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Abstract: The CQ algorithm is widely used in the scientific field and has a significant impact on phase
retrieval, medical image reconstruction, signal processing, etc. Moudafi proposed an alternating CQ
algorithm to solve the split equality problem, but he only obtained the result of weak convergence.
The work of this paper is to improve his algorithm so that the generated iterative sequence can
converge strongly.
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1. Introduction

Let C C Hy, Q C Hp be two nonempty closed convex subsets, H; and H; are real
Hilbert spaces. For all b € H1, d € H,, the equality (Ab,d) = (b, A*d) is true, A* is called
the adjoint operator of A. The split feasibility problem (SFP) can be described as finding
b* € C such that

Abt € Q, 1)

where A : H1 — H> is a linear bounded operator.

The SFP was first proposed by Censor and Elfving [1]. It is used to model the inverse
problems of phase retrieval and medical image reconstruction in finite-dimensional Hilbert
spaces. It has a significant impact on signal processing, image reconstruction and radiation
therapy, see [2—4]. The following CQ algorithm proposed by Byrne [4] is an important
method to solve the SFP

up+1 = Pc(un + pA*(Pg — I)Auy),n >0 )

where p € (0, %), A represents the largest eigenvalue of the operator A*A. Recently, many
other algorithms have appeared to solve problem (1), for example, [5-8].

Let {C;}/ C H; and { Qj }7:1 C H;, be nonempty closed convex subsets, H1 and #,
are real Hilbert spaces, p > 1 and r > 1 are two non-negative integers. H3 is also a real
Hilbert space. The multiple-sets split equality problem (MSSEP) can be described as finding
bt eC:= ﬂle C,dteQ:= ﬂ;zl Qj such that

Abt = Bd* 3)

where B : Hy — H3 and A : H1 — H3 are two linear bounded operators.
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Remark 1. When B = I, the MSSEP is reduced to an MSSFP. The MSSFP is widely used
in intensity-modulated radiation therapy (IMRT) [9-13], image reconstruction [14-16], signal
processing [17-21]. Recently, many other algorithms have appeared to solve the MSSFP, see [22-24].

Remark 2. When p = r = 1, the MSSEP is reduced to a split equality problem (SEP).

The SEP can be described as finding b' € C, d" € Q such that
Ab" = Bdt (4)

The SEP is applied to optimal control and approximation theory [25], in intensity-
modulated radiation therapy (IMRT) [26] and game theory [27]. Byrne [28] proposed the
following Landweber projection algorithm to study the SEP:

(pLay] Horst = Peltn = puA” (Atty = Buy) 5)
Op+1 = PQ(UH —+ pnB*(Aun — an)).

Different from Byrne’s algorithm, Moudafi [29] proposed the following alternating

CQ algorithm
(ACQA) upt1 = Pc(un _PHA:(AW — Buy)) ©)
Opy1 = PQ(Un + 0uB* (Auyy1 — Boy)).

However, Moudafi only obtained the result of weak convergence. Inspired by this
work, we propose an improved alternating CQ algorithm to solve the SEP. This improved
method changes the iterative sequence from weak to strong convergence.

The structure of this article is as follows. In Section 2, we review some of the definitions,
properties, and lemmas used to prove the convergence of the method. In Section 3, we
propose a new algorithm and prove its strong convergence. In Section 4, at the end of the
article, we reach a conclusion.

2. Preliminaries

We define the strong convergence of sequence {1, },cn as u, — b and weak conver-
gence as u; — b, b € H. Let C C H be a nonempty closed convex subset,  is a real
Hilbert space, Vb € ‘H, the orthogonal projection from H to C is defined by

P(b) = in||b — z||.
c(b) argrzrggH z||

Definition 1 ([30]). Let C C H be a nonempty closed convex subset, H is a real Hilbert space, for
all bt dt € H and zt € C, we have

1. (b" — Pcbt,z" — Pcbt) < 0;

2. ||Pcbt — Pedt||? < (Pebt — Pedt, bt —dt);

3. ||Pcb’ —2"|* < [T —2"||> — || Pcb’ — b7,

4. |[Pcb’ — Ped'|P < |67 — d|]> — [|(I = Pc)(b") — (I = Po)(d") >

Lemma 1 ([31]). Forall b,d* € H, H is a real Hilbert space, we have
1B +d" 1> = [[B])? + [|d"|* +2(b, d")
15— "> = [[B])? + [|d"|* — 2(b,d")
1b+d" > <[l & | +2(d", b +d")
151 = lld™ |l < 1B +d"|| < |1B]| + [|d"].

Lemma 2 ([32]). For all n > 0, assume that the three sequences {a,}, {pn}, {0n} satisfy the
following conditions:



Mathematics 2021, 9, 3313

30f10

ay > 0;
{6n} C[0,1] and Y57 6y = oo;
lim Sup,, o 0n < 0;

1 < (1 - fsn)“n + Snpn.
Then, the following conclusion holds:

s =

limy eotty; = 0.

3. Main Results

Let the solution set of problem (4) given by Q = {b* € C,d" € Q; Ab" = Bd'}. We
propose the following new alternating CQ algorithm to solve problem (4):
Up+1 = Pc((1 —ap)ag + an(1y — pn A" (Auy — Boy))) )

Vp1 = Po((1 — an)bo + an(vy + pnB* (Atty 1 — Boy)))

Assume that gy and by are two given points, the sequence {«, } satisfies {a, },>0 €
(0,1), 57 0(1 — &) = o0 and limy, ;00 &, = 1. Below, we prove the strong convergence of
the sequence generated by Equation (7).

Theorem 1. The sequence {(uy,vy)} is generated by Equation (7), the sequence {py } is positive
and non-increasing, for a sufficiently small € > 0, p, € (g, min(p(Al*A), ﬁ) —e). p(A*A),
p(B*B) are the spectral radius of A*A and B*B, respectively. Then, the sequence {(un, vy)}

strongly converges to a solution (b*,d%) of Equation (4).

Proof. Let (b',d") € Q, which is, bt € C, d* € Q, Ab" = Bd'. According to (4) of
Definition 1 and Lemma 1, on the one hand, we have

[t 1 — b7

<1 = an)ag + an (uy — puA* (Atty — Boy)) — b'[|?

— (11 = wn)ag + n 1y — pn A (Auy — Boy)) = iy |

= || (1 — an)(ap — b") + an(uy — pnA*(Auy, — Bo,) — b')|? 8)

=11 = an)ao + an(un — pnA™ (Aun — Boy)) — un+1||2

< (1= @) (a0 = B2 + walits — pu A* (A, — Boy)) — b2

— (1 = an)ag + an (1t — pnA* (Atty — Boy)) — tty 41|

It follows that
41 — b2

< (1—ap)|| (a0 — b)|* + anflun — b7

+ ocnp%HA*(Aun — an)||2 —20,0n (A" (Auy — Boy), uy — b*)

— (1 — an)ao + ay(un — pnA* (At — Boy)) — un+1H2

)

We consider first
txnp%HA*(Aun — an)Hz = a”pi<Aun — Bu,, AA*(Auy, — Boy))
< wnp(A*A)p%(Auy, — Boy, Auy, — Boy) (10)
= anp(A* A)py || Auy — Boy|?
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Then, we consider

200,00 (A" (Auty — Boy), tly — b+>
= 20,04 (Auy, — By, Auy — Ab+> (11)
= 20,05 (|| Auy — Bv,1||2 + (Au, — Buy, By, — Ab*))
Then, Equation (9) becomes
g1 = b7 )1> < (1= an) || (a0 — b7) || + [|un — b7 |7
— 20,0 (Auy — Buy, Buy — Ab+>

— (2 = pup(A*A))|| Aty — Boy||?
—|(1 = an)ao + an(ty — puA* (Auy — Boy)) — tyaq]?

(12)

On the other hand, we have

[01 —d"||?

< (1 = &n)bo + &y (vn + uB* (A1 — Boy)) —d"|?
— (11 = @n)bo + an (0 + puB* (Atty g1 — Boy)) — v 11|
= |(1 = an)(bp —d") + ay(vy —d* + pnB* (At 11 — Boy))|? (13)
— [1(1 = an)bo + an (vn + puB* (At 41 — Bog)) — v 11
< (1= a)|[(bo — d")|[* + an||on — d" + 0uB* (Auty 41 — Boy)||?
= [1(1 = an)bo + an (0 + puB* (Atty 1 — Boy)) — vpa|®
It follows that

10041 —d"|?

< (1= an)||(bo — dV)|* + anl|vn — d*|>

+ 0,02 || B* (Atty g1 — Boy)||> 4 20000 (B* (Atty 1 — Boy), v, —db)
= (11 = wn)bo + n (05 + puB* (Atty 1 — Bo)) = v

(14)

We have

0n3||B* (At 1 — Bon)||? = anp? (At i1 — Boy, BB*(Atty 41 — Boy))
< ocw(B*B)pi(AunH — Buy, Au, 1 — Boy) (15)
= ayp(B*B)p;|| Autyi1 — Boy |?

At the same time, we have

20,05 (B* (Atty11 — Boy), v — d+> = 200y (Atly 41 — Boy, Buy — Bd*)
= —20upu(||Attyi1 — By || (16)
— (A1 — Boy, Auyyq — Bd'))

Then, Equation (14) becomes

[onsn — d*12 < (1= ) | o — AP + o — a2
+ 200304 (Atty 41 — Boy, Aty yq — Bd')
— anpn(2 = pup(B*B)) || Attp1 — anHZ
— 1(1 = an)bo + @n (v + PnB* (Atty 11 — Bvg)) — v

(17)
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We have
2{Auy, — Bvy,, Bu, — Ab+>
= —||Auy — B,||* — ||Boy — AbT||* + || Au, — ADT|? (1%
and
2(Bv, — Autys1, Atiyq — Bd?) (19)

= —||Boy = Aty ||* = || Aty i1 — Bd'[|* + || Boy — Bd"||?
In the light of Abt = Bd", combining equalities (18) and (19), adding Equations (12)
and (17) together, we finally obtain
a1 — B2+ [fosa — ]2
< (1= an)|[(a0 = b + (1 = &) || (bo — d")||?
+ ay ||ty — Y2 + anljon — dT))? — wnpul|Au, — AbT|?

+ &nPnt1 | Aupy1 — Ab+||2

. ” (20)
— anpn (1 — pnp(A*A))|| Aun — Boy||
— a0 (1 — pnp(B*B))|| Atty 1 — By |)?
— 11 = an)ag + an (1n — 0uA* (Auty — Boy)) — sty ||?
— (11 = an)bo + an (v + puB* (Atty 11 — Boy)) — 01|
It follows that

lttng1 — b1 + lopgn — '
< (1= an)(|l(ag — b")1* + || (bo — d")[|?)
+ an(|Jun — bY|)* + |log — d'||* — pul| Auy — ABT||?)
+ Au — Abt|?

pust Aty 1 — AL o

— (1 — pup(A*A)) || Aty — Boy||?
~ (1~ puo(B*B)) || Atty 1 — Bog |
— 11 = an)ag + an (1n — 0w A* (Auty — Boy)) — sty ||?
— [I(1 = an)bo + an(vn + puB* (Atty 41 — Bog)) — v, 11>
We assume Q, (b, d%) := ||u, — bY(|2 + ||on — dT||> — pul| Auy — AbT|?, in view of (21),
we then obtain the following result
Qi (b7, d") < anQu(b,d") + (1= an) (| (a0 — b7 + [|(bo — d)|1?)
— tnpn(1 = pup(A*A))|| Atty — By ?
— anpn(1 = pnp(B*B)) || Aty 1 — Bonl|? (22)
— [1(1 = an)ao + an (un — puA* (Atty — Bog)) — ||
— [I(1 = an)bo + an(vn + puB* (A y1 — Bog)) — v,11?

According to the conditions of sequence {p,, }, we deduced
Q1 (b7, ) < @ (b",d") + (1= an) ([ (a0 — b)|1* + || (b0 — d")II?)

< max{Qu (b",d"), || (ao — ") ||> + [ (bo — d")[|*}
<

max{Qo(b",d"), [|(a0 — b")|* + || (bo — d")||*}

(23)
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We note that .
on | Aun — Ab ||2

= pn(un —b', A*A(u, — b")) (24)
< pup(A*A)[|uy — b2

According to the condition of the sequence {p, }, we have

O (b",d") = Jun = bT(1* + [[on — d"[|> — pul| Aun — ADT?
> (1= pup(A* A))|un — BT[> + [lon — d*|?
> e0(A*A) ||ty — bY||* + [log — d"||?
>0

(25)

According to Equation (23), we obtain that the sequence {Q,(b,d")} is bounded.
Therefore, in view of Equation (25), the sequences {u, } and {v, } are bounded.
Let b* and d* be the convergence points of sequences {u,} and {v,}, respectively.

We obtain
tn 1 = bH? + [[og 1 — d*?
< |[(1 — an)ag + an(uy — puA* (Auy — Boy)) — b
H{1(1 = wn)bo + &n (0 + pnB* (Attyy1 — Boy)) — d¥|)?
= (1 — ay)(ag — b%) + ay (1 — pnA*(Auy — Boy) — bY)|?
+ 1(1 = ay) (b — d¥) + ay (vy — d* + puB* (At — Boy))||? (26)
< &y l|ttn — pnA*(Auy — Bo,) — bt
+2(1 — ay) (ag — b¥, 1,y — bF)
+ & |[on + pnB* (Atty 1 — Boy) — d¥|?
+2(1 — ay) (bg — d¥, v, 41 — d¥)

It follows that

ltner = B4 + flogn — ¥

<ty ||un — OH* + anllon A (Auy — Boy)||* + au [0 — d¥||?

— 2ay (uy — b*, 00 A* (Atty — Boy)) + | onB* (Atty 11 — Boy)|? (27)
+ 20, (v, — d*, 0, B* (Atty 1 — Boy))

+2(1 — an)({ag — b4, uy g — bF) + (bg — d*, 0,1 — db))

Combining Equations (10), (11), (15), (16), (18) and (19), we obtain

a1 — b4 + o1 — d¥|)?

< ay |y — BH* + apl|on — d|1> — anpu || Aun — ADH|?
+ & 10np1 | Aty 1 — AbH|?

— o (1= pup(A*A))|| Aty — Boy||?

— &y (1= 0np(B*B))|| Atty 1 — Boy||?

+2(1 — ay) ((ag — b, upyq — b)) + (bg — dt, 0,1 — db))

(28)
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It follows that
Hun+1 - bil|2 + ||vn+1 - di||2 — Pn+1 ||Aun+l - Ab¢||2
< ap([Jun — bH + o — d¥||* — pnl| Aun — AbH|?)
— anpn (1= pup(A*A))|| Aty — Boy||? (29)
— aupn(1 = pup(B*B))|| Aty 1 — Boy|?
+2(1 — an)({ag — b¥, g — b)) + (b — d*, v, — db))
This implies
Q1 (08, d%) < a, Q0 (0F,d) + (1 — )by, (30)

where
by = 2({ag — b, upy1 — bF) + (bo — d*, 0,11 — d*))

— Dénpn(l —pnp(A*A)) ||Aun _ BU"HZ

(1—ay) (31)
. anpn(1 — pnp(B*B)) _ 2
(1 — an) HAui’l-‘rl an”
Because {u,} and {v,} are bounded, we obtain
by < 2({ag — b*, up 41— b¥) + (bo — d*, 0,41 — d¥))
< 2(Jlag — bH|[{fun1 — b + 1|bo — d* || [[o4+1 — d*]]) (32)

< 00

It follows that limsup, , b, < co. Leta, = 1—1t,, t;, € (0,1), we assume that
limsup, .., by < —1, for all n < ng, there exists ng such that b, < —1. Then, in view of
Equation (30), we have

Qi1 (0, d%) < au Qi (bF,d%) + (1 — )by
= (1= tw)Qu(bF,d¥) + tuby
< (1= ) Qu(bF, d¥) — 1
= O, (b, d%) — 1, (Qu(bF,d%) +1)
< Qu(bF,d¥) —t, (33)
< Qg (b4 d) =ty —ty

IN

no (b, d¥) — Zt

li’lo

Since 372, ti > Qi (b}, dt), there exists N > ng such that Y- ny ti = 0. We deduced
that
Qn o (b dH) < Qp, (b, dF) — 2 ti <0 (34)
i= no
In view of Equation (25), we know that Qn(bi, di) is a non-negative real sequence,

the inequality in Equation (34) contradicts the fact, hence, limsup, . b, > —1. Since
limsup, ., by has a finite limit, we take a subsequence {n;} such that
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limsup by = lim by, = lim 2({(ag — b¥, uy, 11 — b¥) + (bg — d¥, 0, 1 — d¥))
k—oo k—o0

n—oo

1-— A*A
~ im 2P0 el A g, 2

koo 11— an) (35)
T ‘xﬂkpﬂk(l _kaP(B*B)) _ 2
T

We assume that limy_, o, (a9 — b¥, Up 1 — bt) and limy_, o (by — di,vnkﬂ — d¥) have
finite limits, then the following limit exists

w0 (1 — o p(A*A))

i Ay, — Boy, |2 36
A R o
and
. P (1 — pnp(B*B)) 2
1 Lkl k A —B 37
N o I 7
Since limy_, o, f# = o0, we deduce that
(1—an,)
Jim || Aty — Boy, | =0 (38)
and
lim ||Atty, 11 — Bog, || = 0 (39)
k—oc0

From Equation (38), we obtain that any weak cluster point of {(uy,, v, )} belongs to
Q). Hence, it follows that

T ity o1 =t

= klg{}o (1 — &, ) (a0 — ttn, ) + ny (thn, — P, A* (At — By, ) — up,) ||

(40)
< lim ([|(1 — a,) (a0 — )| + llom A™ (At — Bow)|[)
=0
and
B [[oy, 1 = vn |
= kh—glo (1 = an ) (o — Vi) + tny (0ny + P, B* (At 41 — By, ) — vg) )| 1)
< gg&(“(l - ‘X"k)(bo - v”k)“ + HP"kB*(Aunk+1 - BU"k)H)
=0

This implies that any weak cluster point of {(u, 11,7, +1)} belongs to Q0. We assume
that { (i, +1,0s,) } weakly converges to (b, d), then, we have

lim sup b, < klim 2({ag — bi,unkH —b¥) + (b — d¥, V1 — dt))
—00

n—oo
=2((ag — b}, b — b¥) + (by — d*,d — dt)) (42)
<0
In the light of Lemma 2, we have lim;, . Q (bi, di) = 0. From Equation (25), we ob-

tain
Qu (b, d%) > ep(A*A)||un — V1> + |lv, — d*|* > 0 (43)
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Therefore, we obtain

nlgroloHun b =0 (44)
lim [jo, —d*|| =0 (45)
Then,
|Ab* — Bd*|| = lim ||Auy, — Bo,|| =0 (46)
n— oo

Hence, (b¥,d}) € Q. We obtain that u, — b} and v, — d¥. This proof has been
completed.

Let f; and f, be two strict contraction mappings with contraction coefficients of
c1 €10,1) and ¢y € [0,1), respectively.

{unH = Pc((1 —an) f1(un) + an(un — pn A" (Aun — Boy))) (47)

Ont1 = Po((1—an) f2(vn) + an(vyn + pnB* (A1 — Boy)))
O

Corollary 1. Let Q) be the solution set of Equation (4) and assume that the solution set () is not
empty. Then, in the light of Theorem 1, the sequence {(uy,, vy, )} generated by Equation (47) exists
(b,d) € QO such that u, — band v, — d.

4. Conclusions

In this paper, we proposed an improved alternating CQ algorithm to solve the SEP.
This improved method changes the generated iterative sequence from weak to strong
convergence.
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