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Abstract: The mean-variance (MV) portfolio is typically formulated as a quadratic programming (QP)
problem that linearly combines the conflicting objectives of minimizing the risk and maximizing the
expected return through a risk aversion profile parameter. In this formulation, the two objectives are
expressed in different units, an issue that could definitely hamper obtaining a more competitive set
of portfolio weights. For example, a modification in the scale in which returns are expressed (by one
or percent) in the MV portfolio, implies a modification in the solution of the problem. Motivated by
this issue, a novel mean squared variance (MSV) portfolio is proposed in this paper. The associated
optimization problem of the proposed strategy is very similar to the Markowitz optimization, with
the exception of the portfolio mean, which is presented in squared form in our formulation. The
resulting portfolio model is a non-convex QP problem, which has been reformulated as a mixed-
integer linear programming (MILP) problem. The reformulation of the initial non-convex QP problem
into an MILP allows for future researchers and practitioners to obtain the global solution of the
problem via the use of current state-of-the-art MILP solvers. Additionally, a novel purely data-driven
method for determining the optimal value of the hyper-parameter that is associated with the MV
and MSV approaches is also proposed in this paper. The MSV portfolio has been empirically tested
on eight portfolio time series problems with three different estimation windows (composing a total
of 24 datasets), showing very competitive performance in most of the problems.

Keywords: mean-variance portfolio; portfolio diversification; non-convex quadratic programming;
mixed-integer linear programming

1. Introduction

Markowitz (1952) [1,2] proposed the well-known mean-variance (MV) portfolio model
under the assumption that a rational investor aims at maximizing returns and minimizing
risks. Mathematically speaking, the MV portfolio framework is a bi-objective optimiza-
tion problem, where an efficient frontier is composed by all combination assets that are
not dominated by any other in expected return and risk simultaneously. The two goals
that are associated with the framework can be addressed separately as two independent
optimization problems giving rise to the global maximum return (GMR) [3] and global
minimum variance (GMV) [4–6] portfolios.

The MV portfolio has been widely implemented in the scientific community and
accepted by professionals [7–9]. The main advantages of the approach are its ease of use,
since the theory presents the concept of return and risk in a in a straightforward fashion
and the ease in which the optimization problem is formulated. Unfortunately, the MV
portfolio has yet to be proven competitive in out-of-sample validation [10–12]. Thus, the
main limitations of the theory are as follows:
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• High concentration: MV-inspired portfolios are highly concentrated on a few securities
with the "best: features [13,14]. Assets with either high expected returns or low
expected variance will be overweighted, in this way losing the power of diversification
that the theory is supposed to ensure [15].

• Instability: MV portfolios tend to drastically re-allocate resources when the asset
features change slightly, regardless of transaction costs or data inaccuracy [16,17]. This
mainly occurs because MV portfolios do not take estimation inaccuracy into account
and concentrate on assets with "good" features.

• Sensitivity to input errors: because the MV portfolio gives excessive weight to assets
with high expected returns, the resulting portfolios are highly sensitive to errors in
the input data [18–20].

The optimization problem that is associated with the MV portfolio can be formulated
in several ways, depending on how the risk aversion parameter is incorporated into the
equations. The main formulations for the optimization problem can be summarized,
as follows:

1. Maximize the expected return for a specified risk: the first possible formulation
includes the maximization of the portfolio mean in the objective function of the
problem and the maximum level of risk that an investor is able to assume as a
constraint of the problem.

2. Minimize the risk for a pre-determined expected return: the second alternative tries to
minimize the risk and introduces the minimum level of the mean return as a constraint
of the optimization.

3. Minimize the risk and maximize the expected return combining both of the objectives
through a user-defined risk aversion parameter.

The above problems could have linear or non-linear constraints, equality, and inequal-
ity constraints. Furthermore, the three described optimization problems are mathematically
equivalent and the solutions are called mean-variance (MV) efficient. Hence, the efficient
points in the return-risk plot are called the efficient frontier.

One of the potential limitations of the third formulation of the problem is that it
combines two objectives that are measured in different units. In fact, the variance is a
second-order moment statistic and the mean is a first-order moment one. Consequently,
a modification in the scale in which returns are expressed (both by one or percent, for
example), differently affects them, accordingly changing the solution of the problem.
Furthermore, the most widely used performance measure in the quantitative finance
literature to compare portfolio strategies is the Sharpe ratio, which computes the quotient
between the return of the portfolio with respect to the standard deviation of the portfolio’s
excess return [21–23]. As can be seen, the Sharpe ratio assesses the two objectives in the
same unit level, unlike the third formulation of the optimization problem, which evaluates
the objectives in different units [24].

Motivated by this fact, a novel portfolio strategy, which is denoted as mean squared
variance (MSV), which calculates the two objectives of the minimization function of the
problem in the same unit is proposed in this paper. Specifically, the mean return of the
portfolio is expressed in squared form in the proposed strategy, aiming to provide a
straightforward manner of comparing the two objectives in the same unit. The resulting
portfolio model is a non-convex quadratic programming (QP) problem, which has been
reformulated as a mixed-integer linear programming (MILP) problem to reach, in this way,
the global solution of the problem.

The reformulation of the baseline QP problem as an MILP is done via the adaptation
of the QP problem as a linear complementary problem, the use of binary variables and
big-M constraints to model the complementary constraints. The estimation of the upper
bounds on the dual variables was borrowed from the work of [25] for the case of a standard
QP problem. The reformulation of the initial non-convex QP problem into an MILP has the
advantage of ensuring that the global solution is obtained via the use of current state-of-
the-art MILP solvers.
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Finally, an innovative purely data-driven method for determining the optimal value of
the hyper-parameter that is associated with the MV and MSV strategies (the risk aversion
parameter, λ) is also proposed in this paper. The hyper-parameter optimization is based
on a Bayesian approach for the global optimization of λ [26]. The approach will allow
the manuscript authors to show that the proposed formulation of the MV problem helps
the global optimization procedure achieve a more competitive set of portfolio weights (in
terms of the Sharpe ratio).

The rest of the paper is organized, as follows. Section 2 describes the foundations of the
proposed mean squared variance (MSV) strategy and its reformulation as a mixed-integer
linear programming (MILP) optimization problem. Section 3 details the experimental
framework that was developed for the empirical comparison of the state-of-the-art portfolio
strategies implemented. Section 4 reports the statistical results obtained by the different
strategies and Section 5 presents the conclusions that were reached in the study.

2. The Proposed Method

The aim of this section is to describe the mathematical formulation (Section 2.1) and
foundations (Section 2.2) of the proposed method, named the mean squared variance
(MSV) portfolio, as well as to provide the necessary details to reformulate the model as a
mixed-integer linear programming (MILP) optimization problem (Section 2.3).

2.1. Mathematical Formulation of the Model

The proposed method determines, for a portfolio consisting of N assets (n = 1, . . . , N),
the optimal weights of the portfolio’s value invested in each asset, w1, . . . , wN ≥ 0
(∑N

n=1 wn = 1), while using, as inputs of the problem, the expected returns (µn), risks
(σn) and covariances between assets (σnm). As previously mentioned, the associated opti-
mization problem of the model is very similar to the Markowitz optimization, except in the
part of the portfolio mean, which is presented in squared form in our formulation. Thus,
the MSV portfolio is defined as:

min
w1,...,wN

λ
N

∑
n,m=1

wnwmσnm − (1− λ)

(
N

∑
n=1

wnµn

)2

.

s. t.
N

∑
n=1

wn = 1.

w1, . . . , wN ≥ 0,

(1)

where the term ∑N
n=1 wnµn is the portfolio mean, ∑N

n,m=1 wnwmσnm, (σnn = σ2
n) is the

portfolio variance and λ ∈ [0, 1] is a hyper-parameter of the problem that weights the
relative importance of the risk with respect to the mean squared return. The model can
also be formulated in matrix form as follows:

min
w∈RN

λwTΣw− (1− λ)wTµµTw.

s. t. 1Tw = 1.

w ≥ 0,

(2)

where w = (w1 . . . wN)
T ∈ RN is the vector with the optimal weights of the portfolio,

Σ ∈ RN×N is the covariance matrix of the asset’s returns, µ = (µ1 . . . µN)
T ∈ RN is the

vector with the expected returns, and 0 and 1 are N-dimensional vectors with zeros and
ones in all the rows, respectively. For ease of reference, the proposed MSV portfolio is
expressed as:
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min
w∈RN

1
2

wTHw.

s. t. 1Tw = 1.

w ≥ 0,

(3)

with H = λΣ− (1−λ)R ∈ RN×N , and R = µµT and the constant 1/2 has been incorporated
in the objective function in order to facilitate its derivation.

2.2. Main Foundations of the Model

In this section, the optimal portfolios of the MSV and MV models are analytically
compared. The GMV and GMR portfolios are also included in the study for reference. The
four optimization problems share the same feasible region and, therefore, for their analysis,
it will suffice to compare their objective functions:

FMSV(w|λ) = λwTΣw− (1− λ)wTµµTw.

FMV(w|λ) = λwTΣw− (1− λ)wTµ.

FGMV(w) = wTΣw.

FGMR(w) = −wTµ.

It is straightforward to realize that, when only the expected return is taken into account
(λ = 0), the MSV, MV, and GMR models provide the same optimal solution. Additionally,
when only risk is taken into account (λ = 1), MSV, MV, and GMV achieve the same
portfolio. The analysis in intermediate situations, when both return and risk (0 < λ < 1)
are considered, is not so immediate. This is pursued assuming that 0 < wTµ < 1 and,
therefore, the expected return for any portfolio is positive and lower that 100%. Under
these conditions, wTµµTw = (wTµ)2 < wTµ, so FMV(w|λ) ≤ FMSV(w|λ).

In any case, Section 4 shows how the mathematical formulation of the MSV problem
helps the model to achieve significantly better out-of-sample Sharpe ratios than the ones
that were reported by the traditional MV method.

2.3. Mixed-Integer Linear Programming Reformulation

The H matrix in the QP problem that is associated to the model (see Equation (3)) is the
difference between two positively weighted matrices (Σ and R). In this context, positivity
of H can not be assured and the QP problem associated may be a non-convex QP problem.
Due to this fact, the authors detail below how the model could be reformulated as an MILP
optimization problem. The reformulation will allow for us to yield the global optimum in
each portfolio problem using the current state-of-the-art MILP solvers.

The first step in the reformulation is the introduction of the Lagrange multipliers
κ ∈ R for the equality constraint and δ ∈ RN for the non-negativity constraints (no short
sales restrictions). The KKT conditions for the problem after introducing those multipliers
are given by:

Hw + 1κ − δ = 0.

wTδ = 0.

1Tw = 1.

w, δ ≥ 0.

(4)

In this way, the KKT points of the optimization problem are denoted as:

ΩKKT = {(w, κ, δ) ∈ R2N+1 : (w, κ, δ) satisfy Equations in (4)} (5)

In the proposed portfolio problem, the KKT conditions are first-order necessary condi-
tions for the optimal solutions of the system, since the feasible set of QP is a polyhedron.
Because of that, the KKT conditions can be incorporated into the optimization problem
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as redundant constraints, in this way obtaining the following equivalent formulation of
the problem:

min
w∈RN

(1/2)wTHw.

s. t. Hw + 1κ − δ = 0.

wTδ = 0.

1Tw = 1.

w, δ ≥ 0.

(6)

Next, the KKT conditions are used in order to linearize the objective function, as
suggested in [27]. First, the equality constraint Hw = δ − 1κ is used to express the
objective function as:

(1/2)wTHw = (1/2)wT(δ− 1κ) = (1/2)wTδ− (1/2)wT1κ, (7)

and, second, when considering that wTδ = 0 and 1Tw = 1, the final objective function, in
linear form, is defined as −(1/2)κ, equivalent to −κ.

As a result of the previously mentioned transformations, the optimization problem (3)
is equivalent to the following problem with a linear (instead of quadratic) objective:

min
w∈RN

− κ.

s. t. Hw + 1κ − δ = 0.

wTδ = 0.

1Tw = 1.

w, δ ≥ 0.

(8)

and, while taking into account that the δ and w variables are complementary to each other
(complementary constraint), the problem can be formulated as:

min
w∈RN

− κ.

s. t. Hw + 1κ − δ = 0N .

1Tw = 1.

0 ≤ w ⊥ δ ≥ 0,

(9)

where w ⊥ δ denotes perpendicularity between vectors w and δ, and it impedes the
optimization problem as a linear problem. Note that problem (9) is equivalent to 2N linear
programs obtained by making each possible assignment for the complementary variables:
either δn = 0 or wn = 0 for each n = 1, . . . , N; hence, it is not possible for the optimization
problem to have a finite optimal solution that is not attained. Therefore, problem (9) can
be reformulated as an MILP while assuming that the upper bounds for w and δ exist and
they are defined as vectors u, v ∈ RN with entries un and vn:

min
w∈RN

− κ.

s. t. Hw + 1κ − δ = 0.

1Tw = 1.

0 ≤ wn ≥ znun.

0 ≤ δn ≥ (1− zn)vn.

zn ∈ {0, 1},

(10)
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for n = 1, . . . , N. The obvious drawback of this formulation is that in order to find un and
vn, the upper bounds of wn and δn should be known a priori. The upper bound, u ∈ RN ,
for the primal variables, w ∈ RN , is u = 1 and it can be computed (while assuming that
the feasible set of QP is non-empty and bounded) by setting:

un = max{wn : 1Tw = 1, wn ≥ 0}, (11)

for every n = 1, . . . , N. The calculation of the upper bounds, v ∈ RN , on the dual variables,
δ ∈ RN , was borrowed from the research work of [25], which sets those bounds (for a
standard quadratic program) as:

v ≥ s1, (12)

with
s = 2N(||H||∞,∞ + ||f||∞), (13)

where ||f||∞ = 0 in the proposed formulation as f represents the vector that is associated
with the linear part of the optimization problem (non-existent in the MSV strategy).

3. Experimental Framework

The aim of this section is to fully define the datasets and methods used for comparison
purposes, the performance metrics, and the hypothesis tests that were implemented in the
present empirical study.

3.1. Out-Of-Sample Empirical Validation and Portfolio Problems Selected

The empirical validation implemented is inspired by the rolling window out-of-sample
validation method [28]. Therefore, given a time series with T months of securities returns,
an estimation window length, M, is selected and, in each month t, starting from t = M + 1,
the data in the previous M months are employed to compute the optimal weights that
are associated with each strategy. The return in month t is computed while using the
previously computed weights.

The optimization process is repeated Q times by adding, in each iteration, the return
of the next period in the time series and removing from the estimation window the earliest
return. In this way, the outcome of this empirical validation, for each strategy and time
series tested, is a set of Q out-of-sample returns, r1, . . . , rQ. In the experimental framework,
the estimation window length, M, is set to 60, 120, and 240, as recommended in [10],
M ∈ {60, 120, 240}. Additionally, the validation process is repeated 36 times, Q = 36.

Table 1 details the properties of the selected time series portfolio problems, for each
portfolio problem, its ID, name (Dataset), the estimation window length (M), the number
of total months considered (T) and the number of assets (N). The datasets considered
were obtained from Kenneth French’s web site at Dartmouth University (http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/). It is important to mention that these
portfolio problems have been widely used in the community for validating novel portfolio
strategies [10,29,30]. The date of the last monthly excess returns considered for all the
problems is 1 August 2020.

Each dataset contained monthly returns in excess of the one-month Treasury bill rate.
All portfolios are constructed on June of each year with NYSE, AMEX, and NASDAQ
stocks (real-world portfolio datasets). The industry portfolio holds one portfolio of each
of five or ten different groups of sectors that formed by the SIC code (consumer durable
and non-durables, manufacturing, oil and gas, business equipment, transmission, retail,
healthcare, utilities, and others, etc.).

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Table 1. Characteristics of the benchmark datasets.

ID. Dataset M T N

Industry Portfolios

{1, 2, 3} 5 Industry Portfolios {60, 120, 240} {96, 156, 276} 5
{4, 5, 6} 10 Industry Portfolios {60, 120, 240} {96, 156, 276} 10

Emerging Market Factors

{7, 8, 9} 6 Emerging Market Portfolios Formed on BM and OP {60, 120, 240} {96, 156, 276} 6
{10, 11, 12} 6 Emerging Market Portfolios Formed on Size and BM {60, 120, 240} {96, 156, 276} 6
{13, 14, 15} 6 Emerging Market Portfolios Formed on Size and OP {60, 120, 240} {96, 156, 276} 6

Bivariate sorts on Size, BM and I

{16, 17, 18} 6 Portfolios Formed on Size and BM {60, 120, 240} {96, 156, 276} 6
{19, 20, 21} 6 Portfolios Formed on Size and I {60, 120, 240} {96, 156, 276} 6

Bivariate sorts on Size, BM and I

{22, 23, 24} 25 European Portfolios Formed on Size and BM {60, 120, 240} {96, 156, 276} 25

BM: Book-to-Market; OP: Operating Profitability; I: Investment.

3.2. Strategies Implemented

The proposed strategy (MSV) is compared, in the experimental study, to the baseline
MV strategy and its corresponding parts: the GMR and GMV strategies. The proposed
strategy, MSV, and the well-known MV both include an additional hyper-parameter, λ,
which defines the importance of the variance term with respect to the mean. The range of
values of the λ hyper-parameter has been set to λ ∈ [0, 1].

3.3. Performance Measures

In the experimentation, two well-known performance measures are computed for
each strategy in each time series portfolio problem. Specifically:

1. The out-of-sample mean returns (MR):

MR = (1/Q)
Q

∑
q=1

rq. (14)

2. The out-of-sample Sharpe ratio (SR), defined as the sample mean of out-of-sample
excess returns, MR, divided by their corresponding sample standard deviation:

SR =
MR√

(1/Q)∑Q
q=1(rq −MR)2

. (15)

3.4. Hyper-Parameter Optimization

In this research, the hyper-parameters of each strategy have been globally optimized
while using the data available in the estimation window part in order to adapt the model
to the behavior of the market in each dataset. Thus, the last year of the estimation window
data was used in an internal validation process to evaluate the performance, in terms
of out-of-sample Sharpe ratio, which is associated with the specific value of the hyper-
parameter being explored, whereas the previous years were employed to compute the
optimal weights for this λ value.

The hyper-parameter optimization was implemented through a Bayesian process.
Bayesian optimization is an algorithm employed in global optimization to minimize a
certain objective function, treated as a black box, by varying the value of its independent
variables. The algorithm itself relies on an internal Gaussian process that approximates the
objective function and it is trained by subsequent evaluations of the true objective. The
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approximated model is used for optimization to reduce computational costs and for its
robust nature in addressing stochastic noise in function evaluations.

3.5. Statistical Hypothesis Testing

Statistical hypothesis testing was used in order to provide statistical support in the
evaluation of the reported results. It is important to clarify that a statistical analysis through
parametric tests could lead to mistaken conclusions in this study, since a previous evaluation of
the MR and SR values that were provided by the strategies implemented resulted in rejecting
the normality and equality of the variance hypothesis. Furthermore, as noted by Demšar [31],
the independence condition is not truly verified in a rolling window out-of-sample validation.
For these reasons, two non-parametric Friedman tests (with the ranking of MR and SR of the
strategies as the test variables) were carried out to assess the statistical significance of the rank
differences. Consequently, a non-parametric Holm post hoc test was used to ascertain which
strategies were distinctive among the multiple comparisons performed [31].

4. Results

In this section, the different experimental analyses that were carried out with the
proposed portfolio model are detailed. In particular, the goals of the section are as follows:

1. to compare the out-of-sample performance of the MSV portfolio with the performance
provided by state-of-the-art MV-based strategies (Section 4.1); and,

2. to analyse the diversification levels produced by the proposed MSV portfolio and the
MV portfolio in problems with different dimensions (Section 4.2).

4.1. Performance Analysis

In this subsection, the performance results of the MSV strategy are compared to those
that are provided by the standard MV strategy and its corresponding individual com-
ponents (the GMV and GMR strategies). Table 2 shows the MR and SR out-of-sample
performance results for each time series and the implemented strategies. For the strategies
requiring an internal hyper-parameter optimization (such as the MV or MSV), the vali-
dation process is repeated 10 times in order to evaluate the robustness of the stochastic
optimization procedure (Section 3.4) and, consequently, the performance reported for
those strategies in each dataset is the mean and standard deviation of the MR and SR
performance achieved in the 10 repetitions considered for the time series being analyzed
(Table 2). Based on the reported MR and SR for each technique and dataset, the ranking of
each strategy in each dataset and measure (R = 1 for the best performing strategy and R = 4
for the worst one) is obtained. In addition, Table 2 presents the mean MR and SR over the
24 datasets that were considered for each strategy (MR and SR) and their corresponding
mean rankings (RMR and RSR).

From a purely descriptive point of view, it can be concluded that the MSV strategy
obtained the best results in 12 datasets and the second-best results in nine problems
when the MR measure is considered. With regard to the SR measure, the MSV portfolio
achieved the best results in 10 time series and the second-best results in 12 datasets.
Furthermore, the MSV portfolio yields the best mean (MR = 0.8731, SR = 0.1607) and
ranking (RMR = 1.7500, RSR = 1.7083) in MR and SR, respectively. The second-best
mean ranking is obtained by the baseline MV method in the two performance measures
(RMR = 2.4792, RSR = 2.5417). The third most competitive method appears to be the GMR
strategy that achieved the second-best mean MR (MR = 0.8426) and the third-best mean
MR and SR ranking (RMR = 2.5208, RSR = 2.7292). Finally, the worst performing portfolio
was the GMV one, which reported the worst mean MR and SR (MR = 0.6934, SR = 0.1369)
and worst mean MR and SR ranking (RMR = 3.2500, RSR = 3.0208).

The competitive performance of the proposed portfolio can also be graphically seen
in Figure 1, in which the cumulative monthly returns of the four implemented strate-
gies during the out-of-sample validation process for the five Industry Portfolio problems
(M = 60, ID = 1) are reported. The MSV strategy seems to be an appealing approach for
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portfolio optimization, in performance terms, as can be seen in Figure 1. Another aspect
that is important to stress is that the MSV portfolio is less sensitive to the length of the
estimation windows than its comparison strategies, reporting competitive results for dif-
ferent values of M (unlike, for example, the GMR strategy that usually only achieves
competitive results for small values of M). In a similar fashion, the MSV strategy also
achieves competitive results for different values of N (problems with a different number
of assets).

Table 2. Statistical results of the strategies implemented: the mean returns (MR) and Sharpe ratio (SR) out-of-sample
performance of each strategy and dataset (MR and SR), mean MR (MR), mean MR ranking (RMR), mean SR (SR) and mean
SR ranking (RSR). The datasets are denoted by their IDs. The best results are in bold face and second-best results in italics.

MR Metric SR Metric

ID GMV GMR MV MSV GMV GMR MV MSV ID

1 0.9521 1.6197 1.17170.0065 1.81610.0000 0.1330 0.2243 0.16460.0015 0.23390.0000 1
2 1.4004 1.8981 1.89770.0003 1.89810.0000 0.2825 0.3408 0.33910.0008 0.34080.0000 2
3 1.3098 0.9897 1.31460.0013 1.34780.0034 0.2698 0.1748 0.27050.0008 0.27750.0021 3
4 0.6058 2.1011 1.41750.0008 1.25330.0338 0.1411 0.3493 0.24260.0005 0.29650.0098 4
5 0.6324 1.9033 1.22990.0012 1.13550.0004 0.1541 0.3077 0.21740.0013 0.20620.0003 5
6 0.7234 1.2039 0.82520.0021 1.04700.0866 0.1752 0.2079 0.20930.0007 0.20840.0124 6
7 0.5404 0.5456 0.54770.0008 0.55770.0013 0.1016 0.0960 0.10160.0003 0.10280.0005 7
8 0.5473 0.4494 0.53420.0008 0.44940.0000 0.1027 0.0791 0.09590.0002 0.07910.0000 8
9 0.5118 −0.1094 −0.10420.0118 0.00210.0089 0.0960 −0.0175 −0.01660.0019 0.00210.0017 9

10 0.1898 0.6411 0.65240.0419 0.68480.0321 0.0324 0.1277 0.12950.0072 0.13510.0057 10
11 0.4162 0.6039 0.59620.0051 0.60050.0041 0.0742 0.1268 0.12490.0010 0.12700.0007 11
12 0.3150 0.1772 0.17720.0000 0.17750.0012 0.0561 0.0306 0.03060.0000 0.03090.0002 12
13 0.1505 0.4075 0.12590.0031 0.25300.0810 0.0262 0.0747 0.02200.0010 0.04560.0266 13
14 0.2519 0.3078 0.26790.0014 0.27560.0294 0.0444 0.0614 0.04740.0008 0.05150.0091 14
15 0.1601 0.3181 0.16400.0321 0.19190.0705 0.0283 0.0561 0.02910.0087 0.03390.0124 15
16 1.1048 1.7043 1.58030.1945 1.78760.0000 0.2017 0.3252 0.29920.0413 0.32880.0000 16
17 1.4131 1.4092 1.43940.0187 1.46560.0021 0.2534 0.2600 0.26820.0022 0.26390.0007 17
18 1.0582 0.1845 1.15000.0018 1.28290.3904 0.2032 0.0276 0.20130.0004 0.22800.0085 18
19 1.0294 1.4941 1.49820.1002 1.50560.0196 0.1948 0.2271 0.24450.0106 0.26210.0023 19
20 1.0063 1.0665 1.07900.0008 1.00670.0009 0.1908 0.1721 0.19300.0001 0.19120.0003 20
21 0.7662 0.0917 0.76580.0009 0.76640.0007 0.1488 0.0134 0.14970.0002 0.14900.0002 21
22 0.4391 0.5806 0.58430.0091 0.58230.0064 0.1011 0.1019 0.04680.0015 0.10480.0023 22
23 0.7158 0.8431 0.86130.0148 0.86410.0217 0.1801 0.1530 0.15480.0027 0.15770.0031 23
24 0.4016 −0.2092 −0.10460.0113 0.00320.0283 0.0953 −0.0347 −0.03240.0023 0.00080.0009 24

MR 0.6934 0.8426 0.8196 0.8731 0.1369 0.1452 0.1472 0.1607 SR
RMR 3.2500 2.5208 2.4792 1.7500 3.0208 2.7292 2.5417 1.7083 RSR

In order to determine the statistical significance of the rank differences reported for
each strategy in the different problems, a non-parametric Friedman test [32] with the
ranking of MR and SR of the techniques that were implemented as the test variables
has been carried out. The test shows that the effect of the strategy used for portfolio
optimization is statistically significant at a significance level of 5%, as the confidence interval
is C0 = (0, F0.05 = 2.7374) and the F-distribution statistical values are F? = 6.6840 /∈ C0
for MR and F? = 5.4109 /∈ C0 for SR. Consequently, the null hypothesis stating that all
strategies perform equally in mean ranking is rejected.

Based on this rejection, the non-parametric Holm test was implemented to compare all of
the strategies to the proposed MSV method (which was used as the control method). Table 3
shows the results of the Holm test for the MR and SR performance measures. From the results
of this test, it can be concluded that MSV obtains a significantly better MR ranking than all
of the remaining strategies for α = 0.10 and statistically outperforms the GMV strategy for
α = 0.05. While using the Sharpe ratio, SR, as the test variable, the MSV portfolio achieves
significantly better results than the comparison methods for α = 0.10 and α = 0.05.
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5 Industry Portfolios (M = 60)
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Figure 1. Cumulative monthly returns plot of the four portfolios implemented from 1 September
2017–1 August 2020.

As can be seen, the MSV model achieve significantly better out-of-sample results (in
MR and SR) that its MV counterpart. Thus, it is assumed that the current formulation of
the model helps in the tuning of the risk aversion profile parameter and, consequently, it
helps in obtaining a final competitive out-of-sample performance.

Table 3. Statistical results for the Holm test for α = 0.10 and α = 0.05 using the mean squared variance
(MSV) strategy as the control method: mean MR and SR ranking of the strategies implemented (RMR

and RSR), z-statistics and p-values of the Holm tests for the MR and SR analysis and adjusted α Holm
values (α0.10 and α0.05). The best results are in bold face and second-best results in italics.

MR Analysis

Method RMR z-statistic p-value α0.10 α0.05

GMV•,◦ 3.2500 4.0249 1 × 10−4 0.0333 0.0167
GMR• 2.5208 2.0683 0.0386 0.0500 0.0250
MV• 2.4792 1.9566 0.0504 0.1000 0.0500
MSV 1.7500 - - - -

SR Analysis

Method RSR z-statistic p-value α0.10 α0.05

GMV•,◦ 3.0208 3.5218 4 × 10−4 0.0333 0.0167
GMR•,◦ 2.7292 2.7394 0.0062 0.0500 0.0250
MV•,◦ 2.5417 2.2362 0.0253 0.1000 0.0500
MSV 1.7083 - - - -

•: Statistical difference with α = 0.10; ◦: Statistical difference with α = 0.05.

4.2. Diversification Analysis

An additional experimental study was performed in order to graphically illustrate the
level of portfolio concentration of the MSV portfolio in contrast to the MV portfolio [4,13].
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In this empirical study, the diversification levels of the MSV and MV portfolios in different
types of problems were compared according to their wTw values, a mathematical proxy
for assessing the degree of concentration in the portfolio weights [12,33–35]. Thus, Figure 2
shows the boxplots of diversification of the optimal weights of the MV and MSV portfolios
for λ ∈ {0.2, 0.4, 0.6, 0.8} in problems with different numbers of assets (N ∈ {7, 8, 9, 10}).
For each value of N, the boxplot of each strategy is computed according to 30 randomly
generated portfolio problems with the same number of assets and λ values. In this specific
experiment, the randomly generated expected returns are within the range [0.5, 1.0].
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Figure 2. The boxplots of diversification for the MV and MSV strategies for N ∈ {7, 8, 9, 10} and λ ∈ {0.2, 0.4, 0.6, 0.8}.

The MSV tends to produce more concentrated portfolios than its MV counterpart
when the expected return of the portfolio is within the range [0.5, 1.0], as can be seen in
Figure 2. In cases where the randomly generated expected returns are within the range
[0.0, 0.5], the results (with respect to the diversification level) are just the opposite. As
expected, the difference in concentrations is reduced when λ is close to one, since both of
the portfolios converge to the GMV portfolio when λ = 1.

5. Conclusions

In this paper, an alternative to the traditional mean-variance (MV) strategy, named
the mean squared variance (MSV) portfolio, is proposed. The novel proposed portfolio
model overcomes the original limitation of the traditional model that expresses the two
conflicting objectives in different units by including the expected return term in squared
form. The proposed portfolio model is presented as a non-convex QP problem, which has
been reformulated as a mixed-integer linear programming (MILP) problem to be globally
solved by state-of-the-art MILP solvers.

Besides, a novel data-driven approach that is based on a Bayesian approach to estimate
the optimal value of the hyper-parameter associated with the MV and MSV strategies is
also proposed in this paper. The aim is to show that the formulation of the MSV problem
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helps the global optimization procedure achieve a more competitive set of portfolio weights
(in terms of the Sharpe ratio).

The proposed portfolio model was empirically tested on 8 portfolio problems with
three different estimation windows (24 datasets were considered), reporting in most of
the problems a very competitive performance of both the mean return and Sharpe ratio.
In this research work, it is assumed that the current formulation of the model helps the
tuning of the risk aversion profile parameter and, consequently, it helps in obtaining a final
competitive performance.
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