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Abstract: In the present paper, nonlinear behaviors of complex system dynamics from a multifractal
perspective of motion are analyzed. In the framework of scale relativity theory, by analyzing the
dynamics of complex system entities based on continuous but non-differentiable curves (multifrac-
tal curves), both the Schrödinger and Madelung scenarios on the holographic implementations of
dynamics are functional and complementary. In the Madelung scenario, the holographic implemen-
tation of dynamics (i.e., free of any external or internal constraints) has some important consequences
explicated by means of various operational procedures. The selected procedures involve synchronous
modes through SL (2R) transformation group based on a hidden symmetry, coherence domains
through Riemann manifold embedded with a Poincaré metric based on a parallel transport of di-
rection (in a Levi Civita sense). Other procedures used here relate to the stationary-non-stationary
dynamics transition through harmonic mapping from the usual space to the hyperbolic one mani-
fested as cellular and channel type self-structuring. Finally, the Madelung scenario on the holographic
implementations of dynamics are discussed with respect to laser-produced plasma dynamics.

Keywords: harmonic mapping; complex system dynamics; SL (2R) group; hidden symmetries

1. Introduction

Nonlinearity is accepted as one of the most fundamental properties of any complex
system dynamics. Interactions between the structural units of any complex system imply
mutual constraints at different scale resolution. Then, the universality of the dynamics
laws for any complex system becomes natural and must be reflected in various theoretical
models that could describe their dynamics. Some of the usual theoretical models are
based on the hypothesis that the variables characterizing the complex system dynamics are
differentiable, which can be otherwise unjustified. In such a perspective, the validations
of the previously described type of models need to be seen as sequential and applicable
on restricted domains for which integrability and differentiability are respected. Since
nonlinearity implies predominantly non-differentiable behaviors in the description of
complex system dynamics, it is necessary to explicitly introduce the scale resolution in
the equations defining the dynamics-governing variables. It implies that any variables
used in the description of any complex system now have a dual dependence on the
space-time coordinates and the scale resolution. In this new perspective, for instance,
instead of using variables defined by non-differentiable functions, approximations of these
complex functions that will be used at various scale resolutions are becoming available and
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operational. Therefore, all variables used to define the complex system dynamics will work
as a limit of families of functions, which for a null scale resolution are non-differentiable
but for non-null scale resolution are differentiable. The previous mathematical procedure
involves the development of suitable geometrical structures and a class of models for which
the motion laws are integrated with the scale laws. Such geometrical structures are built
on the concept of multifractality, and the equivalent theoretical models are based on the
scale relativity theory, either with the fractal dimension Df = 2 (standard model) or in an
arbitrary and constant dimension (multifractal theory of motion). In this class of models
(non-differentiable), the complex system’s structural unit’s dynamics can be described by
continuous but non-differentiable movement curves (multifractal motion curves). These
curves exhibit self-similarity as their main property at any of the points forming the
curve, which translates into behaviors of holographic type (every part reflects the global
system). Such a complex approach suggests that only holographic implementations can
offer complete descriptions of the complex system dynamics [1–3].

According to our previous report from [4], by assimilating any complex fluid with
a mathematic object of fractal type in the framework of scale relativity theory (SRT) [5],
various non-linear behaviors through a fractal hydrodynamic-type description as well as
through a fractal Schrodinger-type description, were established. Thus, the fractal hydrody-
namic -type description implies holographic implementations of dynamics through velocity
fields at non-differentiable scale resolution, via fractal soliton, fractal soliton-kink, and
fractal minimal vortex. The fractal Schrodinger-type description thus implies holographic
implementation of complex system dynamics though in-phase coherences of fractal state
fields via Airy fractal functions. In this last description, various operational procedures can
become functional. We can mention the fractal cubes with fractal SL(2R) group invariance
through in-phase coherence of the structural unit dynamics of any complex fluid, fractal
SL(2R) groups through dynamic synchronization among the complex system structural
units, fractal Riemann manifolds induced by fractal cubics and embedded with a Poincaré
metric through apolar transport of cubes, and harmonic mapping from the usual space to
the hyperbolic one. These procedures become operational so that several possible scenarios
towards chaos (fractal periodic doubling scenario), but without fully transitioning into
chaos, (non-manifest chaos) can be obtained.

In this work, we will analyze from a multifractal perspective the nonlinear dynamics
of complex systems, generalizing the results from [4]. In such context, exploring a hidden
symmetry under the form of synchronization groups of complex system entities leads to
the generation of a Riemann manifold with a hyperbolic type metric via parallel transport
of direction. Then, accessing complex systems’ nonstationary dynamics is performed
thorough harmonic mapping from the usual space to the hyperbolic one.

2. Mathematical Model
2.1. Motion Equation

In the following, any complex system can be assimilated with a multifractal object.
Then, since in the framework of scale relativity theory [6–9], the dynamics of complex sys-
tem entities are described through continuous and non-differentiable curves (multifractal
curves), the motion equation (with geodesics equation status) becomes (for detail see [6–9]):

d̂V̂i

dt
= ∂tV̂i + V̂ l∂lV̂i +

1
4
(dt)[

2
f (α) ]−1Dlk∂l∂kV̂i = 0, (1)

where
V̂ l = V l

D −V l
F

Dlk = dlk − id̂lk

dlk = λl
+λk

+ − λl
−λk
−

d̂lk = λl
+λk

+ + λl
−λk
−

∂t =
∂

∂t
, ∂l =

∂

∂xl , ∂l∂k =
∂

∂xl
∂

∂xk , i =
√
−1, l, k = 1, 2, 3.
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In relation (1), the meanings of the variables and parameters are as follows:

• xl is the multifractal spatial coordinate;
• t is the non-multifractal time having the role of an affine parameter of the motion

curves;
• V̂ l is the multifractal complex velocity;
• V l

D is the differentiable velocity independent of the scale resolution;
• V l

F is the non-differentiable velocity dependent on the scale resolution;
• dt is the scale resolution;
• f (α) is the singularity spectrum of order α;
• α is the singularity index and is a function of fractal dimension D f ;
• Dlk is the constant tensor associated with the differentiable–non-differentiable transi-

tion;
• λl

+

(
λk
+

)
is the constant vector associated with the backward differentiable–non-

differentiable dynamic processes;
• λl

−

(
λk
−

)
is the constant vector associated with the forward differentiable–

non-differentiable dynamic processes.

The relation (1) shows that in the most general case of complex system structural unit
dynamics, regardless of the fractalization type, the multifractal inertial, ∂tV̂i, the multifrac-

tal convective, V̂ l∂lV̂i, and the multifractal dissipative effects, 1
4 (dt)[

2
f (α) ]−1Dlk∂l∂kV̂i, are

achieving balance at any point of the movement curve.
By using the singularity spectrum, the following patterns in the complex system

dynamics can be distinguished: monofractal patterns that imply dynamics in homogenous
complex systems characterized though a single fractal dimension and having the same
scaling properties in any time interval; multifractal patterns that include dynamics in
inhomogeneous and anisotropic complex systems characterized simultaneously by a wide
variety of fractal dimensions. Thus, f(α) allows the identification of the universality classes
in the dynamics of any complex system even when the strange attractors associated with
these dynamics have different aspects. For details on the singularity spectrum and its
implication for the dynamics of complex systems, see [10–12].

2.2. Schrodinger and Madelung Scenarios in the Description of Complex System Dynamics

For a large temporal scale resolution with respect to the inverse of the highest Lya-
punov exponent [7–9], the class of deterministic trajectories of any complex system entity
can be substituted by the class of virtual trajectories. Then, the concept of definite trajecto-
ries is replaced by the one of density of probability. The multifractality is then expressed by
means of multi-stochasticity and becomes functional when describing the dynamic of any
complex system in the form of multifractal fluid dynamics (for details see [5–9]).

Many modes of multifractalization through stochasticization processes can be defined.
Among the most utilized processes, the Markovian and non-Markovian stochastic pro-
cesses are found [10–12]. In the following description of complex system dynamics, only
multifractalizations by means of Markovian stochastic processes will be discussed, i.e.,
those specified by constraints [10–12]:

λi
+λl

+ = λi
−λl
− = 2λδil , (2)

where λ is a constant associated with the differentiable–non-differentiable transitions and
δil is the Kronecker pseudo-tensor. Based on (3), the motion Equation (1) become (for
details on the mathematical procedure see [7–9]):

d̂V̂i

dt
= ∂tV̂i + V̂ l∂lV̂i − iλ(dt)[

2
f (α) ]−1

∂l∂
lV̂i = 0. (3)
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The relation (4) shows that for the case of complex system structural unit dynam-
ics, only for multifractalization by means of Markovian stochastic processes (for the case
of Brownian or Levy type motions) in any point of the motion curves, the local multi-
fractal complex acceleration, ∂tV̂i, the multifractal complex convection, V̂ l∂lV̂i, and the

multifractal complex dissipation iλ(dt)[
2

f (α) ]−1
∂l∂

lV̂i are in equilibrium.
In the following, let it be allowed that the motions of the entities belonging to any

complex system are irrotational. Then, the multifractal complex velocity fields from (2)
become:

V̂i = −2iλ(dt)[
2

f (α) ]−1
∂i ln Ψ, (4)

where
χ = −2iλ(dt)[

2
f (α) ]−1 ln Ψ (5)

is the multifractal complex scalar potential of the complex velocity fields from (5) and Ψ is
the function of states (on the significance of Ψ, see [5–10]). In these conditions, substituting
(5) in (4) and using the mathematical procedures from [6–9], the motion Equation (4) takes
the form of the multifractal Schrödinger equation:

λ2(dt)[
4

f (α) ]−2
∂l∂lΨ + iλ(dt)[

2
f (α) ]−1

∂tΨ = 0. (6)

Therefore, for the complex velocity fields (5), the dynamics of any complex system
entity are described through Schrödinger type “regimes” at various scale resolutions
(Schrödinger’s multifractal description). Equation (7) defines the Schrödinger scenario on
the holographic implementation of complex system dynamics.

Moreover, if Ψ is chosen in the form (Madelung’s type choice):

Ψ =
√

ρeis, (7)

where
√

ρ is the amplitude and s is the phase, then the multifractal complex velocity fields
(5) take the explicit form:

V̂i = 2λ(dt)[
2

f (α) ]−1
∂is− iλ(dt)[

2
f (α) ]−1

∂i ln ρ, (8)

which implies the real multifractal velocity fields:

Vi
D = 2λ(dt)[

2
f (α) ]−1

∂is (9)

Vi
F = λ(dt)[

2
f (α) ]−1

∂i ln ρ. (10)

In (10), Vi
D is the differential velocity field, while in (11), Vi

F is the multifractal velocity
field.

By (9)–(11) and using the mathematical procedure from [6–10], the motion Equation (4)
reduces to the multifractal Madelung equations:

∂tVi
D + V l

D∂lVi
D = −∂iQ (11)

∂tρ + ∂l

(
ρV l

D

)
= 0, (12)

with Q the multifractal specific potential:

Q = −2λ2(dt)[
4

f (α) ]−2 ∂l∂l
√

ρ
√

ρ
= −Vi

FVi
F −

1
2

λ(dt)[
2

f (α) ]−1
∂lV l

F. (13)
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Equation (12) corresponds to the multifractal specific momentum conservation law,
while Equation (13) corresponds to the multifractal states density conservation law. The
multifractal specific potential (14) implies the multifractal specific force:

Fi = −∂iQ = −2λ2(dt)[
4

f (α) ]−2
∂i ∂l∂l

√
ρ

√
ρ

, (14)

which is a measure of the multifractality of the motion curves.
Therefore, for the multifractal complex velocity fields (9), the dynamics of any com-

plex system are described through Madelung-type “regimes” at various scale resolutions
(Madelung’s multifractal description). Equations (12)–(14) define the Madelung scenario
on the holographic implementation for complex system dynamics. In this context, any
complex system entity is in a permanent interaction with a multifractal medium through
the multifractal specific force (15). All complex systems can be identified with a multifractal
fluid, the dynamics of which are described by the multifractal Madelung equations (see
(12)–(14)). The velocity field Vi

F does not represent the contemporary dynamics. Since Vi
F is

missing from (13), this velocity field contributes to the transfer of the multifractal specific
momentum and to the multifractal energy focus. Any analysis of Q should consider the
“self” nature of the specific momentum transfer of multifractal type. Then, the conservation
of the multifractal energy and the multifractal momentum ensure the reversibility and the
existence of the multifractal eigenstates.

If the multifractal tensor is considered:

τ̂il = 2λ2(dt)[
4

f (α) ]−2
ρ∂i∂l ln ρ, (15)

the equation defining the multifractal forces that derive from the multifractal specific
potential Q can be written in the form of a multifractal equilibrium equation:

ρ∂iQ = ∂l τ̂
il . (16)

Since τ̂il can be also written in the form:

τ̂il = η
(

∂lVi
F + ∂iV l

F

)
, (17)

with
η = λ(dt)[

2
f (α) ]−1

ρ (18)

a multifractal linear constitutive equation for a multifractal “viscous fluid” can be high-
lighted. In such a context, the coefficient η can be interpreted as a multifractal dynamic
viscosity coefficient of the multifractal fluid.

2.3. Synchronization Modes in Complex System Dynamics through a “Hidden” Symmetry

The existence of multifractal specific force (15) and the multifractal viscosity tensor
(16) will be considered as the “trigger” of the complex system processes that lead both to
instabilities and to self-structuring. If the multifractal specific potential is constant, through
(15) for the one-dimensional case, the following condition is satisfied:

∂2√ρ

∂x2 + k2
0
√

ρ = 0, (19)

with
k2

0 =
E

2λ2(dt)[
4

f (α) ]−2
.
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In the above relation, E is the multifractal energy of the complex system’s entity and
m0 is the rest mass. The solution of (20) can be written in the form

√
ρ = zei(k0x+θ) + ze−i(k0x+θ), (20)

where z is a complex amplitude, z is its complex conjugate, θ is a specific phase and x is the
multifractal spatial coordinate. In such a context, z and θ “scan” each entity of the complex
system, which has as a general characteristic Equation (20), and thus the same k0.

Equation (20) has a multifractal hidden symmetry by means of a homographic group.
Indeed, the ratio ε of two independent linear solutions of Equation (20) is a solution of
multifractal Schwartz’s differential equation (for the classical case, see [6–9]):

{ε, x} =
(

ε′′

ε′

)′
− 1

2

(
ε′′

ε′

)2
= 2k2

0 (21)

ε′ =
dε

dx
, ε′′ =

d2ε

dx2 . (22)

The left part of (22) is invariant with respect to the multifractal homographic transfor-
mation

ε↔ ε′ =
aε + b
cε + d

(23)

with a, b, c, d multifractal real parameters. The relation (24) corresponding to all possible
values of these parameters defines the multifractal group SL(2R) (for the classical case,
see [13,14]).

Thus, all of the complex system entities having the same k0 are in biunivocal cor-
respondence with the transformation of the multifractal group SL(2R). This allows the
construction of a personal parameter ε for each individual complex system entity. Indeed,
as a guide, it is chosen in the general form of solution of (22), which is written as

ε′ = l + m tan(k0x + θ) (24)

Thus, through l, m, and θ, it is possible to characterize any complex systems entity.
In such conjecture, identifying the phase from (25) with the one from (21), the personal
parameter becomes:

ε(x) =
z + zε

1 + z
, z = l + im, z = l − im, ε ≡ e2i(k0x+θ). (25)

The fact that (25) is also a solution of (22) implies, by explicitly solving (24), that the
multifractal group SL(2R):

z′ =
az + b
cz + d

, z′ =
az + b
cz + d

, ε′ =
cz + d
cz + d

ε. (26)

Therefore, the multifractal group (27) works as a synchronization mode among various
entities of any complex system process to which the amplitudes and the phases are also
connected. More precisely, through (27) the phase of ε is only moved with a quantity
depending on the amplitude of the complex system at the transition among various
complex system entities. Moreover, the amplitude of the movement is also affected from
a multifractal homographic perspective. The usual synchronization modes manifested
through delay of the amplitudes and phases of the complex system entities must describe
here only a particular case.

2.4. Riemann’s Manifold Generated through Synchronization Processes

According to the mathematical procedures from [6–9,15–17], the space of multifractal
group (27) can be structured by means of (z, z, ε) parameters, as a multifractal Riemann’s
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manifold. Indeed, the structure of multifractal group (27) is typical of an SL(2R) one,
which is taken in the standard form

[A1, A2] = A1, [A2, A3] = A3, [A3, A1] = −2A2 (27)

where Ak, k = 1, 2, 3 are the multifractal infinitesimal generators of the group. Since
the multifractal group is simple transitive, these multifractal generators can be found as
components of the multifractal Cartan coframe (for the classical case, see Cartan [15]) from
the relation.

d( f ) = ∑
∂ f
∂xk dxk =

{
ω1
[

z2 ∂

∂z
+ z2 ∂

∂z
+ (z− z)ε

∂

∂ε

]
+ 2ω2

(
z

∂

∂z
+ z

∂

∂z

)
+ ω3

(
∂

∂z
+

∂

∂z

)}
( f ) (28)

where ωk are the components of the multifractal Cartan coframe which can be found from
the system:

dz = ω1z2 + 2ω2z + ω3, dz = ω1z2 + 2ω2z + ω3, dε = ω1ε(z− z) (29)

Thus, both the multifractal infinitesimal generators and the multifractal coframe
are obtained by identifying the right-hand side of (29) with the standard dot product of
multifractal algebra SL(2R)

ω1 A3 + ω3 A1 − 2ω2 A2, (30)

so that
A1 =

∂

∂z
+

∂

∂z
, A2 = z

∂

∂z
+ z

∂

∂z
, A3 = z2 ∂

∂z
+ z2 ∂

∂z
+ (z− z)ε

∂

∂ε
(31)

and
ω1 =

dε

(z− z)ε
, 2ω2 =

dz− dz
z− z

− z + z
z− z

dε

ε
, ω3 =

zdz− zdz
z− z

+
zzdε

(z− z)ε
. (32)

In real terms from (26), these last multifractal equations can be written as

A1 =
∂

∂l
, A2 = l

∂

∂l
+ m

∂

∂m
, A3 =

(
l2 −m2

) ∂

∂l
+ 2lm

∂

∂m
+ 2m

∂

∂θ
(33)

ω1 =
dθ

2m
, ω2 =

dm
m
− l

m
dθ, ω2 =

l2 + m2

2m
dθ +

mdl − ldm
m

. (34)

It should be mentioned that in [6–9], it does not work with the previous multifractal
differential forms, but with the multifractal absolute invariant differentials:

ω1 =
dz

(z− z)ε
, ω2 = −i

(
dε

ε
− dz + dz

z− z

)
, ω3 =

−εdz
z− z

(35)

or, in real terms, exhibiting a three-dimensional Lorentz structure of this multifractal space

Ω1 = ω1 = dθ +
dl
m

, Ω2 = cos θ
dl
m

+ sin θ
dm
m

, Ω3 = − sin θ
dl
m

+ cos θ
dm
m

(36)

The advantage of this representation is that it makes obvious the multifractal connec-
tion with the multifractal Poincaré representation of the multifractal Lobachevsky plane.
Indeed, the multifractal metric is:

ds2

g
=
(

ω2
)2
− 4ω1ω2 =

(
dε

ε
− dz + dz

z− z

)2
+ 4

dzdz

(z− z)2 , (37)

or in real terms

− ds2

g
= −

(
Ω1
)2

+
(

Ω2
)2

+
(

Ω3
)2

= −
(

dθ +
dl
m

)2
+

dl2 + dm2

m2 ,
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where g is a multifractal constant.
This multifractal metric reduces to that of Poincaré

ds2

g
= −4

dzdz

(z− z)2 = −4
dl2 + dm2

m2 . (38)

in the case when ω2 = 0 or Ω1 = 0, which defines the variable θ as the “angle of
parallelism” (in Levi-Civita sense) of the multifractal hyperbolic plane (the multifractal
connection). The multifractal Riemann manifold can further be associated with particular
coherence domains induced by the parallel transport of direction. In fact, if in modern
terms dl

m represents the multifractal connection form of the multifractal hyperbolic plane,
the relations in (37) then represent a general multifractal Bäcklung transformation in that
multifractal plane. For the classical case, see [16].

2.5. Complex System Dynamics via Harmonic Mapping

In the following, we will generate non-stationary dynamics in complex systems
through harmonic map generation. Indeed, let us assume that the complex system dynam-
ics are described by the variables

(
Y j), for which the following multifractal metric was

discovered:
hijdYidY j (39)

in an ambient space of multifractal metric:

γαβdXαdXβ. (40)

In this situation, the field equations of the complex system dynamics are derived from
a variational principle, connected to the multifractal Lagrangian:

L = γαβhij
dYidY j

∂Xα∂Xβ
. (41)

In the current case, (40) is given by (39) with the constraint ω2 = 0, the field variables
being z and z or, equivalently, the real and imaginary part of z. Therefore, if the variational
principle:

δ
∫

L
√

γd3x, (42)

is accepted as a starting point, where γ =
∣∣γαβ

∣∣, the main purpose of the complex system
dynamics research would be to produce multifractal metrics of the multifractal Lobachevski
plane (or related to it). In such a context, the multifractal Euler equations corresponding to
the variational principle (43) are:

(z− z)∇(∇z) = 2(∇z)2 (43)

(z− z)∇(∇z) = 2(∇z)2,

which allows the solution:

h =
cosh

(
Φ
2

)
− sinh

(
Φ
2

)
e−iα

cosh
(

Φ
2

)
+ sinh

(
Φ
2

)
e−iα

, α ∈ R, (44)

with α real and arbitrary, as long as
(

Φ
2

)
is the solution of a Laplace-type equation for

the free space, such that ∇2
(

Φ
2

)
= 0. For a choice of the form α = 2Ωt, in which case a

temporal dependency was introduced in the complex system dynamics, (45) becomes:
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h =
i
[
e2Φ sin(2Ωt)− sin(2Ωt)− 2ieΦ]

e2Φ[cos(2Ωt) + 1]− cos(2Ωt) + 1
. (45)

In Figures 1–3, multiple nonlinear behaviors of complex dynamics at scale resolutions
in dimensionless coordinates are presented via Python simulations: (i) nonlinear behaviors
at a global scale resolution (Figure 1a,b); (ii) nonlinear behaviors at a differentiable scale
resolution (Figure 2a,b); (iii) nonlinear behaviors at a non-differentiable scale resolution
(Figure 3a,b). Let it be noted that, whatever the scale resolution, complex system dynamics
prove themselves to be reducible to self-structuring patterns. The structures are present
in pairs of two large patterns that are intercommunicated in an intermittent way. In the
0–20 range for Ω and t, the resulting structures are communicating with each other via a
channel created along the symmetry axis for t ~10. This channel is also seen for different
(Ω; t) coordinates, which is interpreted as an intermittency in the structure bonding. Based
on the properties of the studied system, there are some associations with real physical
phenomena that can be made. The self-structuring process is a well-known aspect of low-
temperature plasmas [18,19]. In recent years there have been some reports on structuring
of the laser-produced plasmas [19–21], with impacts in pulsed laser deposition technology.
The data presented here can be correlated with the plasma structuring (into a fast structure
and a slow structure, also named Coulomb and thermal structure, respectively, after the
dominant ejection mechanism) during expansion based on the ablation mechanism and
ionization state [21–23]. In recent years, a change in the understanding of this structure
has been reported, and a separation based on the ionization state was more plausible for
the energetic structuring of the plasma [21,24–26]. In a series of papers [26–30], it was
shown that each structure can be correlated with certain properties of the target. For
this reason, the use of a multifractal model would be suitable for understanding plasma
structuring and exploring the relation between the structure, which, as of now, is outside
the reach of any of the tools used [31,32]. The model shows that for the structuring process,
a communication channel is formed that will automatically appear. If the same rational
treatment is applied to the study of plasma structuring, we identify that these channels are
the double layer forming at the interface between the two structures. Comments on the
effect of the double layer separating the two-plasma structure were made in [28–32], and
it was shown that it plays an important role in controlling the kinetics of laser-produced
plasmas. Our model highlights an important aspect of the plasma double layers: they
are 3-dimensional objects with different properties seen at different investigation scales
that transcend the planar expansion. This is seen from Figures 1–3, where we see that the
channel is present for different (Ω; t) coordinates. The transcendence of the plasma double
layer over several resolution scales is understandable, as the average value is of a few tens
of Debye lengths [32], which is the core resolution scale in plasma physics. The presence
of a transient double layer driving the dynamics of a laser-produced plasma is relatively
novel and has been investigated through other modeling approaches and experimental
investigations.

Let it be noted that the mathematical formalism of the multifractal theory of motion
naturally implies various operational procedures (invariance groups, harmonic mappings,
group isomorphisms, embedding manifolds, etc.) with quite a number of applications
in complex systems and plasma physics dynamics [32]. Plotting h, once again in dimen-
sionless parameters, also highlights certain temporal self-similar properties, with the
multifractal structures being contained into similar multifractal structures at much higher
scales (Figure 4a–c). Let us also note that the structure’s communication channel has an ex-
ponential decrease in the (Ω; t) plane, which reflects the dissipation processes [32] occurring
during laser-produced plasma expansion. When they expand, laser-produced plasmas lose
particles and energy through collisional/radiative processes. This will be reflected in the
weakening of the plasma double layer and limiting of the reach to a small plasma volume
in the proximity of the double layer. The model manages to express the dissipation of the
plasma through the reduction of the channel amplitude on the Ω axis as the time variable is
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increased. This result represents an important step forward in understating the dynamics
at the front of the plume. Most of plasma diagnostics and even modeling are concerned
with late-time interactions mostly occurring in the core of the plasma. Our model manages
to capture, albeit in a multifractal picture, dissipation processes and possible recombination
occurring at the front of the plume. Expanding the reach of our results, we could find
future implementation for pulsed-laser deposition, where the front of a subsequent plasma
always interacts with the already-deposited film.
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The results presented in Figure 4a–c also specify that, through self-structuring of the
complex system entities, channel-type patterns can also be observed.
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3. Conclusions

By considering that any complex system dynamics can be assimilated with a math-
ematical object of multifractal type, various non-linear behaviors in the framework of
the scale relativity theory of motion are developed. In such a context, Schrödinger’s and
Madelung’s holographic implementation scenarios for any complex system dynamics
become operational through the multifractal motion curves. Exploring at various scale
resolutions a hidden symmetry of stationary dynamics in the Madelung description, syn-
chronization modes are seen forming through the SL (2R) group between the complex
system entities. In the synchronization process, the amplitudes and phase of the motions
of any complex system entity are shown to be connected, while the amplitude attributed
to each motion can be tailored from a multifractal homographic perspective. The usual
synchronization modes were proved to be manifested through the delay of the amplitude
and phases of the complex system entities, and are here a particular case. The space in-
duced by means of SL(2R) group parameters was structured at various scale resolutions as
a Riemann manifold (multifractal Riemann manifold). The generators of a special Cartan
coframe and their associated metrics were found. When a parallel transport of direction
in the Levi-Civita sense became functional, the metric was reduced to that of Poincare,
with the angle of parallelism of the hyperbolic plane defining the connections. Riemann
manifolds were associated with coherence domains, with the coherence on each domain
being induced by parallel transport of direction. Access to non-stationary dynamics at
various scale resolutions became possible via harmonic mapping from the usual space to
the hyperbolic one. Then, self-structuring of cellular and channel types were produced.
The results are discussed with possible interpretations for the dynamics of laser-produced
plasmas.
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