference system, which combines ANN and fuzzy logic in one framework to benefit
from their advantages [21]. The learning of ANFIS can be accomplished without the need
for professional knowledge due to its learning potential. Rules make it possible to analyze
both qualitative and quantitative data, and they are simple enough to make the reasoning
behind the model’s outcomes understandable [8]. The membership functions µA (x)ε [0, 1]
can be used to express the fuzzy system component in ANFIS. These functions have ability
to change the behavior of the input x into a membership degree between [0, 1].

The following is a list of the outputs ( fi) for the given scenario, which has two rules
with two inputs (x and y):

Rule 1 : If x is A1 and y is B1 then f1 = p1x + q1y + r1
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Rule 2 : If x is A2 and y is B2 then f2 = p2x + q2y + r2,

where Ai and Bi stand for the fuzzy sets and pj, qj, rj denote the consequent parameters
that are required to determine their values over the training stage.

Fuzzification, inference, normalization, consequence, and output are the five layers
that make up ANFIS’ architecture. In Figure 2, these layers are depicted.
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The following include the description of the five layers of ANFIS:
Layer 1: The first layer’s parameters are known as “premise parameters,” and each

node in this layer generates a fuzzy membership degree. Assume Oij is the ith level and
jth node for the first level:

O1j = µAj(x) f or j = 1, 2,O1j = µBj(x) f or j = 3, 4. (1)

In Equation (1), µAj(x) and µBj(x) stand for the fuzzy membership function (MF).
Aj and Bj stand for the fuzzy sets. The Gaussian MF (GMF) using a Sugeno-type fuzzy
inference system is applied, and it has the following formula:

MFij = exp

[
−
(

x− x√
2σ2

)2
]

f or i = 1, . . . , nj = 1 . . . , m. (2)

where x and σ2 refer to the average and variance of the GMF, respectively.
Layer 2: The nodes that belong to the second layer use multiplication to calculate the

firing strength for each rule:

O2j = wj = µAj(x)∗ µBj(x) f or j = 1, 2. (3)

Layer 3: The main aim of this layer is to compute the normalization of the firing
strength (O3j) as:

O3j = wj =
wj

(w1 + w2)
f orj = 1, 2. (4)

Layer 4: The output of this layer (O4j) depends on the wj and the consequent parame-
ters. It is computed as:

O4j = wj f j = wj
(

pjx + qjy + rj
)

f or j = 1, 2. (5)
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Layer 5: The output of fifth layer is the output of ANFIS, and it is computed as:

O5j = overalloutput = ∑
j

wj f j =
∑j wk fk

∑j wk
f or k = 1, 2. (6)

2.2.2. Reptile Search Algorithm (RSA)

In [12], a new meta formula named Reptile Search Algorithm (RSA) was introduced,
which simulates the hunting behavior of reptiles. The first step in RSA is to generate a set
of solutions using the following formula [12]:

xij = rand× (UB− LB) + LB, j = 1, 2, . . . , n (7)

where rand stands for a random value. LB and UB refer to the boundaries of the search
domain.

x(i,j)(t + 1) =

{
Bestj(t)×−η(i,j)(t)× β− R(i,j)(t)× rand, t ≤ T

4
Bestj(t)× x(r1,j) × ES(t)× rand, t ≤ 2 T

4 and t > T
4

(8)

where the parameter β is used to control the performance of exploration. x(r1,j) stands for a
random solution at the jth value. r1 stands for a random value. Bestj(t) represents the jth
value of the best at iteration t. rand ∈ [0, 1] represents a random number, and T is the total
number of generations.

In addition, R(i,j) is the Reduce function, which is used to decrease the search region
and it is formulated as:

R(i,j) =
Bestj(t)− x(r2,j)

Bestj(t) + ε
. (9)

In addition, the Evolutionary Sense (ES(t)) that defined in Equation (3) represents the
probability ratio, which decreased from 2 to −2 over the iterations, and it is defined as:

ES(t) = 2× r3 ×
(

1− 1
T

)
, (10)

where r3 ∈ [−1, 1] stands for a random integer number.
η(i,j) stands for to the hunting operator at the jth value of the ith solution, and it is

computed as
η(i,j) = Bestj(t)× P(i,j). (11)

P(i,j) is the percentage difference between the jth value of the best solution and its
corresponding value in the current solution. It is defined as:

P(i,j) = α +
x(i,j) −M(xi)

Bestj(t)×
(

UB(j) − LB(j)

)
+ ε

. (12)

In Equation (7), α dontes a sensitive parameter that controls the exploration perfor-
mance. M(xi) stands for the average solutions, which is defined as:

M(xi) =
1
n∑ n

j=1x(i,j) (13)

Moreover, the solution can update their value during the exploitation phase using the
following formula:

x(i,j)(t + 1) =

{
Bestj(t)× P(i,j)(t)× rand, t ≤ 3 T

4 and t > 2 T
4

Bestj(t)− η(i,j)(t)× ε− R(i,j)(t)× rand, t ≤ Tand t > 3 T
4

. (14)
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3. Proposed Model

Figure 3 depicts the framework of the developed model to predict the swelling po-
tentiality. In general, the developed approach is based on improving the performance of
ANFIS based on the operators of the RSA algorithm that is used to identify the appropriate
ANFIS parameters. The initial stage in the RSA-ANFIS is to preprocess the data by splitting
it into two sets: training (70%) and testing (30%). The next stage is to create initial configu-
rations that reflect the RSA population, with each configuration based on ANFIS settings.
Then, the quality of each configuration (Xi) is evaluated by computing the following fitness
value (Fit) that is defined as the root mean square error (RMSE).

Fit =

√
∑NS

i=1(yi − ŷi)

NS
(15)
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In Equation (14), ŷi represents the predicted output of ANFIS using the current Xi and
yi is the experimental output. The process after that is to determine the best configuration
of the ANFIS (i.e., xprey), which has the smallest fitness value. The next step is to update
the value of the other configurations according to the steps of RSA until it reached the stop
terminal. When the best configuration (xprey) is returned, the terminal condition is satisfied,
and the testing set is used to assess the performance of the it (i.e., xprey).

4. Results and Discussions
4.1. Physical Soil Properties

According to particle size distribution, the collected soil samples have 0–7% gravel,
6–25% sand, 0.64–1.49, 16–41% silts, and 46–60% clay fraction. The initial moisture content
ranges between 7.43 and 10.47%, the bulk density ranges from 1.94 to 2.22 g/cm3, and
the specific gravity values ranges between 2.62 and 2.78. Soils are categorized as loose
and occasionally have very close values of specific gravity, and these inclines may be to
the same mineralogical composition. Furthermore, the average of the liquid limit, plastic
limits, and plasticity index are 62, 25, and 40%, respectively (Figure 4). These samples were
inorganic silty clay (CH). These indices revealed that these samples represent semi-plastic
solid to hard consistency clays.
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Figure 4. Flow curve of liquid limit (WL) test results (examples a–d) for high plastic samples (CH) of shallow marine clays
according to ASTM D 4318, 2010.

4.2. Mineralogical and Chemical Composition

The high plastic clays are composed of Smectite as a major clay mineral with percent-
ages ranges from 62.68 to 77.48% and kaolinite as low as 22.52 to 37.32%. Additionally,
the mineralogical composition of these clays contains non-clay minerals such as quartz,
gypsum, halite, and calcite (Abdullah et al., 2009). In the present study, the chemical
analysis revealed the Sio2 content with the highest percentage and the average value of
40%. The high content of Sio2 attains that it is derived from sand and silt fraction. In
contrast, Al2o3 content is presented with lower percentages with an average value of 20%.
Al2o3 content in negative relation with Sio2 indicates different sources of these oxides and
ionic substitution of Ca, Na with Al in the clay mineral structure. In addition, there are low
percentages of Mgo, Cao, and Na2o oxides with average values of 2.34%, 1.09%, and 2.04%,
respectively.

4.3. Swelling Characteristics

The expansive properties of high plastic clays were identified by measuring both the
free swelling and swelling pressure. The free swelling index is 33–130%. On the other hand,
the swelling pressure values range between 1.1 and 4.1 MPa. Meanwhile, the swelling
index values are very close to each other, ranging from 0.112 to 0.117, and this reflects
the homogeneity of the high plastic clay soil. The swelling index (Cs) and void ratio (e)
average values are 0.115 and 0.923, respectively (Figure 5).
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4.4. Results Using Machine Learning Method

Model Evaluation Criteria
To assess the ability of the developed method to predict the free swell index and the

swelling pressure efficiently, a set of performance measures are used: for example, the root
mean square error (RMSE), mean absolute error (MAE), and coefficient of determination
R2. The definition of these measures is given in Equations (16)–(18).

R2 =

(
∑ns

i=1

(
di − d

)
(yi − y)

)2

∑ns
i=1

(
di − d

)2
×∑ns

i=1(yi − y)2
(16)

RMSE =

√
1
ns

ns

∑
i=1

(di − yi)
2 (17)

MAE =
1
ns

ns

∑
i=1
|di − yi| (18)

The structure of the ANFIS consists of five layers as described in Section 2.2.1. In
addition, the parameters of RSA, Ant Lion Optimizer (ALO), and Gray Wolf Optimizer
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(GWO) are set according to the original implementation of each of them. For fair compari-
son between them, we unify the common parameters between them, such as the number
of solutions is ten and the number of iterations is 15 iterations. In addition, each algorithm
is conducted 25 independent times to assess its performance.

To justify the performance of the developed RSA-ANFIS, it is compared with other
two well-known metaheuristic techniques that are used to improve the ANFIS model.
These methods are named ALO-ANFIS and GWO-ANFIS. The comparison results are
given in Table 1 and Figures 6 and 7. It can be noticed from these results that the developed
RSA-ANFIS has a high coefficient of determination R2, which indicates the high correlation
with the Free Swelling Index. It is followed by ALO-ANFIS, while the GWO-ANFIS is the
less efficient one. According to the RMSR indicator, it can be noticed that the RMSE of
RSA-ANFIS is the smallest one, which refers to the similarity between the predicted value
using RSA and the original one. The similar observation can be noticed from the value
of MAE obtained for each algorithm (i.e., RSA, ALO, and GWO). From these measures,
it can be seen that the combination between the RSA and ANFIS leads to enhancing the
prediction process. The same observation can be reached from Figure 7.

Table 1. Comparison results between RSA-ANFIS and other models.

Free Swelling Index Swelling Pressure

RSA ALO GWO RSA ALO GWO

R2 0.990 0.982 0.972 0.955 0.941 0.944

RMSE 9.353 12.925 15.887 0.580 0.667 0.650

MAE 8.911 11.179 13.582 0.487 0.579 0.550

In addition, we evaluate the influence of changing the size training and testing sets
on the performance of the developed RSA-ANFIS. The results are given in Table 2, where
the size of the testing set is 30%, 10%, and 50%. From these results, it can be noticed that
as expected, with increasing the size of the training set, the performance of the developed
method increases.

Table 2. Influence of changing the size of the testing set.

Free Swelling Index Swelling Pressure

70–30 90–10 50–50 70–30 90–10 50–50

R2 0.990 0.999 0.978 0.955 0.974 0.931

RMSE 9.353 3.798 13.104 0.580 0.492 0.666

MAE 8.911 3.127 10.010 0.487 0.424 0.562
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5. Conclusions

The fine-grained soils are distributed worldwide, and the classification of such soils
has a high priority challenge. Therefore, these soils are considered as problematic soils, and
their characterization is essential anywhere in different geotechnical engineering practices.
In the present study, machine learning techniques were conducted to predict the swelling
potentiality in two main outputs, Free Swelling Index and the swelling pressure using
multi-parameters of the index geotechnical properties and the chemical composition as an
input parameter. Consequently, the clayey soils are classified as high plastic (CH). Firstly,
the liquid limit, plastic limit, plasticity index and clay fraction of the studied shallow marine
clays average values are 62, 25, 40, and 55%, respectively. Secondly, the measured chemical
oxides percentages (Al2o3, Sio2, Cao, Mgo, and Na2o) were 40, 20, 2.34, 1.09, and 2.04%,
respectively. The Free Swelling Index is 33–130%. On the other hand, the swelling pressure
values range between 1.1 and 4.1 MPa. Then, a comparative study of machine learning
algorithms (i.e., RSA-ANFIS, ALO-ANFIS, and GWO-ANFIS) with the measured datasets
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was used to predict the swelling potentiality in two output parameters. For this purpose,
the model was built to compare their enactment. Consequently, the model providing the
best performance according to the R2 coefficient was approved. It can be noticed from
these results that the developed RSA-ANFIS has a high coefficient of determination, R2

(0.99), which indicates the high correlation with the target of free swelling index and 0.96
for the swelling pressure output. It was followed by ALO-ANFIS, while GWO-ANFIS is
the less efficient one. From these measures, it can be seen that the combination between
the RSA and ANFIS leads to enhancing the prediction process. On the whole, this study
introduces a new integration for prediction using multi-parameters to predict the swelling
potentiality and soil behavior. In addition, the usage of machine learning techniques will
provide high quality and precise predicted values supported by a large amount of data.
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Nomenclature

Acronyms
ANFIS Adaptive Neuro-Fuzzy Inference System MH meta heuristic
RSA Reptile Search Algorithm ALO Ant Lion Optimizer
SP Swelling Pressure GWO Grey Wolf Optimizer
FSI Free Swelling Index MAE Mean Absolute Error
RMSE Root Mean Square Error ANNs artificial neural networks
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