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Abstract: In the finance market, it is well known that the price change of the underlying fractal
transmission system can be modeled with the Black-Scholes equation. This article deals with finding
the approximate analytic solutions for the time-fractional Black-Scholes equation with the fractional
integral boundary condition for a European option pricing problem in the Katugampola fractional
derivative sense. It is well known that the Katugampola fractional derivative generalizes both the
Riemann–Liouville fractional derivative and the Hadamard fractional derivative. The technique
used to find the approximate analytic solutions of the time-fractional Black-Scholes equation is the
generalized Laplace homotopy perturbation method, the combination of the generalized Laplace
transform and homotopy perturbation method. The approximate analytic solution for the problem
is in the form of the generalized Mittag-Leffler function. This shows that the generalized Laplace
homotopy perturbation method is one of the most effective methods to construct approximate
analytic solutions of the fractional differential equations. Finally, the approximate analytic solutions
of the Riemann–Liouville and Hadamard fractional Black-Scholes equation with the European option
are also shown.

Keywords: fractional Black-Scholes equation; homotopy perturbation method; generalized fractional
derivative; generalized Laplace transform; generalized Mittag-Leffler function

1. Introduction

Determining option prices is a major problem of financial mathematics and financial
engineering. In 1973, F. Black and M. Scholes proposed the most significant valuation
model, called the Black-Scholes Model for options [1]. An option is a contract between a
seller and a buyer. There are two main types of options, namely a call option and a put
option. In a call option, the buyer of the option has the right to buy a financial asset (e.g., a
stock) from the seller of the option at a specified price (called the strike price) at a specified
expiration date. However, in a put option, the buyer of the option has the right to sell a
financial asset to the seller of the option at a specified strike price at a specified expiration
date. The call option and put option can also be separated into European options and
American options. For the European option, the final settlement time is fixed, but for an
American option, the final settlement time can be changed at any time before the expiration
date.

The fundamental assumptions of the Black-Scholes model are [2]: there are no arbi-
trage opportunities; there is no inclusion of transaction costs associated with hedging; the
asset price is the lognormal distribution; the drift and the volatility rates are constants;
trading of all securities and derivatives is continuous.

The Black-Scholes model for the value of the European call option is described by:
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∂C
∂τ

+
σ2S2

2
∂2C
∂S2 + rS

∂C
∂S
− rC(S, τ) = 0 for (S, τ) ∈ (0, ∞)× [0, T], (1)

subject to the boundary conditions:

C(0, τ) = 0 for τ ∈ [0, T] and C(S, τ)→ ∞ as S→ ∞ and τ ∈ [0, T], (2)

and the terminal condition:

C(S, T) = max{S− E, 0} for S ∈ (0, ∞), (3)

where C(S, τ) is the European call option price depending on the asset price S and the time τ,
σ is the volatility of the underlying asset,
r is the risk-free rate,
T is the time to expiration, and
E is the price to expiration.
We note that the classical Black-Scholes Equations (1)–(3) are the partial differential

equations with integer-order derivatives. The research developing this further [3–6] show
that the character of the financial market is fractal both at home and abroad. This points
out that the classical Black-Scholes model then is not enough to reflect the reality of
the financial market. Many years ago, the fractional differential equations were proven
by researchers, showing that the fractional differential equations are a powerful tool in
studying the problems of fractal geometry and fractal dynamics. Fractional differential
equations furthermore show many advantages in modeling the important phenomena in
many fields such as electromagnetic, fluid flow, acoustics, electrochemistry, and material
science [7–10]. Is there a question in the financial market that the fractional differential
equation can be applied? The answer is yes. The reason is why the fractional derivative
can be applied in the financial market because the fractional derivative has a self-similarity
property, and the fractional derivative responds to the long-range dependency better than
the integer order derivative. These excellent properties of the fractional derivative are used
to solve the fractal structure in the financial market. Currently, articles on the application
of fractional calculus in financial theory are increasing [11].

Researchers have attempted to solve the Black-Scholes Equations (1)–(3) analytically
and/or numerically, by various direct and iterative methods. The remarkable point of the
classical Black-Scholes equation for European options (call and put options) is that it has
an explicit closed-form solution [12]. However, for American options, this is not generally
true, even though the solution exists. Moreover, for American options, the techniques and
approaches are complicated, and it is not easy to obtain solutions such as [13].

By using the transformation from [14]:

S = Eex, τ = T − t
(1/2)σ2 and C(S, τ) = Eu(x, t),

the problem Equations (1)–(3) become:

∂u
∂t

=
∂2u
∂x2 + (k− 1)

∂u
∂x
− ku for (x, t) ∈ (−∞, ∞)× (0, T], (4)

with k = 2r/σ2 and satisfy the boundary conditions:

u(x, t) = 0 as x → −∞ and u(x, t)→ ∞ as x → ∞, (5)

and the initial condition:

u(x, 0) = max{ex − 1, 0} for x ∈ R. (6)
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In recent years, fractional order ordinary and partial differential equations have been
applied in many fields of science, engineering, and finance. One reason that fractional-order
derivatives and integrals have been used is that they provide a powerful instrument for the
description of the memory and hereditary properties of different real-world processes. This
is one of the main reasons why many financial modelers have generalized the integer-order
Black-Scholes equation to a fractional Black-Scholes equation (see, e.g., [15–20]).

Recently, in 2018, M. Yavuz and N. Özdemir [18] studied the European vanilla option
pricing model of fractional order without a singular kernel. The kind of fractional derivative
used in their article is the Caputo–Fabrizio fractional derivative. They considered the
Laplace homotopy analysis method with this fractional derivative to get solutions of the
time-fractional Black-Scholes equations with the usual initial conditions.

In 2019, A.N. Falla, S.N. Ndiayea, and N. Sene [20] obtained an approximate analytic
solution to the fractional Black-Scholes equations with the usual initial condition. The
Caputo generalized fractional derivative has been used for the modified Black-Scholes
equations. Solutions of modified Black-Scholes equations are obtained by the homotopy
perturbation method with the ρ-Laplace transform. The effect of the order ρ of the general-
ized fractional derivative to fractional Black-Scholes equations has been analyzed.

From the problem Equations (4)–(6), the fractional order for the Black-Scholes Euro-
pean option pricing equation studied in this article is in the following form: let α and ρ be
any real number with 0 < α ≤ 1, and ρ > 0,

(
KDα,ρ

t uρ

)
(x, t) =

∂2uρ

∂x2 + (k− 1)
∂uρ

∂x
− kuρ for (x, t) ∈ (−∞, ∞)× (0, T], (7)

and satisfying the boundary conditions:

uρ(x, t) = 0 as x → −∞ and uρ(x, t)→ ∞ as x → ∞, (8)

and the Katugampola integral initial condition:
(

K I1−α,ρ
t uρ

)
(x, 0) = max{ex − 1, 0} for x ∈ (−∞, ∞), (9)

where KDα,ρ
t and K I1−α,ρ

t denote the Katugampola fractional derivative of order α and the
Katugampola fractional integral of order 1− α, respectively.

There are many research papers that have been used for analytical methods to study
the fractional Black-Scholes equation, and they play a noticeable role in financial mar-
keting. Currently, considerable attention has been given to approximate analytic and/or
numerical solutions of fractional Black-Scholes equation resulting from its remarkable
scope and applications in several disciplines. Some of the analytical methods are the varia-
tional iteration method [21], Adomian decomposition method [22], homotopy perturbation
method [23], homotopy analysis method [17], Laplace transform homotopy perturbation
method [15,16,24], and Green’s function homotopy perturbation method [25].

The main aim of this article is to obtain the approximate analytic solution of the time-
fractional Black-Scholes European option pricing equation in the Katugampola derivative
sense by the generalized Laplace homotopy perturbation method (GLHPM).

The outline of this paper is as follows. the basic definitions and some properties of
fractional calculus, the generalized Laplace transform, and some special functions are
presented in Section 2. The technique of GLHPM and the convergence analysis of GLHPM
are discussed in Section 3. The approximate analytic solutions of the time-fractional Black-
Scholes European option pricing equation based on the Katugampola, Riemann–Liouville,
and Hadamard fractional derivatives are shown in the last part of Section 3. The effect of
the order ρ of the Katugampola fractional derivative to fractional Black-Scholes equations
is analyzed in Section 4. Finally, the conclusions of this work are given in Section 5.
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2. Literature Review
2.1. Basic Definitions and Some Properties of Fractional Calculus

Throughout this work, we suppose that ρ > 0 and α ∈ (0, 1]. We next present the
definitions of the Katugampola integral and derivative and state some of their properties
from [26].

Definition 1. (Katugampola fractional integral) The Katugampola fractional integral of order α is
defined by:

(
K Iα,ρ

t f
)
(t) =

1
Γ(α)

t∫

0

(
tρ − τρ

ρ

)α−1
f (τ)

dτ

τ1−ρ
,

for t > 0 if the integral exists.

Definition 2. (Katugampola fractional derivative) The Katugampola fractional derivatives of order
α are defined by:

(
KDα,ρ

t f
)
(t) =

1
Γ(1− α)

(
t1−ρ d

dt

) t∫

0

(
tρ − τρ

ρ

)−α

f (τ)
dτ

τ1−ρ
,

for t > 0 if the integral exists.

The following lemma gives the relations of the Katugampola fractional integral and
derivative with the Riemann–Liouville fractional integral and derivative and the Hadamard
fractional integral and derivative from [26].

Lemma 1. 1. lim
ρ→1

(
K Iα,ρ

t f
)
(t) =

(RL Iα
t f
)
(t) = 1

Γ(α)

t∫
0
(t− τ)α−1 f (τ)dτ, the Riemann–

Liouville fractional integral of order α;

2. lim
ρ→0

(
K Iα,ρ

t f
)
(t) =

(H Iα
t f
)
(t) = 1

Γ(α)

t∫
0

(
log t

τ

)α−1 f (τ) dτ
τ , the Hadamard fractional inte-

gral of order α;

3. lim
ρ→1

(
KDα,ρ

t f
)
(t) =

(RLDα
t f
)
(t) 1

Γ(1−α)
d
dt

t∫
0

f (τ)
(t−τ)α dτ, the Riemann–Liouville fractional

derivative of order α;

4. lim
ρ→1

(
KDα,ρ

t f
)
(t) =

(H Dα
t f
)
(t) = 1

Γ(1−α)

(
t d

dt

) t∫
0

(
log t

τ

)−α f (τ) dτ
τ , the Hadamard frac-

tional derivative of order α.

2.2. The Generalized Laplace Transform

We next give the definition of the generalized Laplace transform and state some of
its properties from [27].

Definition 3. Let a ≥ 0 and f , g : [a, ∞) → R be real valued functions such that g(t) is
continuous and g′(t) > 0 on [a, ∞). The generalized Laplace transform of f is defined by:

Lg{ f (t)}(s) =
∞∫

a

e−s(g(t)−g(a)) f (t)g′(t)dt,

if the integral exists.
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Note that if we let g(t) = t and a = 0, the generalized Laplace transform is the classical
Laplace transform. Moreover, if we let g(t) = tρ/ρ and a = 0, the generalized Laplace
transform is the ρ-Laplace transform defined by [28].

Throughout this paper, we use the generalized Laplace transform with the function
g(t) = tρ/ρ and a = 0, denoted by L tρ

ρ
, to solve the fractional Black-Scholes equation with

the European call option. The next lemma deals with the properties of the generalized
Laplace transform with g(t) = tρ/ρ used in this article.

Lemma 2. 1. L tρ
ρ

{(
tρ

ρ

)β−1
}
(s) = Γ(β)

sβ ,

2. L tρ
ρ

{(
KDα,ρ

t f
)
(t)
}
(s) = sαL tρ

ρ
{ f (t)}(s)−

(
K I1−α,ρ

t f
)
(0).

2.3. Special Functions

We introduce some special functions used in this work.

Definition 4. The Mittag-Leffler function with two parameters is defined by:

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, z ∈ C, α, β > 0.

Note that by definition of Eα,β(z), we see that E1,1(z) = ez.

Definition 5. The generalized Mittag-Leffler function with two parameters is defined by:

eα,β(z; λ) = zβ−1Eα,β(−λzα), z ∈ C, λ > 0.

Note that by the definition of eα,β(z; λ), we see that e1,1(z; λ) = e−λz.

The special case eα,α(z; λ) was called in [29] the α-exponential function since it gener-
alizes the exponential eλt, which it reduces to when α = 1.

We next give some important properties of eα,α(t; λ).

Definition 6. A function f with domain (0,+∞) is said to be completely monotonic with respect
to the variable t if f has continuous derivatives f (n)(t) for all n ∈ N and:

(−1)n f (n)(t) ≥ 0 for t ∈ (0,+∞).

The next Lemma concerns the character of eα,β(t; λ) as a function of the variable t
from [30].

Lemma 3. Suppose that 0 < α ≤ β ≤ 1. Then, for any t > 0,

1. eα,β(t; λ) is decreasing,

2. eα,β(t; λ) ≥ 0 and eα,β(t; λ) ≤ tβ−1

Γ(β)
for any β ≥ α.

3. Methodology
3.1. Basic Idea of the GLHPM Technique

In order to illustrate the basic idea of GLHPM for fractional partial differential
equations, we consider the following problem:

(
KDα,ρ

t u
)
(x, t) + Lu(x, t) + Nu(x, t) = f (x, t) for (x, t) ∈ (−∞, ∞)× (0, T], (10)
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with the boundary condition:

B
(

u,
∂u
∂x

,
∂u
∂t

)
= 0, (11)

and the fractional integral initial condition:
(

K I1−α,ρ
t u

)
(x, 0) = g(x) for x ∈ (−∞, ∞), (12)

where B is the boundary operator,
L is the linear operator and L satisfying the Lipschitz condition with constants c1,
N is the nonlinear operator and N satisfying the Lipschitz condition with constants c2,

and
f and g are determined functions.

By the technique of [15,24], the homotopy function v(x, t; p) : R× [0, ∞)× [0, 1]→ R
is defined by:

(
KDα,ρ

t v
)
(x, t; p) + p{Lv(x, t; p) + Nv(x, t; p)− f (x, t)} = 0, (13)

where p ∈ [0, 1] represents the homotopy perturbation parameter and v(x, t; p) satisfies the
Katugampola fractional integral initial condition:

(
K I1−α,ρ

t v
)
(x, 0; p) = g(x) for x ∈ R.

Note that when p = 1, the homotopy function v(x, t; 1) is the solution of the problem
Equations (10)–(12). We assume that:

v(x, t; p) =
∞

∑
n=0

pnvn(x, t), (14)

and:

Nv(x, t; p) =
∞

∑
n=0

pn Hn(v0, v1, . . . , vn), (15)

where Hn(v0, v1, . . . , vn) is He’s polynomials [31] defined by:

Hn(v0, v1, v2, . . . , vn) =
1
n!

∂n

∂pn N

(
n

∑
i=0

pivi

)∣∣∣∣∣
p=0

, n = 0, 1, 2, . . . .

We substitute Equations (14) and (15) into Equation (13), and then, we have that:

KDα,ρ
t

(
∞

∑
n=0

pnvn

)
+ p

{
L

(
∞

∑
n=0

pnvn

)
+

∞

∑
n=0

pnHn(v0, v1, . . . , vn)− f (x, t)

}
= 0.

By equating the terms with identical powers of p, we can obtain a series of equations
of the following form:

p0 :
(

KDα,ρ
t v0

)
(x, t) = 0,

p1 :
(

KDα,ρ
t v1

)
(x, t) = −Lv0(x, t)− H0(v0) + f (x, t),

p2 :
(

KDα,ρ
t v2

)
(x, t) = −Lv1(x, t)− H1(v0, v1),

... :
...

pn :
(

KDα,ρ
t vn

)
(x, t) = −Lvn−1(x, t)− Hn−1(v0, v1, . . . , vn−1),

... :
... .
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Furthermore, since
(

K I1−α,ρ
t v

)
(x, 0; p) = g(x) and (14), this implies that:

(
K I1−α,ρ

t v0

)
(x, 0) = g(x) and

(
K I1−α,ρ

t vn

)
(x, 0) = 0 for all n = 1, 2, 3, . . . . (16)

For each step, the generalized Laplace transform and the inverse generalized Laplace
transform with respect to the variable t are applied to get the functions v0, v1, v2, . . . . For
the last step, we set p = 1 in (14), and then, we obtain the approximate analytic solution u
of the problem Equations (10)–(12).

3.2. Existence and Uniqueness

In this subsection, the Banach fixed point theorem is applied to ensure that the frac-
tional partial differential Equations (10)–(12) have a unique solution. Let X be the Banach
space of all continuous functions on (−∞, ∞)× [0, T] with the form:

‖u‖X = sup
(x,t)∈(−∞,∞)×[0,T]

|u(x, t)|.

The sufficient condition that guarantees the existence of a unique solution of the
fractional partial differential Equations (10)–(12) is introduced in the next theorem.

Theorem 1. The time-fractional partial differential Equations (10)–(12) have a unique solution

whenever 0 < k < 1 with k = c1+c2
Γ(α)

(
Tρ

ρ

)α
.

Proof. By taking the operator L tρ
ρ

with respect to t on both sides of time-fractional partial

differential Equation (10), we obtain that:

sαL tρ
ρ
{u(x, t)}(s) = g(x) + L tρ

ρ
{−Lu(x, t)− Nu(x, t) + f (x, t)}(s).

By taking the inverse operator L−1
tρ
ρ

, we get that:

u(x, t) = g(x)
(

tρ

ρ

)α−1
+ L−1

tρ
ρ

{
1
sα
L tρ

ρ
{−Lu(x, t)− Nu(x, t) + f (x, t)}(s)

}
(t).

We define a mapping F : X → X, where:

Fu(x, t) = g(x)
(

tρ

ρ

)α−1
+ L−1

tρ
ρ

{
1
sα
L tρ

ρ
{−Lu(x, t)− Nu(x, t) + f (x, t)}(s)

}
(t).

Let u, v ∈ X. We consider that:

|Fu(x, t)− Fv(x, t)|

=

∣∣∣∣L−1
tρ
ρ

{
1
sα
L tρ

ρ
{(Lu(x, t)− Lv(x, t)) + (Nu(x, t)− Nv(x, t))}(s)

}
(t)
∣∣∣∣

≤ L−1
tρ
ρ

{
1
sα
L tρ

ρ
{|Lu(x, t)− Lv(x, t)|+ |Nu(x, t)− Nv(x, t)|}(s)

}
(t)

≤ L−1
tρ
ρ

{
1
sα
L tρ

ρ
{c1|u(x, t)− v(x, t)|+ c2|u(x, t)− v(x, t)|}(s)

}
(t)

≤ (c1 + c2)L−1
tρ
ρ

{
1
sα
L tρ

ρ
{1}(s)

}
(t)‖u− v‖X

=
c1 + c2

Γ(α)

(
tρ

ρ

)α

‖u− v‖X .
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This implies that ‖Fu− Fv‖X ≤ k‖u− v‖X or F is the contraction mapping. Therefore,
by the Banach fixed point theorem, the time-fractional partial differential Equations (10)–(12)
have a unique solution u for (x, t) ∈ (−∞, ∞)× [0, T].

3.3. Convergence Analysis and Error Estimation for GLHPM

The convergence of GLHPM to the solution for the fractional partial differential
equation and the error estimation of GLHPM are shown in this subsection.

Theorem 2. The infinite series
∞
∑

k=0
vk where vk is generated by the GLHPM technique converges

to the solution u of the fractional partial differential Equations (10)–(12) if ‖v0‖X is bounded and
there exists a constant 0 < γ < 1 such that ‖vk‖X ≤ γ‖vk−1‖X for k = 1, 2, 3, . . ..

Proof. Let Sn =
n
∑

k=0
vk. We will prove that {Sn} is a Cauchy sequence in X. Let us consider

that:
‖Sn+1 − Sn‖X = ‖vn+1‖X ≤ γ‖vn‖X ≤ . . . ≤ γn+1‖v0‖X .

Then, we have that for n, m ∈ N with n > m,

‖Sn − Sm‖X ≤
n

∑
k=m+1

‖vk‖X ≤ γm+1

(
n−m−1

∑
k=0

γk

)
‖v0‖X = γm+1 1− γn−m

1− γ
‖v0‖X .

Since 0 < γ < 1 and ‖v0‖X is bounded, ‖Sn − Sm‖X converges to zero as n, m → ∞.

Therefore,
∞
∑

k=0
vk is convergent, and consequently, the infinite series

∞
∑

k=0
vk converges to u,

which is the solution of the fractional partial differential Equations (10)–(12).

Corollary 1. The maximum truncated error of the series solution
∞
∑

k=0
vk such that vk is generated

by the GLHPM technique estimated as:
∥∥∥∥∥u−

m

∑
k=0

vk

∥∥∥∥∥
X

≤ γm+1

1− γ
‖v0‖X

where u is the solution of the fractional partial differential Equations (10)–(12) and γ is a constant
given in Theorem 2.

Proof. By Theorem 2, we have that for n, m ∈ N with n > m,

‖Sn − Sm‖X ≤ γm+1 1− γn−m

1− γ
‖v0‖X .

Since γ is a constant and 0 < γ < 1, we obtain that when n→ ∞,

‖u− Sm‖X ≤
γm+1

1− γ
‖v0‖X .

Therefore, the corollary is proven completely.

3.4. The Approximate Analytic Solution of the Time-Fractional Black-Scholes Equation

In this subsection, we find the approximate analytic solution of the time-fractional
Black-Scholes European option pricing equation in the Katugampola fractional derivative
sense by using the technique of the GLHPM. Let us consider the problem (7)–(9) and the

problem (10)–(12). We see that Luρ(x, t) = −
(

∂2uρ

∂x2 + (k− 1) ∂uρ

∂x − kuρ

)
, Nuρ(x, t) = 0,

f (x, t) = 0, and g(x) = max{ex − 1, 0}. As discussed in the Subsection 3.1, the homotopy
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function v(x, t; p) corresponding to the time-fractional Black-Scholes European option

pricing Equation (7) assumes that v(x, t; p) =
∞
∑

n=0
pnvn(x, t). The target now is that we find

the values of functions v0(x, t), v1(x, t), v2(x, t), . . . . Firstly, let us consider:
(

KDα,ρ
t v0

)
(x, t) = 0.

By taking the operator L tρ
ρ

with respect to t on both sides of
(

KDα,ρ
t v0

)
(x, t) = 0 and

using Lemma 2.2, we get that:

sαL tρ
ρ
{v0(x, t)}(s) =

(
K I1−α,ρ

t v0

)
(x, 0),

L tρ
ρ
{v0(x, t)}(s) = max{ex−1,0}

sα .

Then, by taking the inverse generalized Laplace transform L−1
tρ
ρ

and using Lemma 2.1, we

obtain that:

v0(x, t) = L−1
tρ
ρ

{
max{ex − 1, 0}

sα

}
(t) =

max{ex − 1, 0}
Γ(α)

(
tρ

ρ

)α−1
.

In order to find v1, we consider that:

(
KDα,ρ

t v1

)
(x, t) =

∂2v0

∂x2 + (k− 1)
∂v0

∂x
− kv0

=
max{ex, 0}

Γ(α)

(
tρ

ρ

)α−1
+ (k− 1)

max{ex, 0}
Γ(α)

(
tρ

ρ

)α−1

− k max{ex − 1, 0}
Γ(α)

(
tρ

ρ

)α−1

=
k max{ex, 0}

Γ(α)

(
tρ

ρ

)α−1
− k max{ex − 1, 0}

Γ(α)

(
tρ

ρ

)α−1
.

By taking the generalized Laplace transform operator L tρ
ρ

on both sides and using

(16), we have that:

sαL tρ
ρ
{v1(x, t)}(s)−

(
K I1−α,ρ

t v1

)
(x, 0)

= L tρ
ρ

{
k max{ex, 0}

Γ(α)

(
tρ

ρ

)α−1
}
(s)

−L tρ
ρ

{
k max{ex − 1, 0}

Γ(α)

(
tρ

ρ

)α−1
}
(s),

or:

sαL tρ
ρ
{v1(x, t)}(s) =

k max{ex, 0}
Γ(α)

L tρ
ρ

{(
tρ

ρ

)α−1
}
(s)

− k max{ex − 1, 0}
Γ(α)

L tρ
ρ

{(
tρ

ρ

)α−1
}
(s).

We then obtain that:

L tρ
ρ
{v1(x, t)}(s) = k max{ex, 0}

s2α
− k max{ex − 1, 0}

s2α
.
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The inverse generalized Laplace transform operator L−1
tρ
ρ

yields that:

v1(x, t) = k max{ex, 0}L−1
ρ

{
1

s2α

}
(t)− k max{ex − 1, 0}L−1

ρ

{
1

s2α

}
(t)

=
k max{ex, 0}

Γ(2α)

(
tρ

ρ

)2α−1
− k max{ex − 1, 0}

Γ(2α)

(
tρ

ρ

)2α−1
.

On the next step, we find the function v2. Let us consider that:
(

KDα,ρ
t v2

)
(x, t)

=
∂2v1

∂x2 + (k− 1)
∂v1

∂x
− kv1

= − k2 max{ex, 0}
Γ(2α)

(
tρ

ρ

)2α−1
+

k2 max{ex − 1, 0}
Γ(2α)

(
tρ

ρ

)2α−1
.

Then, we obtain that:

L tρ
ρ

{(
KDα,ρ

t v2

)
(x, t)

}
(s) = − k2 max{ex, 0}

s2α
+

k2 max{ex − 1, 0}
s2α

.

By using (16), we have that:

L tρ
ρ
{v2(x, t)}(s) = − k2 max{ex, 0}

s3α
+

k2 max{ex − 1, 0}
s3α

.

This implies that:

v2(x, t) = − k2 max{ex, 0}
Γ(3α)

(
tρ

ρ

)3α−1
+

k2 max{ex − 1, 0}
Γ(3α)

(
tρ

ρ

)3α−1
.

Since
(

KDα,ρ
t v3

)
(x, t) = ∂2v2

∂x2 + (k− 1) ∂v2
∂x − kv2, we get that:

(
KDα,ρ

t v3

)
(x, t) =

k3 max{ex, 0}
Γ(3α)

(
tρ

ρ

)3α−1
− k3 max{ex − 1, 0}

Γ(3α)

(
tρ

ρ

)3α−1
,

or:

L tρ
ρ
{v3(x, t)}(s) = k3 max{ex, 0}

s4α
− k3 max{ex − 1, 0}

s4α
.

We then obtain that:

v3(x, t) =
k3 max{ex, 0}

Γ(4α)

(
tρ

ρ

)4α−1
− k3 max{ex − 1, 0}

Γ(4α)

(
tρ

ρ

)4α−1
.

Like the previous process, we can conclude that:

v0(x, t) =
max{ex − 1, 0}

Γ(α)

(
tρ

ρ

)α−1
,

and:

vn(x, t) =
(−1)n+1kn max{ex, 0}

Γ((n + 1)α)

(
tρ

ρ

)(n+1)α−1

+
(−1)nkn max{ex − 1, 0}

Γ((n + 1)α)

(
tρ

ρ

)(n+1)α−1
,
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for n = 1, 2, 3, . . . . By (14), the homotopy function v(x, t; p) corresponding to the time-
fractional Black-Scholes European option pricing Equation (7) is:

v(x, t; p) = v0(x, t) + pv1(x, t) + p2v2(x, t) + p3v3(x, t) + . . .

=
max{ex − 1, 0}

Γ(α)

(
tρ

ρ

)α−1

+p

[
k max{ex, 0}

Γ(2α)

(
tρ

ρ

)2α−1
− k max{ex − 1, 0}

Γ(2α)

(
tρ

ρ

)2α−1
]

+p2

[
− k2 max{ex, 0}

Γ(3α)

(
tρ

ρ

)3α−1
+

k2 max{ex − 1, 0}
Γ(3α)

(
tρ

ρ

)3α−1
]

+ . . . .

By setting p = 1, we obtain that:

v(x, t; 1) =
max{ex − 1, 0}

Γ(α)

(
tρ

ρ

)α−1

−[max{ex, 0} −max{ex − 1, 0}]
(

tρ

ρ

)α−1 ∞

∑
n=1

(
−k
(

tρ

ρ

)α)n

Γ(αn + α)

=
max{ex, 0}

Γ(α)

(
tρ

ρ

)α−1
−max{ex, 0}

(
tρ

ρ

)α−1
Eα,α

(
−k
(

tρ

ρ

)α)

+max{ex − 1, 0}
(

tρ

ρ

)α−1
Eα,α

(
−k
(

tρ

ρ

)α)
.

Therefore, the approximate analytic solution of the time-fractional Black-Scholes
Equations (7)–(9) is in the form: for any (x, t) ∈ (−∞, ∞)× [0, T],

uρ(x, t) =
max{ex, 0}

Γ(α)

(
tρ

ρ

)α−1
−max{ex, 0}eα,α

(
tρ

ρ
; k
)

+max{ex − 1, 0}eα,α

(
tρ

ρ
; k
)

, (17)

where eα,α is the generalized Mittag-Leffler function.
As discussion in Lemma 1, the Katugampola fractional derivative is the generalization

of the Riemann–Liouville fractional derivative and Hadamard fractional derivative. Thus,
if we set ρ = 1 and α ∈ (0, 1], then the fractional Black-Scholes European option pricing
problem in the sense of the Katugampola derivative (7)–(9) reduces to the fractional Black-
Scholes problem in the sense of the Riemann–Liouville derivative with order α in the
following form:

(
RLDα

t u1

)
(x, t) =

∂2u1

∂x2 + (k− 1)
∂u1

∂x
− ku1 for (x, t) ∈ (−∞, ∞)× (0, T], (18)

satisfying the boundary conditions:

u1(x, t) = 0 as x → −∞ and u1(x, t)→ ∞ as x → ∞, (19)

and the Riemann–Liouville fractional integral initial condition:
(

RL I1−α
t u1

)
(x, 0) = max{ex − 1, 0} for x ∈ (−∞, ∞), (20)

where RLDα
t and RL I1−α

t denote the Riemann–Liouville fractional derivative of order α and
the Riemann–Liouville fractional integral of order 1− α, respectively. It follows from (17)
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and ρ = 1 and α ∈ (0, 1] that the approximate analytic solution of the Riemann–Liouville
fractional Black-Scholes equation with the European option (18)–(20) is in the form:

u1(x, t) =
max{ex, 0}

Γ(α)
tα−1 −max{ex, 0}eα,α(t; k) + max{ex − 1, 0}eα,α(t; k), (21)

for any (x, t) ∈ (−∞, ∞)× [0, T]. In the particular case, if we set ρ = 1 and α = 1, then the
Katugampola fractional Black-Scholes European option pricing problem reduces to the
classical Black-Scholes equation with the European option.

∂uc

∂t
=

∂2uc

∂x2 + (k− 1)
∂uc

∂x
− kuc for (x, t) ∈ (−∞, ∞)× (0, T], (22)

satisfying the boundary conditions:

uc(x, t) = 0 as x → −∞ and uc(x, t)→ ∞ as x → ∞, (23)

and the initial condition:

uc(x, 0) = max{ex − 1, 0} for x ∈ (−∞, ∞). (24)

From (17), the solution uc of the classical Black-Scholes equation with the European
option (22)–(24) is in the form: for any (x, t) ∈ (−∞, ∞)× [0, T],

uc(x, t) = max{ex, 0} −max{ex, 0}e1,1(t; k) + max{ex − 1, 0}e1,1(t; k)

= max{ex, 0}+ e−kt{max{ex − 1, 0} −max{ex, 0}}, (25)

which is the same results as [12].
Furthermore, if we let ρ approach 0+, then the fractional Black-Scholes European

option pricing problem in the sense of the Katugampola derivative (7)–(9) reduces to the
fractional Black-Scholes problem in the sense of the Hadamard fractional derivative as
follows:

(
H Dα

t u0

)
(x, t) =

∂2u0

∂x2 + (k− 1)
∂u0

∂x
− ku0 for (x, t) ∈ (−∞, ∞)× (0, T], (26)

satisfying the boundary conditions:

u0(x, t) = 0 as x → −∞ and u0(x, t)→ ∞ as x → ∞, (27)

and the Hadamard fractional integral initial condition:
(

H I1−α
t u1

)
(x, 0) = max{ex − 1, 0} for x ∈ (−∞, ∞), (28)

where H Dα
t and H I1−α

t denote the Hadamard fractional derivative of order α and the
Hadamard fractional integral of order 1− α, respectively. By (17) and taking ρ→ 0+, the
approximate analytic solution of the Hadamard fractional Black-Scholes equation with the
European option (26)–(28) is in the form:

u0(x, t) = lim
ρ→0

uρ(x, t)

= lim
ρ→0

{
max{ex, 0}

Γ(α)

(
tρ

ρ

)α−1
−max{ex, 0}eα,α

(
tρ

ρ
; k
)

+max{ex − 1, 0}eα,α

(
tρ

ρ
; k
)}

,
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for any (x, t) ∈ (−∞, ∞)× [0, T]. Since, by Lemma 3, eα,β(t; λ) is decreasing with respect

to t and 0 ≤ eα,β(t; λ) ≤ tβ−1

Γ(β)
for any β ≥ α, we can conclude that eα,α

(
tρ

ρ ; k
)

converges

to zero when ρ → 0+. We then see that as ρ → 0+, the solution u0 of the Hadamard
fractional Black-Scholes equation with the European option converges to zero for all
(x, t) ∈ (−∞, ∞)× [0, T], which contradicts the condition: u0(x, t) → ∞ as x → ∞ and
t ∈ (0, T] . Therefore, in the case ρ→ 0+, the Hadamard fractional Black-Scholes equation with
the European option (26)–(28) has no solution.

4. Numerical Results

In this section, we assume that the risk-free rate (r) and the stock’s volatility (σ) are
equal to 0.01 and 0.03, respectively. The balance between the risk-free interest rate and the
stock’s volatility is determined by k = 2r

σ2 . The classical values of the options (α = ρ = 1)
defined by (25) are shown in Figure 1. The values of the options for α = 0.8 and ρ = 1 are
depicted by (17) as demonstrated in Figure 2.
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Table 1. Values of European option with the different vaules of ρ

order (α) 1 1 1 1 1
order (ρ ) 0.6 0.8 1 1.2 1.5
rate (r ) 0.03 0.03 0.03 0.03 0.03

volatility (σ ) 0.01 0.01 0.01 0.01 0.01
Time (τ) 0.5 0.5 0.5 0.5 0.5

expiration price (E ) 100 100 100 100 100
asset price( S ) 100 100 100 100 100
maturity (T ) 1 1 1 1 1

European call option ( C) 21.32 3.29 0.49 0.077 0.0049
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Note that the analytic solution of the fractional Black-Scholes equation and the analytic
solution of the classical Black-Scholes equation are in good agreement.

Table 1. Values of the European option with the different values of ρ.

order (α) 1 1 1 1 1
order (ρ) 0.6 0.8 1 1.2 1.5
rate (r) 0.03 0.03 0.03 0.03 0.03

volatility (σ) 0.01 0.01 0.01 0.01 0.01
time (τ) 0.5 0.5 0.5 0.5 0.5

expiration price (E) 100 100 100 100 100
asset price( S) 100 100 100 100 100
maturity (T) 1 1 1 1 1

European call option (C) 21.32 3.29 0.49 0.077 0.0049

We observe that the value of ρ has an effect on the diffusion process given in Table 1.
If ρ < 1, then the parameter ρ has an acceleration effect in the diffusion process. On the
other hand, if ρ > 1, then the parameter ρ has a retardation effect in the diffusion process.
We observe a slight delay in the cost of the European option in the case of ρ > 1.Therefore,
ρ impacts the European option price.

5. Conclusions

In this article, the existence of a solution was investigated for the time-fractional
Black-Scholes with European option pricing models, which have been described by the
Katugampola fractional derivative operator. We discussed the approximate analytic solu-
tions of the time-fractional Black-Scholes option pricing models by using the generalized
Laplace homotopy perturbation method. We also pointed out the error analysis of the pro-
posed method. Not only did we obtain the approximate analytic solution of the fractional
Black-Scholes equation in the Katugampola derivative sense in the form of the general-
ized Mittag-Leffler function, but also, we obtained the approximate analytic solutions of
the classical Black-Scholes equation and the time-fractional Black-Scholes equation in the
Riemann–Liouville derivative sense. Unfortunately, in the case of the Hadamard derivative
operator, there is no solution. The successful applications of the proposed time-fractional
Black-Scholes model prove that this model is in complete agreement with the correspond-
ing explicit closed-form solution. Note that the classical Black-Scholes equation is recovered
when the order α = ρ = 1. Moreover, we observe that the value of ρ has an effect in the
cost of the European option. If ρ > 1, then the order ρ of the Katugampola derivative
operator has a retardation in the diffusion process. Thus, we note a decrease in the cost
of the European option. On the other hand, if ρ < 1, then the order ρ of the Katugampola
derivative operator has an acceleration effect in the diffusion process. Thus, an increase
in the European option cost is shown in Table 1. The numerical schemes of the fractional
Black-Scholes equation with the Katugampola derivative operator will be the subject of
future investigations in a forthcoming paper.
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