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Abstract: In the present article, the generalized thermoelastic wave model with and without energy
dissipation under fractional time derivative is used to study the physical field in porous two-
dimensional media. By applying the Fourier-Laplace transforms and eigenvalues scheme, the
physical quantities are presented analytically. The surface is shocked by heating (pulsed heat flow
problem) and application of free traction on its outer surface (mechanical conditions) by the process
of temperature transport (diffusion) to observe the full analytical solutions of the main physical
fields. The magnesium (Mg) material is used to make the simulations and obtain numerical outcomes.
The basic physical field quantities are graphed and discussed. Comparisons are made in the results
obtained under the strong (SC), the weak (WC) and the normal (NC) conductivities.

Keywords: Fourier-Laplace transforms; porous material; eigenvalues method; fractional time derivative

1. Introduction

Porous media appear in many forms of environmental, natural, and synthetic imple-
mentations and in several technologies. To overcome the first insufficiency in the decoupled
thermoelasticity theorem, in 1956, Biot [1] presented the coupled thermoelasticity theorem
to control the first insufficiency in the decoupled thermoelastic model, which prognosticates
two phenomena not suitable for physical observation. Firstly, the thermal conductivity
equation is parabolic, presenting an infinite propagation speed for thermal waves. Sec-
ondly, the thermal conductivity equation of this model does not contain an elastic term.
Rosencwaig et al. [2] investigated the local thermoelastic deformation of the model caused
by excitations.

Biot developed poroelasticity models [1,3,4] for a high–low-frequency range and built
upon the coupled thermoelasticity hypothesis to overcome the inconsistency in the un-
coupled hypothesis [1]. The heat conduction and elasticity equations in this theory are
coupled. However, it includes a drawback of the uncoupled hypothesis in which the heat
wave propagates with an infinite velocity that is impractical in nature. Then, to solve the
problem of the coupled hypothesis, generalized thermoelasticity models were expanded.
It is recognized that there are several generalizations of the thermoelasticity hypothesis,
such as that presented by Lord-Shulman [5]. Green-Naghdi [6–8] formulated three types of
models (GNI, GNII, and GNIII). The constitutive equations of the GN models are linearized,
where the first type is similar to the classical coupled thermoelastic model, the second
type demonstrates the propagations of thermal signals with finite velocity without energy
dissipations, and the third type proposes the finite speed of propagations with energy
dissipations. During the second half of the 19th century, it can be said that the complete
model of fractional integrals and derivatives was determined. In the context of generalized
thermoelastic models, Youssef [9,10] established generalized fractional-order thermoelastic
models under strong, normal, and weak conductivities. Sherief et al. [11] presented a
new theory by using the thermal conduction law. Ezzat and Elkaramany [12] established
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another theory for a generalized fractional-order thermoelasticity model based on Taylor’s
expansions of time-fractional order. Ezzat et al. [13] studied modeling in a generalized
thermoelastic model using a memory-dependent derivative. Marin [14] discussed basic
models in elastostatic micropolar media. Saeed et al. [15] used the finite-element scheme to
investigate thermoelastic interactions in poroelastic media using the GL model.

Ouyang et al. [16] proposed three-equation models considering local thermal nonequi-
librium states. Many authors [17–23] have discussed the solutions to some problems
using various generalized thermoelastic models. Hussein [24] presented a mathematical
model for a spherical thermoelastic porous material. Hobiny and Abbas [25] discussed
the effect of a dual-phase lag model in two-dimensional porous media. Biswas [26] inves-
tigated surface waves in nonlocal, orthotropic thermoelastic porous media. Carini and
Zampoli [27] studied porous matrices with three delay times. Abbas and Marin [28] pre-
sented the analytical solution of a two-dimensional generalized thermodiffusion problem
subjected to a laser pulse. Shekhar [29] studied deformations caused by thermal shock in a
porous thermoelastic medium with properties dependent on the reference temperature.
Calin et al. [30] investigated improvements in the rigidity of circular-plate composites.
Abd-Elaziz et al. [31] discussed the Thomson impacts on thermoelastic porous materials
based on Green and Naghdi’s model. Abbas and Kumar [32] investigated deformations
induced by a heating source in the micropolar plane under generalized thermoelasticity
using the finite-element scheme.

Ellahi et al. [33,34] studied the solutions of different problems under several bound-
ary conditions in porous media. Singh [35] has investigated the wave propagations in a
medium with voids under thermoelasticity models. Palani and Abbas [36] discussed the
free convections magnetohydrodynamics flow with thermal radiations. Villatoro et al. [37]
have applied the perturbation approach upon Laplace transform to get the solution of
the heating equation in porous media which consists of gas and solid phases. The discon-
tinuous front was observed in gas temperature because of incompatibility between the
initial and boundary conditions, leading to the constant speed for thermal propagation.
However, there was a smooth front at the solid temperature using an internal layer of
asymptotic approximation. Abbas [38] discussed the natural frequency of a poro-elastic
hollow cylinders. Alzahrani et al. [39] used the eigenvalues approaches to investigate the
effects of thermal relaxation times in two-dimension porous media under strong, normal
and weak thermal conductivities.

The objective of this work is to study the effects of strong, weak, and normal conduc-
tivities in a two-dimensional porous medium by using the eigenvalue scheme. By using the
eigenvalue technique with Fourier–Laplace transforms on numerical and analytical meth-
ods, basic formulations are presented. The nondimensional temperature, displacements,
stresses, and volume fraction are obtained and represented graphically. In the calculations,
the impacts of strong, normal, and weak thermal conductivities on the considered variables
are investigated and compared.

2. Basic Equations

For an isotropic 2D elastic porous material, the basic formulations based on [9,35]
models without body force and the heating resources are expressed as:

(λ + µ)uj,ij + µui,jj + bϕ,i − γtΘ,i = ρ
∂2ui
∂t2 , (1)

αϕ,jj − buj,j − ζ1 ϕ−ωo
∂ϕ

∂t
+ mΘ = ρψ

∂2 ϕ

∂t2 , (2)((
K∗ + K

∂

∂t

)
Iε−1Θ,j

)
,j
=

∂

∂t

(
ρce

∂Θ
∂t

+ mTo ϕ + γtTo
∂uj,j

∂t

)
, 0 < ε ≤ 2.

(3)
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where the integral operator of fractional derivative is expressed as [9]

Iε−1g(r, t) =
1

Γ(∈)

∫ t

0
(t− τ)ε−1g(r, τ)dτ,


0 < ε < 1, weak conductivity
ε = 1, normal conductivity
1 < ε ≤ 2, strong conductivity

, (4)

where Γ(∈) is the Gamma function. The stress-displacement equations are defined by [35]

σij = µ
(
ui,j + uj,i

)
+ (λuk,k + bϕ− γtΘ)δij. (5)

where m is the coefficient of thermo-void, ψ is the equilibrated inertia, b is the measure of
diffusion effects, ωo, α, ζ1 are the parameters of voids material, ce is the specific heat, K∗ is
the model characteristic material constant, Θ = T− To, To is the reference temperature, ρ is
the material density, σij are the stress components, K is the thermal conductivity coefficient,
µ, λ are the Lame’s parameters, t is the time, ui are the components of displacement,
i, j, k = 1, 2, 3, γt = (3λ + 2µ)αt, αt is the linear coefficient of thermal expansions.

3. Formulations of the Problem

We consider a two-dimension porous material fills the region 0 ≤ x ≤ ∞, −∞ ≤ y ≤ ∞.
By using the Cartesian co-ordinates (x, y, z), the governing equations with the components
of the displacement (u, v, 0) can be given by

(λ + 2µ)
∂2u
∂x2 + (λ + µ)

∂2v
∂x∂y

+ µ
∂2u
∂y2 + b

∂ϕ

∂x
− γt

∂Θ
∂x

= ρ
∂2u
∂t2 (6)

(λ + 2µ)
∂2v
∂y2 + (λ + µ)

∂2u
∂x∂y

+ µ
∂2v
∂x2 + b

∂ϕ

∂y
− γt

∂Θ
∂y

= ρ
∂2v
∂t2 , (7)

α

(
∂2 ϕ

∂x2 +
∂2 ϕ

∂y2

)
−ωo

∂ϕ

∂t
− ζ1 ϕ− b

(
∂u
∂x

+
∂v
∂y

)
+ mΘ = ρψ

∂2 ϕ

∂t2 , (8)(
K∗ + K

∂

∂t

)
Iε−1

(
∂2Θ
∂x2 +

∂2Θ
∂y2

)
=

∂

∂t

(
ρce

∂Θ
∂t

+ mTo ϕ + γtTo
∂

∂t

(
∂u
∂x

+
∂v
∂y

))
, (9)

σxx = λ
∂v
∂y

+ (λ + 2µ)
∂u
∂x

+ bϕ− γtΘ, σxy = µ

(
∂u
∂y

+
∂v
∂x

)
. (10)

The problem initial conditions are defined by

ϕ =
∂ϕ

∂t
= 0, Θ =

∂Θ
∂t

= 0, u =
∂u
∂t

= 0, v =
∂v
∂t

= 0, t = 0. (11)

While, the problem boundary conditions are given by

σxx = 0, σxy = 0,−
(

K∗ + K
∂

∂t

)
∂Θ(x, y, t)

∂x
= qo

t2e
− t

tp

16t2
p

H(a− |y|), ∂ϕ

∂x
= 0 (12)

where qo is a constant, tp is the time of the flux pulse heating characteristics, and H is the
function unit step. For appropriateness, the nondimensional variables can be taken as

Θ′ =
Θ
To

, ϕ′ = ψη2c2 ϕ,
(

σ′xx, σ′xy

)
=

(
σxx, σxy

)
(λ + 2µ)

,
(

t′, t′p
)
= ηc2(t, tp

)
,
(
u′, v′, x′, y′

)
= ηc(u, v, x, y), (13)

where η = ρce
k and c =

√
λ+2µ
ρ . In these nondimensional terms of the variables in Equation (13),

the basic formulations can be written by (the dashes have been neglected for convenience)

∂2u
∂t2 =

∂2u
∂x2 + (1− r1)

∂2v
∂x∂y

+ r1
∂2u
∂y2 + r2

∂ϕ

∂x
− r3

∂Θ
∂x

, (14)



Mathematics 2021, 9, 207 4 of 14

∂2v
∂t2 =

∂2v
∂y2 + (1− r1)

∂2u
∂x∂y

+ r1
∂2v
∂x2 + r2

∂ϕ

∂y
− r3

∂Θ
∂y

, (15)

r4
∂2 ϕ

∂t2 =
∂2 ϕ

∂x2 +
∂2 ϕ

∂y2 − r5
∂ϕ

∂t
− r6 ϕ− r7

(
∂u
∂x

+
∂v
∂y

)
+ r8Θ, (16)(

r9 +
∂

∂t

)(
∂2Θ
∂x2 +

∂2Θ
∂y2

)
=

∂ε

∂tε

(
∂Θ
∂t

+ r10 ϕ + r11
∂

∂t

(
∂u
∂x

+
∂v
∂y

))
, (17)

σxx = (1− 2r1)
∂v
∂y

+
∂u
∂x

+ r2 ϕ− r3Θ, σxy = r1

(
∂v
∂x

+
∂u
∂y

)
. (18)

σxx = σxy = 0.0,
(

r9 +
∂

∂t

)
∂Θ(x, y, t)

∂x
= −qo

t2e
− t

tp

16t2
p

H(a− |y|), ∂ϕ

∂x
= 0, (19)

where r1 = µ

ρc2 , r2 = b
ρψη2c4 , r3 = γtTo

ρc2 , r4 = ρc2ψ
α , r5 = ωo

αη , r6 = ζ1
αη2c2 , r7 = bψ

α , r8 = mψTo
α ,

r9 = K∗
ρcec2 , r10 = m

ψη4c4k , r11 = γt
ρce

.
Now, the Laplace transforms for any function f (x, y, t), are given by

f (x, y, s) =
∫ ∞

0
f (x, y, t)e−stdt, (20)

however, the Fourier transform for any function f (x, y, s) can be expressed by

f
∗
(x, q, s) =

∫ ∞

−∞
f (x, y, s)e−iqydy, (21)

Thus, the governing formulations are expressed to obtain the ordinary differential
equations with the boundary conditions as follow

d2u∗

dx2 =
(

s2 + r1q2
)

u∗ − iq(1− r1)
dv∗

dx
− r2

dϕ∗

dx
+ r3

d Θ∗

dx
, (22)

d2v∗

dx2 =

(
s2 + q2)

r1
v∗ − r2iq

r1
ϕ∗ +

r3iq
r1

Θ∗ − iq(1− r1)

r1

du∗

dx
, (23)

d2 ϕ∗

dx2 = r7iqv∗ +
(

s2r4 + q2 + r6 + r5s
)

ϕ∗ − r8 Θ∗ + r7
du∗

dx
, (24)

d2 Θ∗

dx2 =
r11iqs∈+1

r9 + s
v∗ +

r10s∈

r9 + s
ϕ∗ +

(
q2 +

s∈+1

r9 + s

)
Θ∗ +

s∈+1 r11

r9 + s
du∗

dx
, (25)

σ∗xx = iq(1− 2r1)v∗ +
du∗

dx
+ r2 ϕ∗ − r3 Θ∗. (26)

σ∗xy = r1

(
dv∗

dx
+ iqu∗

)
, (27)

σ∗xx = σ∗xy = 0,
dϕ∗

dx
= 0,

d Θ∗

dx
= −

qotp

8(r9 + s)
(
stp + 1

)3

√
2
π

sin(qa)
q

, (28)

Now, the vector-matrix differential equations (Equations (22)–(25)) are written as

dM
dx

= AM, (29)

where A and M are defined as shown in Appendix A. By using the eigenvalues method
as in [17,40–43], the exact solutions for the Equation (29) are obtained. So, the matrix
characteristic equation for A are taken the form as follow:

ξ8 − f1ξ6 + f2ξ4 + f3ξ2 + f4 = 0, (30)
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where f1, f2, f3 and f4 are determined as in Appendix B. To obtain the solution of Equation
(29), the eigenvalue of matrix A and its eigenvectors must be computed, where ξ1, ξ2, ξ3,
ξ4,−ξ1,− ξ2,− ξ3 and− ξ4 are the eigenvalues which have the corresponding eigenvectors
as in Appendix C. Thus, the analytical solutions of Equation (29) are written as:

M(x, q, s) = ∑4
i=1 BiYie−ξix, (31)

The positive exponentials can be discarded, which, due to the conditions of the regu-
lations of the solution at infinity and B1, B2, B3, and B4, are constants that are computed
using the conditions of the problem boundary. Now, for each function f

∗
(x, q, s), the

inverse Fourier transform can be expressed by

f (x, y, s) =
1√
2π

∫ ∞

−∞
f
∗
(x, q, s)eiqydq, (32)

Finally, to get the general solution for the displacement, the stresses components, the
changes in volume fraction field of void distributions ϕ and the variations of temperature
with respect to the distances x, y at any time t, Stehfest [44] numerical inversion schemes
were chosen. In these schemes, the Laplace transform inverse for f (x, y, s) are defined by

f (x, y, t) =
ln(2)

t ∑N
n=1 Vn f

(
x, y, n

ln(2)
t

)
, (33)

where

Vn = (−1)(
N
2 +1) ∑min(n, N

2 )

p= n+1
2

(2p)!p(1+
N
2 )

p!(n− p)!
(

N
2 − p

)
!(2n− 1)!

, (34)

where N is the term number.

4. Numerical Results

For numerical examples, the magnesium mediums can be taken to object of numerical
calculations. The parameters values of (Mg) are taken from [45]

α = 3.688× 10−5(N), ζ1 = 1.475× 1010(N)
(

m−2
)

,ωo = 0.0787× 10−3(N)
(

m−2
)(

s−1
)

,

µ = 3.278× 1010(N)
(

m−2
)

, λ = 2.17× 1010(N)
(

m−2
)

, ρ = 1740(kg)
(

m−3
)

, t = 0.3,

To = 298(k), ce = 1040 (J)
(

kg−1
)(

k−1
)

, a = 0.25, ψ = 1.753× 10−15
(

m2
)

,

αt = 1.98× 10−6
(

k−1
)

, K = 1.7 (W)
(

k−1
)(

m−1
)

, β = 2.68× 106(N)
(

m−2
)(

k−1
)

,

b = 1.13840× 1010(N)
(

m−2
)

, m = 2× 106(N)
(

m−2
)(

k−1
)

.

The above data have been used to study the strong (SC), the normal (NC) and the
weak (WC) conductivities in 2D porous materials by the eigenvalue method. The voids
changes in volume fraction field distribution ϕ, The variations of temperature Θ, the
stresses σxx, σxy and the of displacement components u, v are studied. The material is
considered to be homogeneous two-dimensions media. Figure 1 displays the change in
the volume fraction field of void distributions ϕ along x. It is clear that it reduces with
the rising x till attaining zeros. Figure 2 displays the temperature variations via x. It is
noticed that it starts from heights value according to the application of boundary condition
and reduces with the rising x to come to zeros. Figure 3 depicts the variations of vertical
displacement with respect to x which have maximum value on x = 0 and reduces with the
rising x. Figure 4 illustrates the horizontal displacement variations u via x. It is indicated
that it attains maximums negative value and gradually rises till it attains peak value at
specific locations in close nearness to x = 0 and after that reduces to come to zeros. As seen
in Figure 4, the displacement changes continuously from negative to positive and after that
goes down to zero, which is caused by the combined effect of the traction free bounding
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surface, thermal expansion and finite heat speed. Figures 5 and 6 show the components
of stress variations σxy and σxx along x. It is noticed that the magnitudes of components,
permanently begin from zeros which obeyed the boundary condition.
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Figure 6. The variation of stress σxx via x and y = 0.4 for strong normal and weak conductivities.

Figures 7 and 8 show the changes in volume fraction field of voids variations ϕ and
the variations of temperature Θ via the distance y when x = 0.4. It is indicated that the
variations of changes in volume fraction field of void and the variations of temperature
have maximum values at the length of heating surfaces ((|y| ≤ 0.4)) after that begin to
reduces totally near the edges ((|y| ≤ 0.4)) where they reduce and reach to zeros values.
Figure 9 displays the vertical displacement variation v via y. It is noticed that it starts
the rising at the start and end of the thermal surfaces (|y| ≤ 0.4), and have small values
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at the center of the thermal surfaces (|y| ≤ 0.4), after that it begins the rising and reach
ultimate value totally near the edges (y = ±0.4), then it reduces to come to zeros. Figure 10
shows the variation of horizontal displacement u along x. It is observed that the horizontal
displacement has a maximum value at the length of the heating surface (|y| ≤ 0.4), and
then it starts to decrease totally near the edges (y = ±0.4), and then reduces to zeros values.
The stresses σxx and σxy with respect to y are presented in Figures 11 and 12.
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Figure 11. The variation of stresses component σxy versus y when x = 0.4 for strong normal and weak conductivities.
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Figure 12. The variation of stresses components σxx versus y when x = 0.4 for strong normal and weak conductivities.

Finally, Figures 1–12 explain the variations of all the studied fields along the distance
y and the distance x at t = 0.3. These figures display the predict curves during the strong,
the weak and the normal conductivities. Unsurprisingly, you can find that the stages of the
strong, normal and weak conductivities have great influences on the values of variables.
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According to the fractional-order generalized thermoelastic model, we have to construct
new classifications for all mediums according to their fractional parameter where these
parameters become new indicators of their power to conduct thermal energy.

5. Conclusions

In this work, we studied the impacts of strong, weak, and normal thermal conductivi-
ties in porous materials under the generalized fractional-order thermoelastic model. The
resulting nondimensional equations were solved by the Fourier–Laplace transformation
method and, following that, applying the eigenvalue approach. The significant impacts
of the strong, normal, and weak thermal conductivities were discussed for all physical
quantities. Accordingly, generalized thermoelastic fractional-order models are considered
as an advancement in the study of porous elastic materials.
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Appendix A

The matrix A =
[
aij
]
, i, j = 1 . . . 8, and aij = 0 excepting

a82 = r11iqs∈+1

r9+s , a83 = r10s∈
r9+s , a84 = q2 + s∈+1

r9+s , a85 = s∈+1 r11
r9+s ,

a72 = s7iq, a73 = s2r4 + q2 + r6 + r5s, a74 = −r8, a75 = r7,

a62 =
(s2+q2)

r1
, a63 = − r2iq

r1
, a64 = r3iq

r1
, a65 = − iq(1−r1)

r1
, a51 = s2 + r1q2, a56 = −iq

(1− r1), a57 = −r2,
a58 = r3, a15 = a26 = a37 = a48 = 1,

and M =
[

u∗ v∗ ϕ∗ Θ∗ du∗
dx

dv∗
dx

dϕ∗

dx
dΘ∗

dx

]T
.

Appendix B

f1 = a58a85 + a56a65 + a57a75 + a51 + a62 + a84 + a73,
f2 = a56a65a84 + a51a73 − a74a83 + a58a62a85 − a57a74a85 + a51a84 + a57a75a84 − a56a64a85 + a58a73a85 + a62a73+
a56a65a73 − a58a75a83 + a57a62a75 − a56a63a75 + a51a62 − a63a72 − a57a65a72 − a64a82 − a58a65a82 + a62a84 + a73a84,
f3 = a56a64a73a85 + a57a65a72a84 + a56a63a75a84 + a57a62a74a85 − a56a65a73a84 − a57a62a75a84 − a58a63a75a82−
a58a65a72a83 + a51a64a82 + a64a73a82 + a58a65a73a82 + a51a74a83 + a62a74a83 − a63a74a82 − a57a65a74a82+
a63a72a84 − a56a64a75a83 − a51a62a84 + a57a64a75a82 − a64a72a83 − a51a62a73 + a58a63a72a85 − a57a64a72a85−
a58a62a73a85 − a51a73a84 − a62a73a84 + a56a65a74a83 + a58a62a75a83 − a56a63a74a85 + a51a63a72,
f4 = a51a64a72a83 + a51a62a73a84 − a51a64a73a82 + a51a63a74a82 − a51a62a74a83 − a51a63a72a84.

Appendix C

Y4 = −a58ξ
(
ξ6 + a51

(
a63a72 − ξ4 +

(
ξ2 − a73

)
a62 + a73ξ2)− ξ2((a57a65 + a63)a72 + a73ξ2 + a57a75ξ2 − a62(a57a75−

ξ2 + a73
)
+a56

(
a75a63 +

(
ξ2 − a73

)
a65
))
),

Y3 = −ξa58
(((
−ξ2 + a62

)(
−ξ2 + a51

)
− ξ2a65a56

)
a74 +

(
a72
(
ξ2 − a51

)
+ ξ2a75a56

)
a64 + a58ξ2((ξ2 − a62

)
a75 + a72a65

))
,

Y2 = −ξ(a63a58 − a64a57)
((
−a51 + ξ2)a74 + ξ2a75a58

)
− ξ
(
a64
(
ξ2 − a51

)
+ ξ2a65a58

)(
a57a74 + a58

(
ξ2 − a73

))
,

Y1 = −
(
ξa58

(
a62 − ξ2)− ξa64a56

)(
ξa58

(
a73 − ξ2)− ξa74a57

)
+ ξ2(−a57a64 + a58a63)(−a56a74 + a58a72),

Y5 = Y1ξ, Y6 = Y2ξ, Y7 = Y3ξ, Y8 = Y4ξ,
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