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Abstract

:

We study a class of nonlinear operators that can be written as the composition of a linear operator and a nonlinear map. We obtain results on fixed point index based on parameters that are related to the definitions of nonlinear spectra. As a particular case, existence of positive solutions for a second-order differential equation with separated boundary conditions is proved. The result also provides a spectral interval for the corresponding Hammerstein integral operator.
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1. Introduction


Nonlinear spectral theory has been shown to have applications in the study of existence of solutions for operator equations, particularly in integral equations [1,2]. On the other hand, fixed point index is well known as a popular technique to prove existence and multiplicity of positive solutions for Boundary Value Problems (BVPs). For example, a common method in studying differential equations with various boundary conditions is to convert the problem to an integral equation using the Green’s function, then apply a fixed point theorem. Usually, the integral equation can be written as composition of a bounded linear operator and a nonlinear map.



In this paper, we are interested in operators in the form   L F : P → P ⊂ E  , where L is a linear operator, F is a nonlinear map, and P is an order cone of the Banach space E. We obtain results on fixed point index of the nonlinear operator   L F   based on parameters that are related to the nonlinear spectra. We also extend the continuation principle for stably-solvable maps to the operator   L F   on a cone. The stably-solvable property is a key concept in the definition of nonlinear spectra [3,4]. As a particular case, we prove existence of positive solutions for a second-order differential equation with separated boundary conditions [5] and thus obtain a spectral interval for the Hammerstein integral operator.



Let   E , F   be Banach spaces and   f : E → F   be a continuous nonlinear map. The Furi–Martelli–Vignoli-spectrum (fmv-spectrum) [3,4] is defined by two parameters   d ( f ) , ω ( f )   and the stably-solvable property. Later, the Feng-spectrum [1,6] was introduced with the parameters   ω ( f ) , ν ( f )   and   m ( f )  . It is shown that the Feng-spectrum (   σ F   ( f )   ) contains all eigenvalues of the operator f.



We briefly review definitions of the related parameters. Let   α ( Ω )   denote the Measure of Noncompactness of   Ω ⊂ E   [1]. Then,


  α ( f ) = inf { k ≥ 0 : α ( f ( Ω ) ) ≤ k α ( Ω )    for   every   bounded    Ω ⊂ E } ,  










  ω ( f ) = sup { k ≥ 0 ; α ( f ( Ω ) ) ≥ k α ( Ω )    for   every   bounded    Ω ⊂ E } ,  










  m ( f ) = sup { k ≥ 0 : ∥ f ( x ) ∥ ≥ k ∥ x ∥   for   all   x ∈ E } ,  










   d  ( f )  =  lim inf  ∥ x ∥ → ∞     ∥ f ( x ) ∥   ∥ x ∥   ,    | f |  =  lim sup  ∥ x ∥ → ∞     ∥ f ( x ) ∥   ∥ x ∥   ,   








where   | f |   is called the quasinorm of f.



Definition 1.

The nonlinear map   f : E → F   is stably-solvable if and only if given any compact map   h : E → F   with   | h | = 0   , the equation


   f ( x ) = h ( x )   








has a solution in E.





Next, an order cone of Banach space introduces a partial order for the space so that positive solutions can be studied.



Definition 2.

Let E be a Banach space, P is a subset of E. P is called an order cone iff:




	(i) 

	
P is closed, nonempty, and   P ≠ { 0 }   ;




	(ii) 

	
   a , b ∈ R   ,   a , b ≥ 0   ,   x , y ∈ P ⇒ a x + b y ∈ P   ;




	(iii) 

	
   x ∈ P   and   − x ∈ P ⇒ x = 0   .











Let P be an order cone of the Banach space E. For   r > 0  , denote    P r  =  { u ∈ P , ∥ u ∥ < r }  ,   and   ∂  P r  =  { u ∈ P , ∥ u ∥ = r }  .  



The following two lemmas on fixed point index [7] have been applied to prove existence of solutions for boundary value problems [8] and many other applications [7,9].



Lemma 1.

Let   N : P → P   be a completely continuous mapping. If


   N u ≠ μ u ,  f o r  a l l  u ∈ ∂  P r  ,  a n d  a l l  μ ≥ 1 ,   








then the fixed point index   i ( N ,  P r  , P ) = 1   .





Lemma 2.

let   N : P → P   be a completely continuous mapping and satisfy   N u ≠ u   for   u ∈ ∂  P r    . If   ∥ N u ∥ ≥ ∥ u ∥   , for   u ∈ ∂  P r    , then the fixed point index   i ( N ,  P r  , P ) = 0   .






2. Stably-Solvable Maps and Fixed Point Index


Let E be a Banach space and   P ⊂ E   be an order cone. We consider the linear homeomorphism   L : E → E  . It is known that [4,6]


  m  ( L )  ≥  1   ∥   L  − 1    ∥    ,   ω  ( L )  ≥  1   ∥   L  − 1    ∥    ,   d  ( L )  =  1   ∥   L  − 1    ∥    .  











Let   F : P → P   be a nonlinear map. We use the following notations,


  d   ( F )  P  =  lim inf  x ∈ P , x → ∞     ∥ F ( x ) ∥   ∥ x ∥   ,     | F |  P  =  lim sup  x ∈ P , x → ∞     ∥ F ( x ) ∥   ∥ x ∥   ,  










  d   ( F )  0  =  lim inf  x ∈ P , x → 0     ∥ F ( x ) ∥   ∥ x ∥   ,     | F |  0  =  lim sup  x ∈ P , x → 0     ∥ F ( x ) ∥   ∥ x ∥   .  











The stably-solvable maps on a cone   P ⊂ E   are defined below.



Definition 3.

The nonlinear map   F : P → P   is stably-solvable on the cone P if and only if given any compact map   h : P → P   with     | h |  P  = 0   , the equation


   f ( x ) = h ( x )   








has a solution   x ∈ P   .





The following theorem is an extension of the continuation principle for stably-solvable maps to the class of decomposable operators   L F : P → P  .



Theorem 1.

If   F : P → P   is stably-solvable on the cone P and   L : P → P   is bijective.




	(1) 

	
   L F   is also stably-solvable on P.




	(2) 

	
Assume that   h : P × [ 0 , 1 ] → P   is compact such that   h ( x , 0 ) = 0   for all   x ∈ P   . Let


   S = { x ∈ P : L F ( x ) = h ( x , t )   f o r   s o m e    t ∈ [ 0 , 1 ] } .   











If   F ( S )   is bounded, then the equation


   L F ( x ) = h ( x , 1 )   











has a solution   x ∈ P   .











Proof. 

(1) If   h : P → P   is a compact operator with     | h |  P  = 0  . Then,    L  − 1   h : P → P   is compact and    |   L  − 1     h |  P  ≤   ∥ L ∥ | h |  P  = 0  . Therefore, the equation


  F  ( x )  =  L  − 1   h  ( x )   








has a solution   x ∈ P  . Thus   L F ( x ) = h ( x )   has a solution. By definition,   L F   is stably-solvable on P.



(2) Consider the operator    L  − 1   h : P ×  [ 0 , 1 ]  → P  .    L  − 1   h   is compact and    L  − 1   h  ( x , 0 )  = 0  . Let


  S = { x ∈ P : F  ( x )  =  L  − 1   h  ( x , t )    for   some    t ∈  [ 0 , 1 ]  } .  











As F is stably-solvable on P,   S = { x ∈ P : L F ( x ) = h ( x , t )   for some   t ∈ [ 0 , 1 ] }  , and   F ( S )   is bounded by assumption (2), the equation   F  ( x )  =  L  − 1   h  ( x , 1 )    has a solution   x ∈ P  . Thus   L F ( x ) = h ( x , 1 )   has a solution. □





Our next result is on the fixed point index of the nonlinear operator   L F   based on the parameters such as    | F |  P   and   d   ( F )  P    that are related to the definition of the fmv-spectrum [4].



Theorem 2.

Assume that   L : E → E   is a linear homeomorphism and   F : P → P   is a nonlinear map such that the composition   L F : P → P   is completely continuous.




	(1) 

	
If     | F |  P  < d  (  L  − 1   )    , then there exists    R 1  > 0   such that for all   R >  R 1    ,   i ( L F ,  P R  , P ) = 1   .




	(2) 

	
If     | F |  0  < d  (  L  − 1   )    , then there exists    r 1  > 0   such that for all   r <  r 1    ,   i ( L F ,  P r  , P ) = 1   .




	(3) 

	
If   d   ( F )  P  d  ( L )  > 1   , then there exists    R 2  > 0   such that for all   R >  R 2    ,   i ( L F ,  P R  , P ) = 0   .




	(4) 

	
If   d   ( F )  0  d  ( L )  > 1   , then there exists    r 2  > 0   such that for all   r <  r 2    ,   i ( L F ,  P r  , P ) = 0 .   











Proof. 

Define


   O 1  =  { x ∈ P : L F  ( x )  = μ x ,  μ ≥ 1 }  ,  








and


   O 2   = { x ∈ P : ∥ F  ( x )  ∥ ≤ ∥   L  − 1    ∥ ∥ x ∥ } .   











We prove that under condition (1),   O 1   is bounded. Condition (2) ensures that   O 1   is bounded below. Thus, there exists   δ > 0   such that for   u ∈ E  ,   ∥ u ∥ < δ  , then   u ∉  O 1   . Similarly, under condition (3),   O 2   is bounded. Condition (4) implies   O 2   is bounded below.



We only prove (1) and (4). (2) and (3) can be proved following the similar ideas.



Under condition (1), assume   O 1   is unbounded. Then, there exist    x n  ∈  O 1    such that    ∥   x n   ∥ → ∞    as   n → ∞  .


   ∥ L ∥ ∥ F   (  x n  )   ∥ ≥ ∥ L F   (  x n  )   ∥ = ∥   μ n   x n   ∥ ≥ ∥   x n   ∥ .   



(1)






     ∥ F (  x n  ) ∥    ∥   x n   ∥    ≥  1  ∥ L ∥   .   



(2)







Therefore,      | F |  P  =  lim sup  x ∈ P , ∥ x ∥ → ∞     ∥ F ( x ) ∥   ∥ x ∥   ≥  1  ∥ L ∥     . This contradicts the condition     | F |  P  < d  (  L  − 1   )  =  1  ∥ L ∥    .



On the other hand, if condition (4) holds, assume there exists    x n  ∈  O 2    such that    ∥   x n   ∥ → 0    as   n → ∞  . We have


     ∥ F (  x n  ) ∥    ∥   x n   ∥    ≤  ∥  L  − 1   ∥  .   











Thus,


   d   ( F )  0  =  lim inf  x ∈ P , ∥ x ∥ → 0     ∥ F ( x ) ∥   ∥ x ∥   ≤  ∥  L  − 1   ∥  =  1  d ( L )   .   











This contradicts the assumption   d   ( F )  0  d  ( L )  > 1  .



Next, if   O 1   is bounded, we can select R large enough such that


  L F x ≠ μ x ,  for  all  x ∈ ∂  P R  ,  and  all  μ ≥ 1 .  











By Lemma 1, we have   i ( L F ,  P R  , P ) = 1  .



On the other hand, if   O 1   is bounded below, we can select r small enough such that


  L F x ≠ μ x ,  for  all  x ∈ ∂  P r  ,  and  all  μ ≥ 1 .  











Again by Lemma 1, we have   i ( L F ,  P r  , P ) = 1  .



If   O 2   is bounded, we can select R large enough such that    ∥ F  ( x )  ∥ > ∥   L  − 1    ∥ ∥ x ∥    for   x ∈ ∂  P R   . Then,   L F ( x ) ≠ x   for all   x ∈ ∂  P R   . Otherwise, if there exists    x 0  ∈ ∂  P R    such that   L F  (  x 0  )  =  x 0   , we would get the contradiction   F  (  x 0  )  =  L  − 1    (  x 0  )    and    ∥ F   (  x 0  )   ∥ = ∥   L  − 1    (  x 0  )   ∥      ≤ ∥   L  − 1    ∥ ∥   x 0   ∥   . Next,


    ∥ L F x ∥  ≥  1   ∥   L  − 1    ∥     ∥ F  ( x )  ∥  ≥  ∥ x ∥ ,  for  all  x  ∈ ∂  P R  .   











By Lemma 2, we have   i ( L F ,  P R  , P ) = 0  



Similarly, if   O 2   is bounded below, we can select r small enough such that


   ∥ L F x ∥  ≥  ∥ x ∥ ,  for  all  x  ∈ ∂  P r  .  











By Lemma 2, we have   i ( L F ,  P r  , P ) = 0  



The proof is complete. □





Theorem 2 can be used to prove existence of positive solutions for nonlinear operator equations involving a parameter.



Theorem 3.

Let L and F be defined as Theorem 2. Assume that


   d   ( F )  0   > ∥   L  − 1     ∥    a n d    | F |  P  <  1  ∥ L ∥   .   











Then, the operator equation   λ L F ( x ) = x   has a positive solution   x ∈ P   for   1 ≤ λ <   d (  L  − 1   )    | F |  P     .





Proof. 

The condition   d   ( F )  0  >  ∥  L  − 1   ∥    implies   d   ( F )  0  d  ( L )  > 1   and     | F |  P  <  1  ∥ L ∥     ensures     d (  L  − 1   )    | F |  P   > 1  . For   λ ≥ 1  , we have   d   ( F )  0  d  ( λ L )  = λ d   ( F )  0  d  ( L )  ≥ d   ( F )  0  d  ( L )  > 1  . By Theorem 2 (4), there exists   r > 0   small enough such that   i ( λ L F ,  P r  , P ) = 0  . On the other side, if   λ <   d (  L  − 1   )    | F |  P    , then     | F |  P  <   d (  L  − 1   )  λ  = d  (   ( λ L )   − 1   )   . By Theorem 2 (1), there exists   R > 0   large enough such that   i ( λ L F ,  P R  , P ) = 1  . Therefore, there exists a fixed point   λ L F ( x ) = x  ,   x ∈  Ω R  \   Ω r  ¯   , where    Ω R  =  { x : x ∈ P , ∥ x ∥ < R }   . □





As the Feng-spectrum contains all eigenvalues and it is closed [6], the following result on spectral interval follows from Theorem 3.



Corollary 1.

Under the conditions of Theorem 3, the nonlinear operator   L F   has the spectral interval


     [ ∥ L ∥ | F |  P   , 1 ] ⊂   σ F   ( L F )  .   














3. Positive Solutions and Spectral Interval for BVPs


In this section, we study the following second-order differential equation with separated boundary conditions:


          u  ′ ′    ( t )  + λ f  ( t , u  ( t )  )  = 0 ,  t ∈  [ 0 , 1 ]  ,     



(3)






       θ u  ( 0 )  − α  u ′   ( 0 )  = 0 ,     



(4)






       γ u  ( 1 )  + β  u ′   ( 1 )  = 0 ,     



(5)




where   θ , α , β > 0 , γ ≥ 0  ,   λ > 0  , and   f :  [ 0 , 1 ]  ×  ( 0 , ∞ )  →  R +    is continuous and non-negative. When   λ = 1  , problem (3)–(5) was studied in [9] under the conditions that   α > 0  ,   β > 0   and   θ γ + θ β + α γ > 0  . Conditions (4) and (5) are an extension of the boundary conditions   α u  ( 0 )  − β  u ′   ( 0 )  = 0 ,  u ′   ( 1 )  = 0   studied in [10], and a special case of the non-local boundary value problem involving linear functionals   a u  ( 0 )  − b  u ′   ( 0 )  = α  [ u ]  ,  u ′   ( 1 )  = β  [ u ]    [5,11,12]. Equation (5) can also been seen as the limiting case of the basic three-point boundary value problem [13],   σ  u ′   ( 1 )  + u  ( η )  = 0  , as   η →  1 −   . It is known that the three-point boundary value problem can be explained as a model of a thermostat with a temperature controller [13,14,15].



In the following, we prove existence of positive solutions of BVP (3)–(5) using Lemmas 1 and 2 and obtain a spectral interval for the corresponding Hammerstein integral operator that can be written as the composition of a linear operator L and a nonlinear map F.



Notice that existence of a solution for (3)–(5) is equivalent to the existence of a fixed point for the following Hammerstein operator [5]:


  N  ( λ , u )   ( t )  = λ  ∫  0  1  G  ( t , s )  f  ( s , u  ( s )  )  d s ,  



(6)




where the Green’s function


  G  ( t , s )  =         ( α + θ s ) ( γ + β − γ t )   θ ( γ + β ) + α γ      0 ≤ s ≤ t ≤ 1 ,           ( α + θ t ) ( γ + β − γ s )   θ ( γ + β ) + α γ      0 ≤ t ≤ s ≤ 1 .        



(7)







Let   C [ 0 , 1 ]   denote a Banach space of continuous functions with the norm


  ∥ u ∥ = max { | u ( t ) | : t ∈ [ 0 , 1 ] } .  











We use the cone P with parameter   0 <  c 0  < 1  :


  P = { u ∈ C  [ 0 , 1 ]  : u  ( t )  ≥  c 0  ∥ u ∥ ,   for   t ∈  [ 0 , 1 ]  } ,  










   c 0  =        α  α + θ   ,          i f  γ = 0 ,          α  α + θ   ,          i f  γ ≠ 0 ,   β γ  −  α θ  ≥ 1 ,          β  β + γ   ,          i f  γ ≠ 0 ,   β γ  −  α θ  ≤ − 1 ,           α β   ( α + θ ) ( γ + β )   ,    i f  γ ≠ 0 ,  − 1 <  β γ  −  α θ  < 1 .        



(8)







Define the operators L and F:   C [ 0 , 1 ] → C [ 0 , 1 ]  :


   ( L u )   ( t )  =  ∫  0  1  G  ( t , s )  u  ( s )  d s ,    ( F u )   ( t )  = f  ( t , u  ( t )  )  ,  u ∈ C  [ 0 , 1 ]  .  



(9)







Then,   N ( λ , u ) = λ ( L F ) ( u )  . Note that the linear operator L is not a homeomorphism on the space   C [ 0 , 1 ]  . However, we will show that   L : P → P   and is injective on P. Following Lemma 2.1 of [5], we know that the Green’s function G satisfies the strong positivity condition [9]:


   c 0  G  ( s , s )  ≤ G  ( t , s )  ≤ G  ( s , s )  ,    for   0 ≤ t , s ≤ 1 .  



(10)







For   ∀ u ∈ P  , (10) ensures that


      c 0   ∥ N  ( λ , u )  ∥     ≤     c 0   ∫  0  1  λ G  ( s , s )  f  ( s , u  ( s )  )  d s       ≤     ∫  0  1  λ G  ( t , s )  f  ( s , u  ( s )  )  d s = N  ( λ , u )  .     



(11)







Therefore,   N ( λ , P ) ⊂ P  .



We first prove a property of the linear operator L that is related to the so-called   u 0  -positive linear operator on a cone [16], that later was generalized to   u 0  -positive linear operator relative to a pair of cones [9,17]. The following lemma shows that L actually satisfies stronger conditions than the requirements of   u 0  -positive linear operators.



Lemma 3.

Let L be defined by (9). Then   L : P → P   is completely continuous and satisfies


    k 1  u  ( 1 )  ≤ L u ≤  k 2  u  ( 1 )  ,    f o r   a n y   u ∈ P ,   



(12)




for some    k 1  ,  k 2  > 0   .





Proof. 

For   ∀ u ∈ P  , by property (10), we have


   c 0   ∥ L u ∥  ≤  c 0   ∫  0  1  G  ( s , s )  u  ( s )  d s ≤  ∫  0  1  G  ( t , s )  u  ( s )  d s = L u ,  











So   L ( P ) ⊂ P  . Moreover,


   c 0  u  ( 1 )  ≤  c 0   ∥ u ∥  ≤ u  ( t )  ≤  ∥ u ∥  ≤   u ( 1 )   c 0   ,   t ∈  [ 0 , 1 ]  .  











Thus


       c 0 2   ∫  0  1  G  ( s , s )  d s  u  ( 1 )     =     ∫  0  1   c 0  G  ( s , s )   c 0  u  ( 1 )  d s       ≤     ∫  0  1  G  ( t , s )   c 0   ∥ u ∥  d s ≤  ∫  0  1  G  ( t , s )  u  ( s )  d s     








and


      ∫  0  1  G  ( t , s )  u  ( s )  d s    ≤     ∫  0  1  G  ( t , s )   ∥ u ∥  d s       ≤     ∫  0  1  G  ( t , s )    u ( 1 )   c 0   d s ≤   1  c 0    ∫  0  1  G  ( s , s )  d s  u  ( 1 )  .     











Let    k 1  =  c 0 2   ∫  0  1  G  ( s , s )  d s  ,    k 2  =  1  c 0    ∫  0  1  G  ( s , s )  d s  , then


   k 1  u  ( 1 )  ≤ L u ≤  k 2  u  ( 1 )  .  











Applying the Ascoli-Arzela theorem, we can prove that L is completely continuous. □





Remark 1.

The constants   k 1   and   k 2   (12) can be calculated using (7) and (8).


       ∫  0  1  G  ( s , s )  d s    =       1 6  θ γ +  1 2  θ β +  1 2  α γ + α β   ( θ γ + θ β + α γ )         =      1 2  +   3 α β − θ γ   3 ( θ γ + θ β + α γ )                =  1 2       i f   θ γ = 3 α β ,       <  1 2       i f   θ γ > 3 α β ,       >  1 2       i f   θ γ < 3 α β .          











As


    k 1  =  c 0 2   ∫  0  1  G  ( s , s )  d s ,    k 2  =  1  c 0    ∫  0  1  G  ( s , s )  d s ,   








    k 1  >     c 0   2  2    if   θ γ < 3 α β   and    k 2  <  1  2  c 0      if   θ γ > 3 α β   . If   θ γ = 3 α β   , then    k 1  =     c 0   2  2    and    k 2  =  1  2  c 0      . In the special case,   α = θ   and   γ = β   , we can calculate that    k 1  =  13 288    and    k 2  =  26 9    for the boundary conditions   u  ( 0 )  −  u ′   ( 0 )  = 0   ,   u  ( 1 )  +  u ′   ( 1 )  = 0   .





Next, property (12) ensures that


   c 0   k 1   ∥ u ∥  ≤ L u ≤  k 2   ∥ u ∥  ,    for   any   u ∈ P .  



(13)







For   u ∈ P  , if   L ( u ) = 0  , then   u = 0  . Therefore, L is injective on P. The spectral radius of L,   r ( L ) > 0   [9]. We now prove existence of a positive solution for problem (3)–(5) which implies a spectral interval for the operator   L F  . The proof follows similar ideas as that of [8].



Theorem 4.

Assume that   f ( t , x ) > 0   for   x > 0   . Denote


   d  ( f )  =  lim inf  x → ∞    min  t ∈ [ 0 , 1 ]     f ( t , x )  x  ,    | f |  0  =  lim sup  x → 0    max  t ∈ [ 0 , 1 ]     f ( t , x )  x  .   











If   d ( f ) = ∞   ,     0 < | f |  0  < ∞   , then BVP (3) has at least one positive solution for   λ ∈  0 ,  1    | f |  0  r  ( L )       .





Proof. 

Let   λ <  1    | f |  0  r  ( L )     . Select   ϵ > 0   small enough such that   λ ( | f  | 0  + ϵ ) r  ( L )  < 1  . Assume   δ > 0   such that     f ( t , x )  x  <   | f |  0  + ϵ   for   x ∈ ( 0 , 2 δ )  . Therefore, we have   N ( λ , u ) ≠ μ u   for   u ∈ ∂  P δ   , and   μ ≥ 1  . Otherwise, there exist    u 0  ∈ ∂  P δ    and    μ 0  ≥ 1   such that   N  ( λ ,  u 0  )  =  μ 0   u 0   . Then


   μ 0   u 0   ( t )  = N  ( λ ,  u 0  )   ( t )  ≤   λ ( | f |  0   + ϵ )   ∫  0  1  G  ( t , s )   u 0   ( s )  d s =   λ ( | f |  0   + ϵ ) L   u 0   ( t )  .  











Thus   L  u 0   ( t )  ≥   μ 0   λ ( | f  | 0  + ϵ )    u 0   ( t )   , this implies   r  ( L )  ≥   μ 0   λ ( | f  | 0  + ϵ )    . As   λ ( | f  | 0  + ϵ ) r  ( L )  < 1  , we have a contradiction. By Lemma 1,   i ( N ,  P δ  , P ) = 1  .



On the other hand, select M large enough such that


  λ M  c 0   ∫  0  1  G  ( 1 , s )  d s > 1 .  











As   d ( f ) = ∞  , there exists    M 1  > 0  , such that     f ( t , x )  x  > M   for   x >  M 1   . We take    M 1  > max  {  c 0  , 2 δ }    and let   R =   M 1   c 0    . For   u ∈ ∂  P R   , we have


  u  ( t )  ≥  c 0   ∥ u ∥  =  M 1   for  t ∈  [ 0 , 1 ]  .  











Therefore,


   ∥ N  ( λ , u )  ∥  ≥ λ  ∫  0  1  G  ( 1 , s )  f  ( s , u  ( s )  )  d s ≥ λ M  c 0   ∥ u ∥   ∫  0  1  G  ( 1 , s )  d s >  ∥ u ∥  .  











By Lemma 2,   i ( N ,  P R  , P ) = 0  . From the property of fixed point index,


  i  ( N ,  P R  \   P δ  ¯  , P )  = i  ( N ,  P R  , P )  − i  ( N ,  P δ  , P )  = − 1  











Therefore, N has a fixed point in    P R  \  P δ   . □





Remark 2.

Theorem 4 implies that the decomposable nonlinear operator   L F   has a spectral interval     [ | f |  0   r  ( L )  , ∞ ) ⊂   σ F   ( L F )    and the spectral radius   r ( L F ) = ∞   [6].
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