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Abstract: Traditional power generating technologies rely on fossil fuels, which contribute to world-
wide environmental issues such as global warming and climate change. As a result, renewable energy
sources (RESs) are used for power generation where battery energy storage systems (BESSs) are
widely used to store electrical energy for backup, match power consumption and generation during
peak hours, and promote energy efficiency in a pollution-free environment. Accurate battery state
of health (SOH) prediction is critical because it plays a key role in ensuring battery safety, lowering
maintenance costs, and reducing BESS inconsistencies. The precise power consumption forecasting
is critical for preventing power shortage and oversupply, and the complicated physicochemical
features of batteries dilapidation cannot be directly acquired. Therefore, in this paper, a novel hybrid
architecture called ‘CL-Net’ based on convolutional long short-term memory (ConvLSTM) and long
short-term memory (LSTM) is proposed for multi-step SOH and power consumption forecasting.
First, battery SOH and power consumption-related raw data are collected and passed through a
preprocessing step for data cleansing. Second, the processed data are fed into ConvLSTM layers,
which extract spatiotemporal features and form their encoded maps. Third, LSTM layers are used to
decode the encoded features and pass them to fully connected layers for final multi-step forecasting.
Finally, a comprehensive ablation study is conducted on several combinations of sequential learning
models using three different time series datasets, i.e., national aeronautics and space administration
(NASA) battery, individual household electric power consumption (IHEPC), and domestic energy
management system (DEMS). The proposed CL-Net architecture reduces root mean squared error
(RMSE) up to 0.13 and 0.0052 on the NASA battery and IHEPC datasets, respectively, compared to
the state-of-the-arts. These experimental results show that the proposed architecture can provide
robust and accurate SOH and power consumption forecasting compared to the state-of-the-art.

Keywords: batteries; deep learning; energy storage system; lithium-ion; machine learning; power
consumption; power matching; renewable energy; state of health; time series

1. Introduction

Most energy is provided to the consumers by fossil fuel-based power plants globally.
However, these power plants have some problems, such as they depend on non-renewable
resources. These resources are finite, will run out, and pollute the atmosphere, especially
with carbon dioxide, which is leading the world towards global warming. Therefore, the
energy produced by fossil fuel power plants should be reduced and should be moved
toward renewable forms of energy [1]. Similarly, it is always a big challenge for smart grids
to match energy production and its consumption every time. Numerous other options
such as RESs are discovered to match the power consumption and its production, but they
have also some problems such as being not sustainable. BESS is efficient and cost-effective
in providing the solution to many challenges such as providing power during peak hours
along the electrical grid. For example, if batteries are charged based on the highest power
peak and not the actual power consumed, the energy bill can be significantly reduced by
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adding BESS. This allows us to supply the power during peak hours from the batteries
and shave off these peak charges resulting in a lower energy bill. Furthermore, if the
solar power generation output is sporadic due to cloud coverage or eliminated because
of nightfall, in these situations, BESS can be a great solution. Batteries in a BESS can be
charged with excess solar power, and when the sun goes down or is blocked, load can be
utilized from these batteries.

In the past few years, usage of lithium-ion (Li-ion) batteries has been increased up to
a great extent. Li-ion batteries have been extensively used in different electronic appliances
due to their higher energy, power, and long-term life cycle [2]. Li-ion batteries are one of
the top rechargeable batteries mainly used in portable electronic appliances and power
matching in BESSs. Self-discharge is relatively very low in Li-ion batteries when they are
not in use, and they are capable of storing a charge for a long time [3]. Li-ion batteries
have been used in many electronic appliances such as smartphones, laptops, aerospace
applications, military appliances, power backup devices, emergency lighting devices, etc.
Li-ion batteries are also incorporated in electric transport vehicles and hybrid vehicles in
almost every developed country. This high rate of usage of the Li-ion batteries in different
appliances of the real world and BESS has gained much attention from manufacturers as
well as researchers toward their safety and reliable lifecycle. Li-ion batteries are regularly
charged and discharged while used in regular life appliances. The regular charging and
discharging of Li-ion batteries degrade their performance with the passage of time [4]. The
cells of a battery are damaged due to regular internal electrochemical reactions. Different
side reactions continuously occur in the internals of the batteries cells and affect their life
time [5]. Similarly, repetitive charging and discharging of the Li-ion batteries affect the
shapes and health conditions of the electrodes, which results in the wastage of the active
electrodes, crack propagation, and a decrease in porosity [6]. Moreover, some conditions
such as extreme overcharge, complete discharge of the batteries, temperature effects, and
high mechanical pressure can affect the SOH of Li-ion batteries [7]. Therefore, proper SOH
forecasting of the Li-ion batteries is very essential for the future utilization and decision
making of the equipped appliances. The SOH for a battery is particularly measured with
the help of its capacity, impedance, and internal resistance [8]. Li-ion battery companies
have labeled the capacity of the charge for each battery cell at the initial stages of the
lifecycle that shows charge storage capability. The SOH of a battery is predicted as the ratio
of the capacity of a cell at present time to the initial stages of the lifecycle [9]. The SOH
of a battery demonstrates the current capability of the battery storage and its supply to
the appliances as compared to the ideal state of that battery [10]. The precise and accurate
prediction and forecasting of the SOH of cells also enable the replication of the expired
or out-of-use batteries in vehicles, BESSs, or other electronic appliances to stop future
hazardous accidents [11].

In smart energy storage systems (ESSs), battery degradation could lead to several po-
tentially risky consequences. The faults in a battery’s cells cause an increase in temperature
and pressure that could result in explosion and combustion in the system [12]. Several
forecasting models have been designed for battery SOH and show accurate and satisfying
results [13,14]. The accurate prediction of the battery’s SOH is very helpful in ESSs for
avoiding dangerous hazards and results in the extension of the battery’s life cycle. SOH
prediction or forecasting is also a key factor for the estimation of other important states of
the batteries that are remaining useful life (RUL), state of charge (SOC), and state of power
(SOP) [15]. Due to the complex mechanism of degradation and operational conditions,
accurately predicting the health of Li-ion batteries is a quite difficult task [16]. However,
many researchers now employ machine learning (ML) and deep learning (DL) approaches
to forecast SOH. These data-driven approaches are not dependent on the model of a battery
and therefore do not need its complicated chemical model. In the data-driven methods, the
recurrent neural network (RNN) has a great self-learning capability and can achieve higher
prediction accuracy on sequential data than other ML and DL approaches. Therefore, in
this study, a novel hybrid architecture based on ConvLSTM and LSTM is proposed for
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battery SOH and power consumption multi-step forecasting. The main contributions of
the proposed work can be summarized as follows:

• BESS becomes important to sustain the constancy of power supply to loads due to the
fluctuating nature of RESs. The main contribution of this research is to forecast battery
SOH in BESSs and power consumption through a hybrid DL-based framework. The
accuracy of the SOH prediction is critical for ensuring batteries’ safety and lowering
maintenance expenses. Similarly, modern energy management systems are needed
that limit power outage to important loads by electricity consumption forecasting.

• Existing research has employed a variety of ML techniques to solve time series prob-
lems via handcrafted engineering mechanism features, but they have failed to deal
with complicated time series data. To find the most efficient and effective sequential
model, several models are examined to obtain the best combination of encoder and
decoder networks for multi-step battery SOH and power consumption forecasting.

• To obtain effective forecasting results, the acquired raw data related to batteries and
power consumption are first processed in a preprocessing step, where the missing
values are handled using the replacement approach and normalized to expedite the
model learning process.

• For battery SOH and power consumption prediction, a hybrid architecture of Con-
vLSTM and LSTM is presented, in which preprocessed data are passed through the
ConvLSTM layers to extract spatiotemporal features in encoded form, which are then
decoded by the LSTM layers for final forecasting.

• The proposed CL-Net architecture is demonstrated by a comprehensive ablation study
using three distinct time series datasets and regression error metrics. The CL-Net
reduces the error values up to 0.07, 0.13, and 0.135 for mean squared error (MSE),
RMSE, and mean absolute error (MAE), respectively, on the NASA battery dataset.
Similarly, on the IHEPC dataset, the CL-Net achieves lower values of 0.0012, 0.0052,
and 0.0036 for the MSE, RMSE, and MAE, respectively, compared to the state-of-the-
art. Finally, the CL-Net obtains 0.031, 0.176, and 0.169 values on the DEMS dataset for
the MSE, RMSE, and MAE, respectively.

The remaining manuscript is structured in such a way that Section 2 is about the
review of literature, while Section 3 provides the discussion about the proposed CL-Net
architecture. Section 4 discusses the detailed experimentation while Section 5 concludes
the proposed method.

2. Literature Review

Demand for the long lifetime of batteries is one of the top priorities of the manufactur-
ers of electronic appliances as well as other electric and hybrid vehicles. For precaution
purposes, battery SOH estimation can be helpful to deal with the sudden failure of BESS.
However, unfortunately, battery SOH estimation is one of the difficult tasks to accurately
handle. Li-ion batteries are composed of a complex mechanism that is not easy to under-
stand. Similarly, the degradation of the batteries occurs due to several composite practices
and their exchanges. This makes accurate and precise battery SOH forecasting more com-
plicated. Dealing with these issues, different approaches are deployed to accurately predict
battery SOH for the proper maintenance and replacement schedule of the batteries in
systems. These techniques are categorized as experimental, model-based, and ML-based
methods. A review of the different methods introduced from each of the above-mentioned
approaches are listed in the sections ahead.

2.1. Experimental-Based Approaches

The experimental method is the simplest technique for understanding battery behav-
ior. Different experiments are conducted using special equipment in order to analyze the
degradation behavior of the batteries. Batteries’ internal resistance measurement is one of
the experimental methods that is considered as an important factor for SOH estimation. The
lifetime of the batteries can be analyzed by determining the capacity loss and the change
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that occurs in the internal resistance of the batteries. Several studies have investigated the
experimental methods of resistance measurement. Wang et al. [17] studied the internal
resistance of the batteries to control the thermal behavior of the used batteries. In another
study, Wang et al. [18] analyzed the internal resistance by applying different pulse rates.
Wei et al. [19] adopted the resistance measurement technique for battery life state predic-
tion. Similarly, Remmlinger et al. [20] suggested a technique by monitoring the internal
resistance of a battery in hybrid automobiles. Temperature was confirmed as a main factor
for internal resistance that affects a battery life cycle. Waag et al. [21] presented different
diagnostic systems that intelligently analyze a battery interior opposition throughout a life
cycle. Schweiger et al. [22] determined the cell’s interior resistance by alternating current
step methods and determined it as a key parameter. Chiang et al. [23] predicted battery
SOH through the inner resistance with adaptive methods. They concluded that a battery’s
voltage is reduced, and the internal resistance is increased when the life cycle is completed.
Matsushima et al. [24] evaluated heavy storage Li-ion batteries at the industrial level and
complained about the higher internal resistance in the affected batteries. In experimental
methods, several studies have mentioned the measurement of the impedance value for
the SOH estimation of the batteries. Electrochemical impedance spectroscopy (EIS) is a
technique utilized frequently for measuring battery impedance [25]. In this procedure,
the alternate current is useful, and the impedance is measured as a response of output
voltage [26]. The impedance value of a battery increases as the lifetime of a battery comes
closer to its end. EIS can be efficiently incorporated to predict the lifetime and SOH of
batteries. Ovejas et al. [27] introduced the phenomena of Li-ion cells analysis with the
help of EIS and revealed that when a battery’s lifetime is close to ending, the frequency of
charge transfer is reduced. Din et al. [28] also used the concept of EIS in a real-time scenario
and calculated the impedance values for a battery’s cells. In the experimental approach, Li
et al. [29] conducted several experiments on Li-ion batteries and determined their SOH up
to the battery’s end of life (EOL). Similarly, Xiong et al. [30] tested a battery’s capacity level
and SOH at different temperatures. Another technique of ultrasonic inspection was also
used for batteries’ internal health estimation [31]. Battery SOH was also analyzed using dif-
ferent classical destructive methods of X-ray diffractions under laboratory conditions [32].
The experimental approach of battery SOH estimation is convincing, but it has several limi-
tations. The main limitation is that it requires a very long time period for experimentation,
which is time-consuming. This approach is not applicable for online forecasting, it mainly
depends on a battery’s internal chemistry and requires special laboratory equipment, so
these methods are not applicable in operational conditions.

2.2. Battery Model-Based Approaches

SOH estimation is a key factor for analyzing batteries’ lifecycle and degradation level
at different stages of life. Several researchers show an inclination towards model-based
approaches for battery SOH estimation. Adaptive filtering such as Kalman filter (KF) is
an important technique that is followed by many researchers in the literature. Koltypin
et al. [33] used KF algorithm and developed an efficient and accurate battery SOH perdition
model. Morigaki et al. [34] proposed an on-board SOH approach using KF to understand
the internal resistance of Li-ion batteries. Plett et al. [35] used the extended KF for predicting
battery SOH by calculating the cell resistance and capacity. Santhanagopalan and White [36]
applied extended KF using an electrochemical cell model to estimate battery’s SOC. The
results obtained using extended KF were quite accurate and the model was compatible with
real-time applications. Similarly, Urbain et al. [37] measured the impedance of a battery
and combined it with extended KF for the purpose of SOH estimation. Pérez et al. [38] used
an enhanced extended KF approach for estimating different current profiles and states of Li-
ion batteries. Their proposed model was validated over different conditions with very low
error rates. The unscented KF algorithm was also used for SOH estimation, SOC estimation,
and resistance measurement of Li-ion batteries [39]. Couto et al. [40] used unscented KF
algorithm for analyzing battery’s cells and evaluated their model with the data from a
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simulator. Weihan et al. [41] developed a model-based on unscented KF for analyzing the
internal states of Li-ion battery’s cells. Li et al. [35] used a dual extended KF for parameters
and states estimation purposes. Next, Wang et al. [42] proposed a novel approach for the
charged state prediction of Li-ion battery pack based on composite equivalent modeling
and an enhanced splice KF algorithm. Researchers also gave attention to the least square-
based filters (LSF) for battery SOH estimation applications. Prasad et al. [43] used LSF
techniques in developing an electrochemical method to predict a battery’s SOH. Similarly,
Eddahech et al. [44] used a recursive LSF algorithm for the estimation of SOC along with
SOH. Todeschini et al. [45] used the LSF approach for the identification of batteries aging
parameters. In other techniques, electrochemical models were used for understanding a
battery’s degradation and aging behavior [46]. The fuzzy logic approach was also used for
understanding the complex and nonlinear systems in battery state estimations. Salkind
et al. [47] used the fuzzy logic approach along with EIS methods for predicting SOH and
SOC in batteries. All these model-based approaches are commonly used in the literature of
battery SOH estimation. These methods describe battery degradation phenomena with
precise and accurate results up to an extent. These are relatively complex, having higher
computational efforts, and require high performance controllers. The computational cost
of the model-based techniques of SOH estimation is relatively high.

2.3. Machine Learning-Based Approaches

ML-based approaches use a set of measurements, observations as training data, and
models for understanding a system and process for SOH estimating in batteries. ML
has been widely used in BESS for the effective purpose of charge storage and battery
state predictions. In the study of You et al. [15], a feedforward neural network (FNN)
was used for the online SOH prediction of batteries in hybrid vehicles. Khan et al. [48]
compared DL and ML techniques for Li-ion battery SOH prediction and RUL estimation.
Andre et al. [49] introduced a structural architecture to predict a battery’s SOH in electric
and hybrid vehicles, deducing the parameters of capacity and internal battery resistance.
Chaoui et al. [50] also used FNN for SOH estimation along with time-delayed data as an
input. The data of batteries such as time signals, current, and temperature were utilized
to predict SOH. Furthermore, Chaoni et al. [51] used RNN for the dynamic prediction of
battery SOC and SOH. Their proposed model used current, voltage, and temperature data
during cycles as input parameters. In another work, You et al. [52] utilized an LSTM for
battery SOH estimations in electric vehicles based on the sequential data. Veeraraghavan
et al. [53] also used an LSTM network for developing a model for battery SOH estimation.
Their model was trained and evaluated from the data of both real batteries and simulated
data. Eddahech et al. [54] presented a hybrid approach using EIS along with an RNN based
on a cell’s inner resistance and capacity. For this task, datasets were obtained performing
experimentation on Li-ion batteries’ cells under aging test circumstances. Hamming neural
networks along with dual extended KF were also used for predicting cells’ SOH [55]. Klass
et al. [56] used a support vector machine algorithm to predict battery SOH in electric
vehicles. The data were obtained from different cycle profiles of batteries at different
temperatures. Saha et al. [57] used an equivalent circuit model along with particle filters
and a relevance vector machine for predicting three important states of Li-ion batteries,
which are RUL, SOH, and SOC. He et al. [58] applied dynamic Bayesian networks to predict
battery SOH using voltage as the input attribute. SOH prediction and estimation through
ML approaches show interesting and accurate results as compared to the other estimation
approaches. ML approaches provide a comparatively easy implementation process with
higher accuracy rates. The quality of the data provided to the ML and DL models for
training and validation tasks is one of the essential aspects to be considered. Based on
the above-mentioned studies, ML-based approaches are applicable for the efficient and
cost-effective estimation of a battery’s SOH in ESS, electronic and hybrid vehicles, and
other electronic appliances.
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3. Proposed Method

This section thoroughly explains the overall steps held in the SOH and power con-
sumption forecasting mechanism with visual representation. Initially, data from the acqui-
sition step are preprocessed for the removal of noise and handling missing values, and
then its normalization is performed. The refined data are passed into the proposed CL-Net
architecture, which is a hybrid connection of two networks including ConvLSTM and
LSTM as shown in Figure 1. The initial ConvLSTM layers extract the most discriminative
and hierarchical features from the input sequence that are forward propagated into the
LSTM network. The latter features obtained from the LSTM network are passed into other
fully connected layers that give final forecasting results. The applied several sequential
approaches will be covered in the subsequent sections.

1 
 

 

Figure 1. Overview of the proposed hybrid architecture for forecasting where SOH and power
consumption-related data are obtained and cleaned then passed through the CL-Net for multi-step
fore-casting.

3.1. Data Acquisition and Refinement

Energy demand is increased as population of the world rises, due to which the quantity
of carbon dioxide also increases. RESs can protect the world from climate change and
provide a human friendly environment. Sustainable energy can be provided by RESs,
which are endless and never run out, such as wind and solar energies. There are some
challenges in renewable energy such as these resources of power are uncontrollable by
humans. Wind energy is available when wind is blowing while solar energy is dependent
on the sunshine. To tackle the above-mentioned problems, BESS is used where energy is
stored for a high demand duration or when the power is not available from RESs. To make
BESS safe from any damage, SOH forecasting of a battery is a very important task. There are
various smart meters for energy consumption measurement and battery-related attributes
such as temperature, current, and voltage. The raw data obtained from these smart meters
have different types of issues such as missing values, noise, data redundancy, and outliers.
Therefore, preprocessing is a main step in time series problems where the data are cleaned
and made suitable for model training. During the collection of raw data, missing values
and outliers can occur due to human behavior and environmental conditions. ML and DL
models decrease their performance for time series problems if the data have missing values
and outliers [59]. Therefore, a substitution method is used for filling the missing values
where a previous value at that time is used to fill the current missing values. Similarly,
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outliers in a dataset are the values deviated from the remaining data, due to which models
for time series data are less accurate and their predictions are corrupted. Thus, to remove
outliers and noise from the raw data, moving average filter method is employed where the
data are made smooth for training the model. Data normalization is a very important step
in data preparation for DL models where raw data values are scaled to a particular range.
Therefore, the normalization process of min-max is applied to scale the input sequence
values in a range from 0 to 1, where the difference between the values is not distorted. The
raw data are normalized using Equation (1), where x is normalized data, x is unscaled data,
while min and max are minimum and maximum values in the input dataset:

x =
(x−min)
max−min

(1)

3.2. Sequential Networks

This section is about the proposed approach for SOH forecasting of batteries and
power consumption. LSTM is used separately and with various other DL models as a
hybrid network for forecasting. The proposed architecture and other hybrid models are
discussed in the following subsections.

3.2.1. Long Short-Term Memory Network

Recent advancements in huge data availability and DL techniques have made the time
series data-driven prediction more prestigious and affordable including forecasting and
vision-related tasks such as crowd analysis [60]. However, the established literature on
LSTM for time series problems gives an important direction for SOH estimation of batteries
as well as power consumption. LSTM networks are a type of RNN that are widely famous
for processing the sequential data and addressing the long-term memory drawbacks of
vanilla RNN. LSTM extends the architecture of RNN using a gating mechanism and a
standalone memory cell, which regulates the flow of information throughout the network.
The gating concept comprises of three units, such as input, forgot, and output gate. These
gates control the flow of information across the network to allow which information needs
to persist or how long it will persist after reading it from the cell memory. LSTM networks
are capable to retain the key information and discard the less important information. The
memory cell has a recurrent self-connected unit known as constant error carousel (CEC) that
has a state vector to preserve long-term dependencies. Next, to distinguish self-contained
cell memory from conventional state ht in LSTM, it is referred as ct. The forget gate ft
obtains input xt and ht−1 to determine which information needs to be retained in ct−1. The
activation functions for gates it, ot, and ft are sigmoid layers where each value is projected
between 0 and 1 while ct−1 gives the information retention to describe the scale. Further
details are beyond the scope of the paper. However, the aforementioned process is formally
defined through Equation (2) to Equation (6), and Figure 2a illustrates the cell architecture
of LSTM network:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (3)

ot = σ(Wxoxt + Whoht−1 + Wcoct + b0) (4)

ct = ftct−1 + it∅(Wxcxt + Whcht−1 + bc) (5)

ht = ot∅(ct) (6)
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Figure 2. Overview of the sequential learning networks where (a) represents the internal structure of
LSTM cell while (b) shows the internal structure of ConvLSTM unit.

Here, Wxi, Whi, Wci, Wx f , Wh f , Wc f Wxo, Who, Wco, Wxc, and Whc indicate weight
matrices for the gates and cell memory state, while ht−1 is a previous hidden state, and ct is
a cell state. The biases of the gates are represented through bi, bo, b f , and bc while indicating
an element-wise multiplication procedure. Similarly, σ shows the logistic sigmoid function,
and ∅ represents hyperbolic tangent function. These activation functions are defined
separately in Equations (7) and (8):

σ(x) =
1

1 + e−x (7)

∅(x) =
ex − e−x

ex + e−x (8)

3.2.2. Encoder–Decoder Network

In time series data, problems can be classification or regression problems, where, in
classification, the output of a model is a label, while in regression, it is a continuous value.
Regression problems can be single- or multi-step, where, in single-step, the output is one
next value, while in multi-step, the output has multiple next values. There are other types of
regression problems, but one of them is known as a sequence-to-sequence prediction problem,
which is a more challenging task in this domain. In this problem, the input data to a model
are sequential, while the output of the model is also a sequence instead of predicting a single
value for the given input. So, the more efficient and proven to be an effective approach for
sequence-to-sequence problems is encoder–decoder. There are two further networks in this
approach, where the first network reads the input sequence and converts it into a fixed-length
vector in encoded form while the second network decodes the fixed-length vector by given
output as a predicted sequence. These architectures are specifically designed for sequence-to-
sequence problems and are called encoder–decoder, as shown in Figure 3a. For the purpose of
SOH and power consumption forecasting, the input sequence is passed through an encoder
to encode the important information from the input sequence. After the encoding mechanism,
the encoded features are decoded via plugging an additional unit known as the decoder. The
latter generated from the decoder is propagated to fully connected layers that give the final
sequence prediction of the input sequence.
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Figure 3. (a) Represents a general structure of encoder–decoder while (b) depicts a one-dimensional
convolutional neural network.

3.2.3. CNN and LSTM Hybrid Network

This section discusses about the hybrid connection of CNN and LSTM networks
known as CNN-LSTM. The hybrid connection is the prediction model that obtains univari-
ate time series data and gives multi-step forecasting. CNN is a DL-based algorithm that
considers spatial inputs and is identical to other neural networks with neurons, learnable
weights and biases in them. CNN acts as FNN, where the flow of information happens in
one direction, i.e., input to their outputs, as shown in Figure 3b. In the proposed work, the
hybrid connection of CNN-LSTM comprises of CNN layers and the LSTM network. The
CNN layers extract the features from the time series variables that are given to LSTM to
assist the prediction process. In the hybrid connection, 1D CNN is used, where each convo-
lutional layer is followed by a max pooling layer, and its output is flattened and fed into
the LSTM units. LSTM layers are followed by dense or fully connected layers to give a final
prediction. Initially, the data are rescaled and reshaped to fit the three-dimensional input.
The input time steps are defined as various leg values with one feature for the univariate
model. Overfitting is one of the main issues common in deep neural networks. There are
several solutions, and the dropout is one of the simplest and most efficient that works
well. To avoid overfitting, a dropout layer is plugged, whose output is next provided to
fully connected layers. Next, there are several frequently used activation functions such as
sigmoid function, ReLU function, and tanh function. In these functions, the ReLU function
solves the gradient disappearance problem. Next, its calculation and convergence speeds
are faster than tanh and sigmoid functions. The working process of the ReLU function is
defined in Equation (9). The output of a convolution process is represented in Equation
(10) and Equation (11), where f is the input sequence, h is a filter, while m and n are the
data dimensions:

Kh(x) = max(0, x) (9)

G[m, n] = ( f ∗ h)[m, n] (10)

( f ∗ h)[m, n] = ∑j ∑k h[j, k] f [m− j, n− k] (11)

3.2.4. Convolutional LSTM and LSTM Hybrid Network

Learning via fully connected layers of LSTM has been proven to be powerful to handle
temporal correlation; however, a lot of redundancy from spatial data has made it more
challenging. To handle this issue, the fully connected LSTM has added an extension having
convolutional assembly in both state-to-state and input-to-state transitions. Stacking
multiple layers of ConvLSTM by forming encoding and forecasting mechanisms have
made the network not only capable of precipitation new casting but also for spatiotemporal
forecasting. Similar to the conventional fully connected LSTM, ConvLSTM is also adopted
as a building block to handle more complex sequences. Figure 2b illustrates the cell
architecture of ConvLSTM. These layers act as an encoder that encodes the input-refined
sequence having a defined size, which is then forward propagated into LSTM. ConvLSTM
applies convolution operations for the input to hidden and hidden to hidden connection.
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To replace matrix multiplication operations in RNN, ConvLSTM layers with convolution
operations are used, and these layers have the ability to know which information needs
to be remembered or to be forgotten from the previous cell state via the forget gate [61].
Similarly, ConvLSTM decides which information will be stored in the current cell. The
process of ConvLSTM is described in Equation (12) to Equation (16). After ConvLSTM, an
additional LSTM layer is plugged that learns the features map and gives the final prediction.
Making this hybrid connection is more efficient and effective in term of correct battery
SOH and power consumption forecasting:

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi) (12)

ft = σ(Wx f ∗ xt + Wh f ∗ ht−1 + Wc f ◦ ct−1 + b f ) (13)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ ct + bo) (14)

ct = ftct−1 + it∅(Wxc ∗ xt + Whc ∗ ht−1 + bc) (15)

ht = ot∅(ct) (16)

4. Experimental Results

This section mainly discusses the datasets, the experimental results, the empirical
analysis of the outcome in terms of useful metrics, and a comparative study. These topics
are covered in the following subsections.

4.1. System Configuration and Implementation Details

The proposed architecture is implemented in Python language (Version 3.8.5) using
the most popular DL framework Keras (Version 2.5.0) with TensorFlow (Version 2.5.0) at
the backend. The hardware setup consists of a Windows 10 operating system with an
AMD Ryzen 9 3900X 12-core processor, NVIDIA graphics processing unit (GeForce RTX
3090), and 48.0 GB installed RAM. To confirm and validate the efficiency of the different se-
quential models, three different time series datasets are used, including NASA battery [62],
IHEPC [63], and DEMS, which are collected from the prognostic data repository, the UCI
ML repository, and the Korean local energy management system, respectively. Next, the
model’s validation is performed using the hold-out method where the data are divided
into training and testing parts. In this study, 70% of each dataset is used as training and
30% for testing purposes. Furthermore, each model is trained with a batch size of 16, Adam
optimizer, and 100 epochs.

4.2. Datasets

In this study, three different time series challenging datasets are utilized to conduct
the ablation study on the various sequential models. The following subsections discuss
these datasets in detail.

4.2.1. NASA Battery Dataset

This dataset is produced by the prognostics center of excellence at NASA Ames using
Li-ion batteries [62] and is considered as a benchmark in batteries-related research. It has
been widely used for battery capacity, SOH, RUL, and SOC estimations. Four batteries,
including B0018, B0007, B0006, and B0005, were used in the experiments by performing
different operations such as charging, impedance, and discharging at room temperature
to analyze them. All the batteries were charged at 1.5 amperes until their voltage reached
4.2 volts. At 4.2 volts, the voltage was kept constant and the current was reduced to 20 milli-
amperes during charging. Similarly, during discharging, the current was kept constant at
2 amperes, and the voltages were dropped to 2.5, 2.2, 2.5, and 2.7 volts for batteries B0018,
B0007, B0006, and B0005, respectively. The process of charging and discharging was carried
on for all the batteries until they reached their EOL. The EOL was defined by the research
center, which was the reduction of 30% in the rated capacity of a battery. The SOH of a
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battery can be calculated using Equation (17), where Cm is the maximum capacity while Cr
is the rated capacity of the battery. The degradation in the SOH of each battery according
to a number of cycles is shown in Figure 4.

SOH =
Cm

Cr
100% (17)

Figure 4. NASA battery dataset where (a–d) show degradation in SOH with respect to cycles for the
batteries B0005, B0006, B0007, and B00018, respectively. This figure explains that at the beginning of
life, a battery is fresh and has maximum SOH while after charging and discharging several times, the
SOH also decreases until its EOL is reached.

4.2.2. Individual Household Electric Power Consumption Dataset

This dataset is obtained from the UCI repository [63] that consists of data measured
from a house located in Sceaux, France in the period of 2006 to 2010, making 47 months
of total power data. There are a total of 2,075,259 samples, where 25,941 contain missing
values and is 1.25% of the total data. The issue of these missing values is resolved in the
preprocessing step. The basic time resolution used in this dataset is minutely horizon. The
power is consumed over every minute and is given in kilowatts. Different time resolutions
can be formed such as hours, days, and weeks where a data sequence is given to the
network. Some samples of the data are shown in Figure 5a while Table 1 describes the
attributes used in this dataset with their remarks.
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Table 1. IHEPC dataset attributes and their description.

Attributes Description

Date This variable represents the date when the data was recorded.
The date is comprised of years, months, and days.

Time This variable contains the values measured in hours, minutes,
and seconds where the row-to-row jump is one minute.

Global active power
This attribute shows the overall active power consumed by
the appliances and is represented by the GAP. The GAP is
measured in kilowatts.

Global reactive power This attribute shows the overall reactive power, and its
symbol is GRP. The GRP is also measured in kilowatts.

Voltage This attribute is measured in volts and is represented by V.

Global intensity This variable shows the overall intensity of the current and is
represented by GI. The GI is measured in amperes.

Sub_metering_S1
The power energy consumed by the devices in the kitchen
such as microwave, dishwasher, etc. It is measured in
watt-hour.

Sub_metering_S2
The power energy consumed by the machineries in the
laundry room such as refrigerator and washing machine, and
is measured in watt-hour.

Sub_metering_S3 The power energy consumed by the water cooler and
air-conditioner, and it is also measured in watt-hour.

4.2.3. Domestic Energy Management System Dataset

This dataset is collected from local Korean ESS batteries in the period of 21 March
2017 to 24 September 2019. The dataset consists of three batteries, including BAT1, BAT2,
and BAT3, where each battery’s data are originally structured in the resolution of seconds.
BAT1 contains 38,733,091 total instances having multi-variate data while BAT2 and BAT3
have 38,732,890 and 38,731,915 instances, respectively. Different time resolutions of the
batteries’ data can be made such as minutes, hours, and days where a lag sequence is given
to the model for forecasting. In the DEMS dataset, each battery has 78 different attributes
at the rack and battery levels such as date-time, temperature, SOC, voltage, current, and
SOH, etc. In this study, the hourly resolution of the data is chosen and the SOH attribute
for all three batteries is forecasted. Some samples of the DEMS dataset in hourly resolution
are depicted in Figure 5b.
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4.3. Evaluation Metrics

It is an essential step to evaluate the proposed approach using different metrics that
helps to verify the effectiveness of the work. In the literature, several metrics are used
depending on the particular problem such as accuracy, recall, precision, etc., which are
abundantly used for classification purposes. However, the forecasting time series data is a
regression problem, therefore, to confirm its effectiveness, the MSE, RMSE, and MAE error
metrics are used. MSE is the average square of difference between the actual and predicted
values, while RMSE is the square root of the MSE. Next, the MAE represents the average
absolute difference in the actual and predicted values. These metrics are well presented in
Equation (18) to Equation (20):

MSE =
1
n ∑n

1 (y− ŷ)2 (18)

RMSE =

√
1
n ∑n

1 (y− ŷ)2 (19)

MAE =
1
n ∑n

1 |y− ŷ| (20)

4.4. Ablation Study on the NASA Battery Dataset

The overall results obtained on the NASA battery dataset are discussed in this section.
Method evaluation is performed on the NASA battery data using different sequential
learning algorithms. The NASA battery dataset is comprised of four Li-ion batteries
where each one having different number of cycles. The dataset is firstly tested by LSTM
to identify and forecast the SOH. The performance of LSTM can be observed from the
metrics where values for the MSE, RMSE, MAE of the LSTM network are 0.067, 0.259, and
0.209, respectively. LSTM utilizes the input sequence from the SOH attributes and extracts
meaningful information from it. Further assessment is performed via an encoder–decoder
network to identify its performance on the NASA data, and its results are given in Table
2. Similarly, the CNN and LSTM-based hybrid connection network is also studied to
explore its use for SOH forecasting. The MSE, RMSE, and MAE values obtained by the
CNN-LSTM are 0.061, 0.247, and 0.195, respectively. Finally, the results obtained on the
proposed CL-Net architecture are discussed, where the MSE, RMSE, and MAE values
are 0.042, 0.205, and 0.151, respectively. Figure 6 shows the visual results of the different
sequential methods on the NASA battery dataset while the overall performance results are
posted in Table 2.

Table 2. Forecasting results obtained on the NASA battery dataset using different sequential models.

Method MSE RMSE MAE

LSTM 0.067 0.259 0.209

Encoder–decoder 0.049 0.221 0.172

CNN-LSTM 0.061 0.247 0.195

Proposed method 0.042 0.205 0.151
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Figure 6. SOH estimation visual results of different sequential models using the NASA battery dataset.

4.5. Ablation Study on the IHEPC Dataset

The numerical results obtained on the IHEPC dataset using hourly resolution are
given in Table 3 while the visual prediction results of the sequential models are depicted
in Figure 7. At first, experiments on the LSTM are performed to check and confirm its
performance. LSTM is a type of RNN that is trained via backpropagation through time
approach to overcome the problem of vanishing gradients. The layers used in the LSTM
are kept with the default settings where the memory blocks are connected using layers.
These blocks contain some components which make them smarter than a single neuron.
The block has gates that manage its output and state. A single block operates an input
sequence where each gate uses the sigmoid activation unit. Each unit acts as a mini-state
machine having weights, which are learned in training process. After training the LSTM
on the IHEPC dataset, the obtained MSE, RMSE, and MAE on an hourly horizon are 0.027,
0.164, and 0.099, respectively. After LSTM, encoder–decoder is applied, which is the hybrid
connection of the LSTM encoder and decoder. The initial part involves the LSTM, where it
first encodes the given sequence while the second part decodes it. The encoder consists
of few recurrent units, which accept a single input sequence that collects the important
information and forward propagates it. The encoder part produces an encoded vector,
which is the final state that comes from the encoder part. After encoding, the latter from the
encoder part is fed into the decoder. The prediction is obtained from the decoder part, and
a fully connected layer is added that performs the final prediction process. The MSE, RMSE,
and MAE of the encoder–decoder are 0.019, 0.137, and 0.091, respectively. Furthermore,
the performance of the hybrid connection of CNN and LSTM is also evaluated, which is
abundantly used in several forecasting tasks. CNN-LSTM consists of CNN and LSTM
layers where CNN extracts the most discriminative and important features from the input
sequence that are given to the LSTM to learn them for the final prediction. The main
advantage of using CNNs is the usage of convolutions or filters, which make them capable
of power consumption forecasting. The space size in the cell allows the network to better
examine the observation in series. Therefore, the CNN and LSTM layers combined in the
forecasting problem allow the LSTM to encounter long-term dependencies in the series.
In this case, the LSTM gives the final forecasting for power consumption. The obtained
results on CNN-LSTM are such that the MSE, RMSE, and MAE values are 0.021, 0.145,
and 0.092, respectively. After CNN-LSTM, the results obtained from the proposed method
are compared, which is the connection of a ConvLSTM and a simple LSTM network in
a hybrid way. Unlike the simple LSTM or CNN-LSTM that calculates the internal state
and interprets the output from CNN, the ConvLSTM uses convolutions directly by reading
the input into the LSTM. However, the proposed method adds additional LSTM layers
to ConvLSTM layers to make their strong hybrid connection. The MSE, RMSE, and MAE
using the proposed method are 0.015, 0.122, and 0.088, respectively.
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Table 3. Results obtained on the IHEPC dataset in hourly resolution for a day ahead prediction using
different sequential models.

Method MSE RMSE MAE

LSTM 0.027 0.164 0.099

Encoder–decoder 0.019 0.137 0.091

CNN-LSTM 0.021 0.145 0.092

Proposed method 0.015 0.122 0.088

Figure 7. Power consumption forecasting visual results based on different sequential models for the
IHEPC dataset.

4.6. Ablation Study on the DEMS Dataset

This section discusses the overall results obtained on the DEMS dataset. Similar to the
previous dataset, the sequential learning techniques are also investigated for the DEMS
dataset. At first, the LSTM network is practiced for its performance on the DEMS batteries
data where each sequential model has been applied to hourly horizon of the dataset. The
values for the MSE, RMSE, MAE of the LSTM network for hourly horizon are 0.045, 0.212,
and 0.194, respectively. The overall results are given in Table 4. For the LSTM network,
the default settings are used that are applied on the previous dataset. LSTM obtains the
sequence of input variables from the SOH attribute and extracts the important information
from it. Similarly, the encoder–decoder network is also analyzed to forecast the SOH of the
batteries. The setting parameters are the same that are applied on the NASA and IHEPC
datasets in the previous subsections. However, if the results obtained on the DEMS batteries
data are analyzed as compared to LSTM, they are improved. The results obtained from the
encoder–decoder are given in Table 4, where the MSE, RMSE, MAE values are 0.036, 0.190,
and 0.173, respectively. Next, the hybrid connection of CNN and LSTM is explored, which
is previously explained in detail. The MSE, RMSE, and MAE values obtained from the
CNN-LSTM are 0.039, 0.197, and 0.179, respectively. Finally, the results obtained from the
proposed method are discussed that are also given in Table 4. The obtained MSE, RMSE,
and MAE values of the CL-Net are 0.031, 0.176, and 0.169, respectively. Figure 8 shows
visual results of the different sequential methods on the hourly resolution data.
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Table 4. Results obtained on the DEMS dataset in hourly resolution for a day ahead forecasting using
different sequential models.

Method MSE RMSE MAE

LSTM 0.045 0.212 0.194

Encoder–decoder 0.036 0.190 0.173

CNN-LSTM 0.039 0.197 0.179

Proposed method 0.031 0.176 0.169

Figure 8. SOH estimation visual results of different sequential models using the DEMS dataset.

4.7. Comparative Analysis Using the NASA Battery Dataset

This section discusses the comparative analysis of the proposed architecture with
other works in the literature using the NASA battery dataset. For instance, a Gaussian
process regression method [11] is proposed for a battery’s SOH estimation based on
partial incremental capacity curve. In this method, smoothing incremental capacity curves
are obtained using Gaussian filters, and then health indices are extracted as the input
features. To predict the SOH of a battery, mean and covariance functions are applied
where the average values of 1.030, 1.015, and 0.387 are obtained for MSE, RMSE, and MAE,
respectively. Next, wavelet neural networks with a genetic algorithm [9] are compared
for battery SOH prediction using an incremental capacity mechanism. This method first
extracts important features from incremental capacity curves through Pearson’s correlation
coefficient approach. To optimize the wavelet neural networks scaling factor, translation
factor, and initial connection weights, a genetic algorithm is used. To predict the SOH of
a battery, a genetic algorithm with wavelet neural networks is utilized. Different models
are used in this study, but the genetic algorithm with wavelet neural network shows the
best performance by obtaining an average MAE value of 1.655 on the NASA battery data.
Similarly, a parallel layer extreme learning machine algorithm [12] is proposed to enhance
the battery’s SOH. They compared two methods where the parallel layer extreme learning
machine algorithm shows high performance by obtaining the MSE, RMSE, and MAE values
of 0.112, 0.335, and 0.286, respectively. Finally, the proposed CL-Net architecture obtains
0.042, 0.205, and 0.151 values for MSE, RMSE, and MAE, respectively, which prove that the
proposed approach outperforms the state-of-the-arts in terms of error metrics. The detailed
comparative results are presented in Table 5.
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Table 5. Proposed method comparison with state-of-the-art methods using the NASA battery dataset.

Ref Method MSE RMSE MAE

[11] Gaussian process regression 1.030 1.015 0.387

[9]

GA-WNN — — 1.655

WNN — — 3.320

BP — — 7.530

SVM — — 4.697

[12]
PL-ELM 0.112 0.335 0.286

ELM 1.124 1.060 0.676

Proposed method 0.042 0.205 0.151

4.8. Comparative Analysis Using the IHEPC Dataset

This section thoroughly explains the comparative analysis of the proposed architecture
with other competitive state-of-art methods. The comparison is performed for the results
obtained on hourly resolution using the IHEPC dataset. First, the sequence-to-sequence
(seq2seq) [64] method is studied and analyzed for its consumption nature, which investi-
gated two types of LSTM architectures, including standard LSTM and LSTM-based seq2seq
architectures. This method shows that the LSTM performed better on hourly resolution
while it fails on minutely resolution. The obtained RMSE on their method is 0.625. Next,
the CNN-LSTM [65] is explored, which is the hybrid connection of the CNN and LSTM
networks where CNN extracts the complex features from the consumption variables that
effect the consumption. LSTM, in their network, is responsible for modeling the temporal
information. The MSE, RMSE, MAE values achieved by the CNN-LSTM are 0.3549, 0.5957,
and 0.3317, respectively. Similarly, another method [66] introduced an explainable autoen-
coder to predict the consumption for 15, 30, 45, and 60 min. They used a t-SNE algorithm to
visualize and explain the prediction results. Their method gave values of 0.3840 and 0.3953
for the MSE and MAE, respectively. Furthermore, the most recently published work in the
reference [67] is compared, which introduced the DB-Net architecture to predict energy
consumption using the hybrid connection of dilated CNN and bidirectional LSTM net-
works. The MSE, RMSE, and MAE obtained by this method are 0.0162, 0.0112, and 0.0916,
respectively. Next, in [68], a comprehensive study is conducted on the traditional ML
algorithms and DL sequential models for load consumption prediction. Their comparison
found that the multilayer LSTM (M-LSTM) showed the highest performance as compared
to the traditional ML and DL algorithms in terms of the error metrics. On the hourly
resolution data, the M-LSTM obtained values of 0.1087, 0.3296, and 0.3086 for MSE, RMSE,
and MAE, respectively. Similarly, the study [69] introduced a novel hybrid DL-based
sequential model for commercial and residential sectors load consumption forecasting
where the model obtained values of 0.105, 0.324, and 0.311 for MSE, RMSE, and MAE,
respectively. In addition, an RNN model with multi-headed attention is introduced in [70]
to learn spatiotemporal features selectively and predict power consumption, where the
model obtained a value of 0.2662 for MSE. Similarly, in [71], a hybrid network based on
dilated convolutions and residual gated recurrent units (RGRU) is proposed for forecasting
power consumption and generation by obtaining values of 0.17, 0.41, and 0.26 for MSE,
RMSE, and MAE, respectively. Finally, the proposed architecture obtains values of 0.015,
0.122, and 0.088 for MSE, RMSE, and MAE, respectively, which proves that the CL-Net
architecture outperforms the state-of-the-arts in terms of error metrics. These comparison
results are presented in Table 6.
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Table 6. Comparison with state-of-the-art methods using the IHEPC hourly resolution dataset.

Ref Method MSE RMSE MAE

[64] Seq2Seq — 0.625 —

[65] CNN-LSTM 0.3549 0.5957 0.3317

[66] Explainable autoencoder 0.3840 — 0.3953

[67] DB-Net 0.0162 0.1272 0.0916

[68] M-LSTM 0.1087 0.3296 0.3086

[69] Hybrid DL netwok 0.105 0.324 0.311

[70] Multi-headed attention model 0.2662 — —

[71] RGRU-based hybrid model 0.17 0.41 0.26

Proposed method 0.015 0.122 0.088

4.9. Time Complexity Analysis of the Sequential Models

In this section, an ablation study is conducted for the battery SOH and power consump-
tion forecasting using four different sequential models, including LSTM, encoder–decoder,
CNN-LSTM, and CL-Net, which is the proposed hybrid architecture of the ConvLSTM
and LSTM. All four models are validated using regression error metrics on the time se-
ries datasets, including NASA battery, IHEPC, and DEMS, where the proposed CL-Net
architecture obtains the lowest error rate as compared to the other models. Next, the
model inference time is an important factor for real-time scenarios. Therefore, the time
complexity of all the four models in terms of their training and testing time using all the
datasets is compared. For the experimentation, a hardware system with an AMD Ryzen 9
3900X 12-core processor, NVIDIA graphics processing unit (GeForce RTX 3090), 48.0 GB
RAM, and installed Window 10 operating system is used. All the datasets are divided into
70% and 30% training and testing sets, respectively. The training time of the proposed
architecture on the NASA battery dataset for one epoch is 3.05 s, while the testing time
on the same dataset is 0.41 s. Next, on the IHEPC hourly resolution data the proposed
CL-Net architecture training time is 51.88 s for a single epoch while its testing time is 13.74 s.
Similarly, using the hourly resolution of the DEMS dataset, the training time for one epoch
taken by the proposed architecture is 87.37 s, while the testing time on the same dataset is
26.55 s. The training and testing time of all four models on the three datasets are given in
Table 7, where the proposed architecture requires a small amount of time for training and
testing as compared to the others sequential models.

Table 7. Time complexity analysis of the proposed architecture and other sequential models in
seconds (s) on the NASA battery, IHEPC, and DEMS datasets.

Method

NASA Dataset IHEPC Dataset DEMS Dataset

Training
Time (s)

Testing
Time (s)

Training
Time (s)

Testing
Time (s)

Training
Time (s)

Testing
Time (s)

LSTM 3.18 0.45 87.16 13.96 146.22 30.58

Encoder–decoder 5.61 0.69 225.22 16.77 405.18 33.80

CNN-LSTM 3.36 0.57 126.03 14.23 222.28 28.57

Proposed method 3.05 0.41 51.88 13.74 87.37 26.55

5. Conclusions

SOH plays an important role in ESS by analyzing and estimating batteries in order
to decrease the high risk of accidents and failure. It is also required to extend batteries’
lifespans. Similarly, precise power consumption forecasting is also necessary to minimize
energy shortage and oversupply. Thus, to improve battery performance by SOH esti-
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mation and demand-side management, this paper proposed a novel hybrid architecture
named CL-Net by integrating the ConvLSTM and LSTM for multi-step SOH and power
consumption forecasting. Initially, the collected raw data from smart meters are passed
into the refinement layer to clean them from noise and abnormalities. The refined data are
then fed to the ConvLSTM layers that extract spatiotemporal features by encoding them.
Next, an additional set of LSTM layers are attached that decode the resultant output from
the ConvLSTM layers, followed by a fully connected layer for the final forecasting of a
battery’s SOH and power consumption. To verify and evaluate the effectiveness of the
proposed architecture, three datasets were used, such as the NASA battery, IHEPC, and
DEMS datasets. The comparative study shows that the proposed architecture is effective
and efficient for multi-step battery SOH as well as power consumption forecasting. The
proposed architecture obtains values of 0.042, 0.205, 0.151 for the MSE, RMSE, and MAE,
respectively, on the NASA battery data. Similarly, on the IHEPC dataset, the architecture
obtains values of 0.015, 0.122, and 0.088 for the MSE, RMSE, and MAE respectively. Finally,
the CL-Net obtains values of 0.031, 0.176, 0.169 on the DEMS dataset for the MSE, RMSE,
and MAE, respectively. Furthermore, the influence of a battery’s temperature on SOH and
weather-related variables’ impact on power consumption is not considered in this work,
therefore, the approach might be improved by including this information.

In the future, it is aimed to further analyze additional parameters to forecast SOH,
power consumption and generation by considering real-world data that include envi-
ronmental aspects and weather-related attributes. It is also intended to include an edge
computing module for long-term battery SOH, power consumption, and generation fore-
casting to reduce costs and energy.
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Abbreviations

Word Description
BESS Battery energy storage system
ConvLSTM Convolutional long short-term memory
CEC Constant error carousel
CNN Convolutional neural network
DL Deep learning
DEMS Domestic energy management system
EIS Electrochemical impedance spectroscopy
ESS Energy storage system
FNN Feedforward neural network
IHEPC Individual household electric power consumption
KF Kalman filter
Li-ion Lithium-ion
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Word Description
NASA National aeronautics and space administration
LSTM Long short-term memory
LSF Least square-based filters
MAE Mean absolute error
ML Machine learning
MSE Mean squared error
RUL Remaining useful life
RMSE Root mean squared error
RES Renewable energy source
RNN Recurrent neural network
SOP State of power
SOC State of charge
SOH State of health
EOL End of life
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