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Abstract: A novel semi-supervised learning method is proposed to better utilize labeled and unla-
beled samples to improve classification performance. However, there is exists the limitation that
Laplace regularization in a semi-supervised extreme learning machine (SSELM) tends to lead to poor
generalization ability and it ignores the role of labeled information. To solve the above problems,
a Joint Regularized Semi-Supervised Extreme Learning Machine (JRSSELM) is proposed, which
uses Hessian regularization instead of Laplace regularization and adds supervised information
regularization. In order to solve the problem of slow convergence speed and the easy to fall into
local optimum of marine predator algorithm (MPA), a multi-strategy marine predator algorithm
(MSMPA) is proposed, which first uses a chaotic opposition learning strategy to generate high-quality
initial population, then uses adaptive inertia weights and adaptive step control factor to improve the
exploration, utilization, and convergence speed, and then uses neighborhood dimensional learning
strategy to maintain population diversity. The parameters in JRSSELM are then optimized using
MSMPA. The MSMPA-JRSSELM is applied to logging oil formation identification. The experimental
results show that MSMPA shows obvious superiority and strong competitiveness in terms of conver-
gence accuracy and convergence speed. Also, the classification performance of MSMPA-JRSSELM is
better than other classification methods, and the practical application is remarkable.

Keywords: marine predator algorithm; learning strategy; semi-supervised extreme learning machine;
oil layer identification

1. Introduction

Swarm intelligence algorithms [1] mainly simulate the behavior of a group of animals
in search of food in a cooperative manner, where each member of the group learns from his
or her own experience and the experience of the whole group, and changes the direction of
the prey search accordingly [2]. Swarm intelligence algorithms can effectively solve many
complex and challenging optimization problems in the field of artificial intelligence [3],
and are mainly applied to combinatorial optimization [4], feature selection [5], image
processing [6], data mining [7], and other fields.

In recent years, new meta-heuristic algorithms have been proposed to mimic the natu-
ral behavior of birds, bees, fish, and other groups of organisms, including Particle Swarm
Optimization (PSO) [8], Gray Wolf Optimization (GWO) [9], Moth Flame Optimization
(MFO) [10], Seagull Optimization Algorithm (SOA) [11], Sine Cosine Algorithm (SCA) [12],
Whale Optimization Algorithm (WOA) [13], Coyote Optimization Algorithm (COA) [14],
Carnivorous Plant Algorithm (CPA) [15], Transient Search Algorithm (TSA) [16], and more.
In 2020, Faramarzi et al. [17] proposed novel meta-heuristic algorithms that mimic ma-
rine hunting behavior, and they believe that the Lévy flight strategy and the Brownian
motion strategy that balance the movement of marine organisms can effectively solve the
optimization problem. Each hunting process is divided into three stages. The first stage
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is the high-speed movement of the prey; the predator keeps a low-speed movement, and
the second stage high-speed movement is carried out for both the prey and the predator.
In the third stage, the predator moves much faster than the prey. According to the vortex
formation and the fish gathering device effect, it can prevent premature convergence.

Since MPA exhibits significant superiority in solving optimization problems, it is now
used to solve both continuous and engineering optimization problems, exhibiting good
performance. Elaziz et al. [18] proposed a hybrid MPA and MFO algorithm (MPAMFO) to
solve the problem of MPA’s weak ability to avoid local optimality, replacing the local search
method of MPA with MFO, effectively improving the development capability of MPA,
and using it for the multi-level threshold segmentation (MLT) of images with excellent
performance. Abdel et al. [19] proposed an improved marine predator algorithm (IMPA)
that introduces a ranking-based diversity reduction (RDR) strategy to directly replace the
position of continuously poorly adapted search agents with the best individual position,
improving the performance of the MPA and speeding up the convergence. Naga et al. [20]
proposed a hybrid MPA and an adaptive differential evolution algorithm based on success
history, which improves the global search and local search capabilities of finding the
optimal solution, and is used to solve the optimal parameter combination in the single diode
model. To address the limitations of the MPA’s exploratory and development capabilities,
Ridha [21] combined MPA with Lambert W-functions and applied this method to solve
the problem of optimizing parameter combinations in single-diode and dual-diode PV
models. Yousri et al. [22] proposed an MPA-based robust photovoltaic array reconfiguration
strategy for solar PV arrays that need to ensure both maximum power under weak lighting
conditions and no damage under intense heat conditions. Soliman et al. [23] proposed a
phototransistor (TDPV) model for the problem of photovoltaic losses in photovoltaic power
plants, but it has nine parameters and cannot be solved directly. They proposed using
MPA to solve the optimal parameter distribution, and finally a new high-precision TDPV
model was obtained. For the optimal reactive power dispatch (ORPD) of ground efficiency
due to highly stochastic wind speed and solar illumination, Ebeed et al. [24] propose an
optimal combination of parameters to solve the ORPD by MPA to ensure that the system’s
resource waste is minimized. For the deployment and training of convolutional neural
network (CNN), it is challenging to perform feature extraction quickly. Sahlol et al. [25]
proposed a feature extraction method combining CNN and swarm intelligence algorithm;
the combined fractional order algorithm and ocean predator algorithm (FO- MPA) is
used to improve the optimization performance and convergence speed of MPA. The
proposed feature extraction method not only has good performance but also reduces the
computational complexity.

The classification methods that have been widely used are Random Forests (RF) [26],
Support Vector Machines (SVM) [27], and Extreme Learning Machines (ELM) [28]. To
address the shortcomings of the traditional missing data filling methods, Deng et al. [29]
proposed an improved Random Forest filling algorithm, which combines linear interpo-
lation, matrix combination, and matrix transformation to solve the filling problem of the
large amount of missing data of electricity. To utilize the minimum number of trees for
classification, Paul et al. [30] proposed an improved random forest classifier based on the
number of important and unimportant features, which iteratively removes some unimpor-
tant features. To improve the protein structure prediction performance, Kalaiselvi et al. [31]
introduced an improved random forest classification (WPC-IRFC) technique based on
weighted Pearson correlation, which has higher accuracy and shorter time. In response
to the fact that SVMs do not adequately consider the distinction between numerical and
nominal attributes, Peng et al. [32] proposed a novel SVM algorithm for heterogeneous data
learning, which embeds nominal attributes into the real space by minimizing the estimated
generalization error. To address the lack and contamination of supervised information,
Dong et al. [33] proposed a robust semi-supervised classification using a novel correlated
entropy loss function and Laplace SVM (LapSVM).
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Huang et al. [34] proposed a semi-supervised extreme learning machine (SSELM)
based on manifold regularization and extended ELM to semi-supervised learning. On
various data sets, when auxiliary unlabeled data is available, SSELM is always better
than purely supervised learning algorithms such as Support Vector Machines (SVM) and
ELM. To address the strong sensitivity of the classification performance of SSELM to
the quality of popular graphs, She et al. [35] proposed a regularized SSELM based on
balanced graphs, combining label consistency graph (LCG) and sample similarity graph
(SSG), and then optimizing the weight ratio of these two graphs to obtain an optimal
neighborhood graph. To address the shortcoming that SSELM cannot mine information
from nonlinear data, Zhou et al. [36] proposed a semi-supervised extreme learning machine
(LRR-SSELM) based on a low-rank representation, which introduces a nonlinear classifier
and a low-rank representation (LRR), and the LRR can maintain the popular structure
of the original data. To enhance the feature extraction and classification performance of
SSELM, She et al. [37] proposed a new hierarchical semi-supervised extremal learning
machine (HSSELM) that uses the HELM method for automatic feature extraction of deep
structures and then uses SSELM for classification tasks. To address the problem that
manifold graph are only pre-constructed before classification and not changed later, which
leads to poor model performance robustness, Ma et al. [38] proposed an adaptive safety
semi-supervised extreme learning machine, which allows the model to adaptively compute
the safety of unlabeled samples and adaptively construct manifold graphs. To address
the problem that SSELM is sensitive to outliers in labeled samples, Pei et al. [39] proposed
a new robust SSELM that uses a nonconvex squared loss function to impose a constant
penalty on outliers and mitigate their possible negative effects.

SSELM is based on the ELM with the addition of Laplace regularization, and mitigates
the drawback that sample imbalance tends to lead to poor generalization performance
by assigning weights to different classes [34]. SSELM greatly expands the practicality of
the ELM algorithm, and also retains all the advantages of ELM, such as high training
efficiency and the simple implementation of multi-class classification problems. Laplace
regularization [40] utilizes the L2 norm of the function gradient, so when solving clas-
sification or regression problems, its minimization makes the optimal function close to
the constant function, further destroying the local topology and inferred power between
samples. Hessian regularization [41] utilizes the L2 norm of the Hessian generic function
of a function whose minimization will make the optimal function close to a linear function,
capable of adaptively changing the geodesic function with distance, with a more effective
preservation of the local topology between samples as well as the ability to characterize the
intrinsic local geometric properties. Hessian regularization shows superior performance
over Laplace regularization in predicting data points outside the region boundaries.

Therefore, in this paper, a novel semi-supervised learning method is proposed to
extract the hidden information of large amount of unlabeled data and to obtain an efficient
classification method with only a small number of labeled samples for training. Since
SSELM takes a Laplace regularization with poor inferential ability and does not further
exploit label information, resulting in its limited classification performance and poor gener-
alization, the Joint Regularized Semi-Supervised Extreme Learning Machine (JRSSELM)
is proposed. Using Hessian regularization with better inferencing power and better local
prevalence structure, a supervised information regularization term that further exploits
the information of tagged samples is introduced. Since JRSSELM and SSELM maintain
consistency in parameter selection, with input weights and hidden layer thresholds chosen
randomly and not adjusted subsequently, this, along with the selection of a grid of hyper-
parameters, can lead to limited performance and poor generalization. A Multi-Strategy
Marine Predator Algorithm is proposed to address the limitations of MPA development
and exploration capabilities, as well as the slow convergence rate. First, to address the
problem that the traditional random initialization of populations is prone to generate
low-quality initial populations, the initialization of populations is based on chaotic tent
mapping and opposing learning strategies to ensure the generation of high-quality initial
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populations. Secondly, to balance the global extensive search in the early stage and the
local fine search in the later stage, adaptive inertial weights and adaptive step control
factors are adopted, which effectively enhance the exploration and exploitation capability
of the algorithm. Furthermore, as the number of iterations increases, individuals in the
population tend to lose their diversity and it is difficult to avoid the local optimum, so the
proposed neighbor dimensional learning strategy ensures the diversity of the population
in each iteration.

In order to verify the superiority of MSMPA, it is compared with 7 well-known
algorithms (MPA, PSO, GWO, WOA, MFO, SOA, and SCA) on 18 classic benchmark test
functions and CEC2017 competition test functions. The experimental results indicate
that MSMPA shows significant competitiveness, enhances global search and local search
capabilities, and accelerates the convergence speed. MSMPA is proposed to optimize the
JRSSELM model with respect to the parameters mentioned in JRSSELM. JRSSELM and
MSMPA-JRSSELM are applied to logging oil layer identification. The results show that
JRSSELM and MSMPA-JRSSELM are significantly better than other classification method
in terms of performance, especially MSMPA-JRSSELM has higher classification accuracy
and stability compared to other models while ensuring not overfitting.

The rest of the paper is structured as follows. Section 2 describes the introduction
of the ocean predator algorithm and its improvements. Section 3 presents and analyzes
the experimental results of MSMPA. Section 4 describes the Semi-Supervised Extreme
Learning Machine and its improvements. Section 5 presents and analyzes the experimental
results for oil logging applications. Section 6 summarizes the work of this paper and
provides an outlook for the future. This is followed by the Abbreviations section and the
Appendix A section.

2. Marine Predator Algorithm and Its Improvement

2.1. Basic Marine Predator Algorithm

2.1.1. Population Location Initialization

MPA is a novel meta-heuristic algorithm that mimics marine predation by adopting a
randomized localization rule for the initial population, with the following mathematical
expression:

Xij = lb + r∗(ub− lb) i = 0 . . . n, j = 0 . . . d (1)

where Xij represents the coordinates of the j-th dimension of the i-th population, n is the
number of populations, d is the dimension, ub and lb are the upper and lower boundaries
of the search space, respectively, and r is a random number between [0, 1].

Based on the location of the search agent, a matrix of prey can be constructed, as fol-
lows:

Prey =



X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d
X3,1 X3,2 · · · X3,d

...
...

...
...

...
...

...
...

Xn,1 Xn,2 · · · Xn,d


n×d

(2)

Inspired by the law of the jungle of survival of the fittest, it is believed that the best
hunters are gifted in predation, so the optimal individual is used as the ontology to replicate
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n − 1 identical predators, and these n hunters are formed into an elite matrix, as shown in
the following equation:

Elite =



X I
1,1 X I

1,2 · · · X I
1,d

X I
2,1 X I

2,2 · · · X I
2,d

...
...

...
...

...
...

...
...

...
...

...
...

X I
n,1 X I

n,2 · · · X I
n,d


n×d

(3)

where X I denotes the optimal individual vector. The search agent includes both predators
and prey. As such, they are both searching for their food, and after each iteration, the elite
position is updated based on adaptation.

2.1.2. Exploratory Phase of High-Speed Ratio

The standard Brownian motion [31] is a stochastic process for which the step is given
by a probability function defined by the zero mean (µ = 0) and unit variance (σ2 = 1) of the
normal (Gaussian) distribution. The control density function of the motion at point x is
as follows:

fB(x; µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
=

1√
2π

exp
(
− x2

2

)
(4)

At the beginning of an iteration, i.e., the period, where is the current iteration and
the maximum number of iterations, the prey is frantically searching for food, while the
predator adopts a no-movement strategy. Thus, this is the high-speed ratio case, where the
prey movement trajectory proceeds as follows.

→
stepsizei =

→
RB ⊗

( →
Elitei −

→
RB ⊗

→
Preyi

)
i = 1, . . . n

→
Preyi =

→
Preyi + P ·

→
R ⊗ stepsizei

(5)

where
→
RB is a vector of random numbers resulting from the normal distribution of Brow-

nian motion, ⊗ is an element-by-element multiplication, P is a step control factor of

constant 0.5, and
→
R is a vector of random numbers between [0, 1]. The multiplicative

→
RB

simulates the high-speed movement of prey.

2.1.3. Mid-Speed Ratio Transition Phase

In the middle stage, 1
3 Max_Iter < Iter < 2

3 Max_Iter, the predator takes the same
rate of position update as the prey, and since exploration in the previous section has been
going on for some time, this time transitions the behavior of half of the population to the
exploitation stage. Obviously, both exploration and exploitation are equally important,
and at this point, the prey is primarily responsible for exploitation, while the hunter is
responsible for exploration. In this phase, then, the prey updates its position according to
the Lévy movement, and the predator takes the Brownian movement.

Lévy flight is a special kind of random walking strategy in which the distribution of
walking steps obeys a probability distribution of heavy-tailed features, called the Lévy
distribution [42]. It can usually be approximated as a simple power function distribution
L(s) ∼ |s|−1−β, where 0 < β ≤ 2, RL is the step length, and L(s) is the probability of
a moving step s. In the algorithm of Mantegna et al. [43], the Lévy flight step can be
defined as:

RL =
u

|v|1/β
(6)
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where u and v are random numbers that are normally distributed, i.e., u ∼ N
(
0, σ2

u
)
.

For the first half of the population, the position is updated by the following formula:

stepsizei =
→
RL ⊗

( →
Elitei −

→
RL ⊗

→
Preyi

)
i = 1, . . . , n/2

→
Preyi =

→
Preyi + P ·

→
R ⊗

→
stepsizei

(7)

where
→
RL is a vector of random numbers generated by the Lévy flight step. It can be seen

that the Lévy stride is very useful for development.
For the latter half of the population, the exploration behavior is still performed, and

the simulated motion is updated by the following formula:

→
stepsizei =

→
RB ⊗

(→
RB ⊗

→
Elitei −

→
Preyi

)
i = n/2, . . . , n

→
Preyi =

→
Elitei + P · CF⊗ stepsizei

where CF =

(
1− Iter

Max_lter

)(2 Iter
MaxIter

)

(8)

where CF is an adaptive parameter used to control the predator’s moving stride.

2.1.4. Low-Speed Ratio Development Phase

The later stages, i.e., Iter > 2
3 Max_Iter, are also called the low ratio stages because

they set the prey to move much slower than the hunter. The predator is eager to hunt
prey, and the movement of the population is all exploitation, so the Lévy stride strategy is
adopted and the position is updated as follows:

→
stepsizei =

→
RL ⊗

(→
RL ⊗

→
Elitei −

→
Preyi

)
i = 1, . . . , n

→
Preyi =

→
Elitei + P · CF⊗

→
stepsizei

(9)

2.1.5. Eddy Current Formation and Fish Aggregation Device Effects (FADS)

In order to circumvent the local optimal solution, Faramazi et al., taking into account
that other external environmental disturbances may affect the movement of the population
to a greater or lesser extent, proposed the following mechanism of position updating based
on the eddy current formation and the fish aggregating device effect (FADS), which is
mathematically expressed as follows:

→
Preyi =


→

Preyi + CF
[→

Xmin +
→
R ⊗

(→
Xmax −

→
Xmin

)]
⊗
→
U if r ≤ FADS

→
Preyi + [FADs(1− r) + r]

( →
Preyr1 −

→
Preyr2

)
if r > FADs

(10)

where FADS is specified to represent the probability of influencing the search process

and is set equal to 0.2,
→
Xmax is a vector consisting of the maximum value of the search

boundary,
→
Xmin is a vector consisting of the minimum value of the search boundary, and

the subscripts r1 and r2 represent the random index of the predation matrix, which is a
binary vector consisting of 0 and 1.

Because marine predators have a good memory, they are guaranteed to visit prey-rich
areas after a successful hunt. Adaptation is calculated for the population after each iteration
and the elite matrix is replaced if there is a better-adapted position, a process that ensures
that the quality of the elite increases with the number of iterations.
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2.2. Multi-Strategy Marine Predator Algorithm—MSMPA

2.2.1. Chaotic Opposition Learning Strategy

Chaotic mappings have been widely used in the optimization of intelligent algorithms
due to their regularity, randomness, and traversability [44], but different chaotic mappings
have a great influence on the chaotic optimization process [45]. The Tent mapping has good
traversal uniformity and fast iterations and produces a uniform distribution of chaotic
sequences between [0, 1]. The Tent mapping expression is as follows:

λt+1 =

{
λt/α, λt ∈ [0, α)

(1− λt)/(1− α), λt ∈ [α, 1]
t = 0, 1, 2, · · · , T (11)

where λt is the number of chaos at the t-th iteration, T is the maximum number of iterations,
and α is a customizable parameter between (0, 1). Note that when α = 0.5, the system
shows a short-period state, which is not suitable for population mapping, so α = 0.7 is
chosen in this experiment.

The resulting chaotic variable λ is used for the initial population generation according
to the search boundary [lb, ub], as follows:

X j
i = lb + λj × (ub− lb) (12)

where X j
i is the j-th dimensional coordinate of the i-th search agent, and λj is the coordinate

of the j-th dimension of λ.
Even if the chaotic sequence is capable of generating a diverse and well-distributed

population, it is undeniable that there may be better search agents on opposing sides of
the search space, and the same number of opposing populations will be generated again,
as follows:

Xop_i = Xmax + Xmin − Xi (13)

where Xop_i is the opposing position of the i-th agent and Xi is the position of the i-th
individual.

Then, we merge them into a 2*n population, calculate the adaptation values for each
individual, and rank them in order from smallest to largest, with the top n best-adapted
individuals as the initial population and the best-adapted individuals as the parent of the
Elite matrix.

2.2.2. Adaptive Inertial Weights and Step Control Factors

The inertia weights are inspired by the particle swarm algorithm, which plays a
decisive role in the algorithm’s search ability and convergence speed. In the original MPA
algorithm, the inertia weights are constant values, which constrain the algorithm’s global
and local search capabilities [46].

For early iterations, large inertia weights enhance the global search capability; in
later iterations, the algorithm needs to perform local fine search, so small inertia weights
enhance the local search capability and speed up convergence [47].

In the MPA search process, the choice of inertia weighting strategy is crucial, and
thus a strategy is proposed that adaptively changes the inertia weights according to the
number of iterations. In the early iterations, the inertia weights are large and decrease
rapidly, which is focused on global search; in the later iterations, the inertia weights are
small and decrease slowly, which is to be more detailed in the local fine search [48]. The
adaptive inertia weights are expressed as follows:

w = a cosb(ln(1 + e
Iter

Max_Iter ) + c (14)

where a, b, and c are optional parameters. After the experimental analysis, a, b, and c were
set to 20, 12, and 0.2, respectively.

The adaptive inertia weight curves are shown in Figure 1.



Mathematics 2021, 9, 291 8 of 34
Mathematics 2021, 9, x FOR PEER REVIEW 8 of 36 
 

 

 

Figure 1. The plot of Adaptive Weights. 

From Figure 1, it can be seen that after the introduction of adaptive inertial weights, 

the position of the prey will be updated by the following equation. 

Prey *Pre P.R stepsizeii iw y    (15) 

Prey *Elite . stepsizeii iw P CF    (16) 

Also, the step length control is particularly important for MPA, in the early hope that 

the step length influence is as large as possible to make the prey better traversal search 

space; later, a small step length influence is needed to avoid falling into the local optimum, 

but also local fine search, while in the original MPA, the step length control factor is con-

stant 0.5, which will limit the performance of the algorithm. Therefore, in this paper, an 

adaptive step length control factor is proposed, which not only ensures the global search 

demand of the early traversability but also enhances the local fine search capability at the 

later stage. The mathematical expression is as follows: 

n Iter

Max_Iter

sin( ( ))
5

P q

e

p
m




    (17) 

where m, n, p, and q are optional parameters. After experimental analysis, m, n, p, and q 

were set to be 1.2, 10, 2, and 0.2, respectively. 

The curve of the adaptive step control factor is shown in Figure 2. 

 

Figure 2. The plot of the adaptive step control factor. 

Figure 1. The plot of Adaptive Weights.

From Figure 1, it can be seen that after the introduction of adaptive inertial weights,
the position of the prey will be updated by the following equation.

→
Preyi = w ∗

→
Preyi + P ·

→
R ⊗ stepsizei (15)

→
Preyi = w ∗

→
Elitei + P · CF⊗ stepsizei (16)

Also, the step length control is particularly important for MPA, in the early hope
that the step length influence is as large as possible to make the prey better traversal
search space; later, a small step length influence is needed to avoid falling into the local
optimum, but also local fine search, while in the original MPA, the step length control
factor is constant 0.5, which will limit the performance of the algorithm. Therefore, in this
paper, an adaptive step length control factor is proposed, which not only ensures the global
search demand of the early traversability but also enhances the local fine search capability
at the later stage. The mathematical expression is as follows:

P = m sin(
π

5
× (

p

e
n×Iter

Max_Iter
)) + q (17)

where m, n, p, and q are optional parameters. After experimental analysis, m, n, p, and q
were set to be 1.2, 10, 2, and 0.2, respectively.

The curve of the adaptive step control factor is shown in Figure 2.
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From Figure 2, it can be seen that the early values are large and rapidly decreasing,
which enhances the influence of step size, i.e., strengthening the traversability of the global
search, and the values are small and slowly decreasing in order to take into account the
later local fine search.

2.2.3. Neighborhood Dimensional Learning Strategy (NDL)

The population diversity plays a key role in the convergence speed and accuracy of
the algorithm. The population diversity of the original MPA decreases gradually with the
iteration of the algorithm, which tends to lead to the local optimum and not the global
optimum when solving high-dimensional complex problems [49]. Therefore, in order
to ensure that the population diversity remains rich in each iteration, a Neighborhood
Dimensional Learning strategy is proposed.

First, at the end of each iteration of the original MPA, a candidate population of
the same size is generated for the original population, and it is taken to relocate the
new population using either optimal individual information or information about itself,
as follows:

−−−−−−→
XCAND_i (t) =

w ∗
→
X
∗
(t)+2× (r− 0.5

)
× (ub− lb · r + lb) p > 0.5

w ∗
→
Xi(t)+2× (r− 0.5)× (ub− lb · r + lb) p < 0.5

(18)

where
→
Xi(t) is the position vector of the i-th search agent,

−−−−−−→
XCAND_i (t + 1) is the posi-

tion vector of the i-th candidate individuals, and
→
X
∗
(t) is the position vector of the elite

individuals, and p is the random probability.

Second, based on the Euclidean distance between the current position
→
Xi(t) and the

candidate position
−−−−−→
XCAND (t + 1), a neighborhood radius is computed by the following

equation:

Ri(t) = ||
→
Xi(t)−

−−−−−−→
XCAND_i (t + 1)|| (19)

Then, according to Ri(t), the Euclidean distance which is less than the radius search
agent is successively selected from the population, and these individuals are saved as
neighbors of the i-th individual. The mathematical expression is as follows:

Ni(t) =
{

Xj(t) | Di
(
Xi(t), Xj(t)

)
≤ Ri(t), Xj(t) ∈ population

}
(20)

where Ni(t) denotes the set of individual neighbors and Di denotes performing a European
distance operation.

The next step in neighborhood dimension learning is to update the dimensional coor-
dinates of the current individual using some dimensional information from the population
of neighbors and the dimensional information of an individual randomly selected from the
entire population, as expressed mathematically as follows:

XNDL_i,d(t + 1) = Xi,d(t) + sign(r− 0.5)× (Xn,d(t)− Xr,d(t)) (21)

where Xi,d(t) represents the d-dimensional information of the i-th search agent,
XNDL_i,d(t + 1) represents the new d-dimensional information after passing the NDL,
Xn,d(t) represents the d-dimensional information of the neighboring individuals, and
Xr,d(t) represents the d-dimensional information of the randomly selected individuals.

Finally, the fitness of the candidate population and the NDL population is calculated
to select the newer individuals, as shown by the following mathematical expression.

Xi(t + 1) =

{
XCAND_i(t + 1) if f (XCAND_i(t + 1)) < f (XNDL_i(t + 1))
XNDL_i(t + 1) if f (XCAND_i(t + 1)) < f (XNDL_i(t + 1))

(22)
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The pseudo-code of the proposed MSMPA is shown in Algorithm 1.

Algorithm 1. Pseudo-code of the MSMPA

Input: Number of Search Agents: N, Dim, Max_Iter
Output: The optimum fitness value
Generate chaotic tent mapping sequences by the Equation (11)
Initialized populations by the Equation (12)
Generation of Opposing Populations by the Equation (13)
Selection of the first N well-adapted individuals as the first generation of the population
While Iter < Max_Iter
Calculating Adaptive Inertia Weights by the Equation (14)
Calculating Adaptive Step Control Factors by the Equation (17)
Calculate fitness values and construct an elite matrix
If Iter < Max_Iter/3

Update prey by the Equation (15)
Else if Max_Iter/3 < Iter < 2∗Max_Iter/3

For the first half of the populations (i = 1, . . . , n/2)
Update prey by the Equation (15)
For the other half of the populations (i = n/2, . . . , n)
Update prey by the Equation (16)

Else if Iter > 2∗Max_Iter/3
Update prey by the Equation (16)
End If
Generation of candidate populations by the Equation (18)
Calculating Neighborhood Radius by the Equation (19)
Finding Neighborhood Populations by the Equation (20)
Calculation of NDL populations by the Equation (21)
Calculate fitness values to update population position by the Equation (22)
Updating Memory and Applying FADs effect and update by the Equation (10)
Calculate the fitness value of the population by the fitness function
Update the current optimum fitness value and the position of the best Search Agent
End while
Return the optimum fitness value

3. Simulation Experiments and Comparative Analysis

3.1. Experimental Environment and Algorithm Parameters

In this section, in order to verify the superiority of the proposed MSMPA in solving
the large-scale optimization problem, it is shown that the proposed MSMPA can be used to
solve the large-scale optimization problem. Eighteen classical benchmarking functions [50]
and 30 optimization functions from the CEC2017 competition [51] were selected and tested
against seven popular algorithms (MPA [17], PSO [8], GWO [9], WOA [13], MFO [10],
SOA [11], and SCA [12]). In order to ensure the fairness of the comparison between
evolutionary and swarm intelligence algorithms, the number of iterations is chosen to be
replaced by the number of function evaluations in this paper. The population size of the
experiment is 30, the maximal number of function evaluation is 30,000 with 30 independent
runs on each function. The experimental environment is Windows 10 64 bit, MATLAB
R2016A, Intel(R) Core CPU (i5-10210U 2.1GHz), 16G RAM. To ensure the fairness of the
comparison experiments, the parameter settings in the original literature are maintained
in this paper for each competing algorithm. The specific parameter settings are shown
in Table 1.
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Table 1. Parameter settings for each algorithm.

Algorithm Parameter Specific Settings

PSO c1 = 2, c2 = 2

GWO a = 2 ∗
(

1− t
Tmax

)
WOA a = 2 ∗

(
1− t

Tmax

)
MFO Convergence Constant ∈ [−1, −2], Logarithmic Spiral:0.75

SOA fc = 2, Control Parameter (A) ∈ [2, 0]

SCA r1 = a− t a
T

MPA FADs = 0.2 P = 0.5

MSMPA w = a cosb(ln(1 + e
Iter

Max_Iter ) + c P = m sin[π
5 × (

p

e
n×Iter

Max_Iter
)] + q FADs = 0.2

3.2. Benchmark Test Functions

The details of the 18 benchmark functions are shown in Table 2. Table 2 includes
seven high-dimensional single-peak functions (F1–F7), six high-dimensional multi-peak
functions (F8–F13), and five fixed-dimensional multi-peak functions (F14–F18). Since
the high-dimensional single-peak function has only one peak, it is used to test the local
convergence and convergence speed of the algorithm; the high-dimensional multipeak
function and the fixed-dimensional multipeak function have multiple peaks and only one
global optimum, so they are used to test the algorithm’s global optimum search and the
ability to jump out of the local optimum.

Table 2. Description of the 18 classical benchmarking functions.

Type Function Dim Range Optimum Value

Unimodal F1(x) =
n
∑

i=1
x2

i
50 [−100, 100] 0

Unimodal F2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 50 [−10, 10] 0

Unimodal F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
50 [−100, 100] 0

Unimodal F4(x) = max
i
{|xi |, 1 ≤ i ≤ n} 50 [−100, 100] 0

Unimodal F5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

50 [−30, 30] 0

Unimodal F6(x) =
n
∑

i=1
([xi + 0.5])2 50 [−100, 100] 0

Unimodal F7(x) =
n
∑

i=1
ix4

i + random[0, 1) 50 [−1.28, 1.28] 0

Multimodal F8(x) =
n
∑

i=1
−xi sin(

√
|xi |) 50 [−500, 500] −418.9829 ×d

Multimodal F9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 50 [−5.12, 5.12] 0

Multimodal F10(x) = −20exp(−0.2

√
1
n

n
∑

i=1
x2

i )− exp
(

1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 50 [−32, 32] 0

Multimodal F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 50 [−600, 600] 0
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Table 2. Cont.

Type Function Dim Range Optimum Value

Multimodal

F12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

where yi = 1 + xi+1
4 u(xi , a, k, m) =

 k(xi − a)m xi > a
0− a < xi < a
k(−xi − a)m xi < −a

50 [−50, 50] 0

Multimodal
F13(x) =

0.1

 sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+

(xn − 1)2[1 + sin2(2πxn)
]

+
n
∑

i=1
u(xi , 5, 100, 4)

50 [−50, 50] 0

Fixed Dimension F14(x) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1
2 [−65, 65] 1

Fixed Dimension F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

Fixed Dimension F16(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

Fixed Dimension F17(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

Fixed Dimension F18(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

To further test the performance of the algorithm, the CEC2017 Numerical Optimization
Competition Suite functions were also selected, including 3 single-peak functions, 7 multi-
peak functions, 10 mixed functions, and 10 composite functions. CEC2017 Numerical
Optimization functions are shown in Table 3. The dimensionality of all functions is set
to 10.

Table 3. CEC2017 numerical optimization functions.

Type No. Function Name Range Optimum Value

Unimodal CF1 Shifted and Rotated Bent Cigar Function [−100, 100] 100
Unimodal CF2 Shifted and Rotated Sum of Different Power Function [−100, 100] 200
Unimodal CF3 Shifted and Rotated Zakharov Function [−100, 100] 300

Multimodal CF4 Shifted and Rotated Rosenbrock’s Function [−100, 100] 400
Multimodal CF5 Shifted and Rotated Rastrigin’s Function [−100, 100] 500
Multimodal CF6 Shifted and Rotated Expanded Scaffer’s F6 Function [−100, 100] 600
Multimodal CF7 Shifted and Rotated Lunacek Bi_Rastrigin Function [−100, 100] 700
Multimodal CF8 Shifted and Rotated Non-Continuous Rastrigin’s Function [−100, 100] 800
Multimodal CF9 Shifted and Rotated Levy Function [−100, 100] 900
Multimodal CF10 Shifted and Rotated Schwefel’s Function [−100, 100] 1000

Hybrid CF11 Hybrid Function 1 (N = 3) [−100, 100] 1100
Hybrid CF12 Hybrid Function 2 (N = 3) [−100, 100] 1200
Hybrid CF13 Hybrid Function 3 (N = 3) [−100, 100] 1300
Hybrid CF14 Hybrid Function 4 (N = 4) [−100, 100] 1400
Hybrid CF15 Hybrid Function 5 (N = 4) [−100, 100] 1500
Hybrid CF16 Hybrid Function 6 (N = 4) [−100, 100] 1600
Hybrid CF17 Hybrid Function 6 (N = 5) [−100, 100] 1700
Hybrid CF18 Hybrid Function 6 (N = 5) [−100, 100] 1800
Hybrid CF19 Hybrid Function 6 (N = 5) [−100, 100] 1900
Hybrid CF20 Hybrid Function 6 (N = 6) [−100, 100] 2000



Mathematics 2021, 9, 291 13 of 34

Table 3. Cont.

Type No. Function Name Range Optimum Value

Composition CF21 Composition Function 1 (N = 3) [−100, 100] 2100
Composition CF22 Composition Function 2 (N = 3) [−100, 100] 2200
Composition CF23 Composition Function 3 (N = 4) [−100, 100] 2300
Composition CF24 Composition Function 4 (N = 4) [−100, 100] 2400
Composition CF25 Composition Function 5 (N = 5) [−100, 100] 2500
Composition CF26 Composition Function 6 (N = 5) [−100, 100] 2600
Composition CF27 Composition Function 7 (N = 6) [−100, 100] 2700
Composition CF28 Composition Function 8 (N = 6) [−100, 100] 2800
Composition CF29 Composition Function 9 (N = 3) [−100, 100] 2900
Composition CF30 Composition Function 10 (N = 3) [−100, 100] 3000

3.3. Experimental Results and Analysis

The convergence curve is a visual representation of the ability to evaluate the devel-
opment and speed of convergence of the algorithm to find the best, and the convergence
curves of MSMPA and seven other comparison algorithms on 18 benchmark functions
are shown in Figure A1 in Appendix A. From Figure A1, we can see that the convergence
speed of MSMPA on F1 to F4 is obviously faster than other algorithms and the end of the
convergence curve is also significantly lower than other algorithms; the fastest conver-
gence on F5 to F8, F12 and F13 is not the fastest, but the convergence accuracy of other
algorithms is significantly worse than MSMPA; on F9 to F11, the convergence speed and
convergence accuracy of MSMPA show significant superiority. MSMPA converges faster
than the other algorithms on solid-dimensional multimodal functions, except on F15, where
the convergence accuracy is poorer than that of MPA, and MSMPA exhibits significant
competitiveness.

In this experiment, the average (Ave), standard deviation (Std), maximum (Max),
and minimum (Min) are evaluated. The Friedman’s test [52], a popular statistical test for
non-parametric tests, is also used to make it easier to detect differences in the performance
of individual algorithms, to compare the average performance of each method across all ex-
perimental results, and to place the results at the end of the statistical table of experimental
results.

The test results of the 18 benchmark functions are shown in Table A1 in Appendix A,
where the bold data are the optimal values of all the methods in the same function per-
formance index. From Table A1, it can be seen that MSMPA performs optimally on the
high-dimensional single-peak functions, especially on F1~F4, where MSMPA achieves the
theoretical best value. This demonstrates the superiority of MSMPA in local search capa-
bility. In the high-dimensional multimode function, MSMPA shows obvious superiority,
except for the standard deviation on F8, where SCA is the best performer, MSMPA is the
best performer in other performance indexes, especially on F9 and F11, where MSMPA
achieves the theoretical global optimum. On the fixed-dimensional multimode functions,
except for F15, which is second to MPA, MSMPA is the best performer on all other func-
tions, especially on F16–F18, where MSMPA is optimized to the theoretical extremes and
its standard deviation is zero. MSMPA is the first place in the average rank of all functions
ranked by Friedman’s test.

The experimental results of CEC2017 are shown in Table A2 in Appendix A, in which
the bold font in the table is the optimal value of the current function under the same
evaluation index. From Table A2, it can be concluded that, in addition to the non-optimal
performance on F16, F21, F22, F24, and F25, the best performance is achieved on the other
functions, so the overall performance is optimal, and it is noteworthy that the theoretical
extremes were achieved on CF2. The average ranking of MSMPA in the Friedman test is
1.6167, which is still the best performance, followed by MPA.
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3.4. Algorithmic Stability Analysis

In order to show the stability of MSMPA and other algorithms more visually, this
experiment uses a box line diagram to show the distribution of the results of each function
after 30 independent tests. The numerical distribution of some of the selected functions is
selected from the test functions, and the test result box diagram of the selected functions is
shown in Figure A2 in Appendix A.

From Figure A2, it can be seen that MSMPA exhibits remarkable stability and superior
performance over the other algorithms for all functions, as shown by the fact that the lower
edge, upper edge, and median are always lower than the other algorithms for the same
function.

3.5. Wilcoxon Rank Sum Test Analysis

Since there are too many random factors affecting the performance of the algorithm,
a statistical test is used to compare the difference in performance between MSMPA and
other algorithms. The widely used Wilcoxon’s rank sum test [53] was selected, and 5%
was set as the index of significance, and p-values were obtained from the two-rank sum
analysis of MSMPA and other algorithms. If the p-value is greater than 5% or NaN, it
means that MSMPA is not statistically significantly different on this function. Wilcoxon’s
rank-sum tests for MSMPA and other algorithms yielded the p-values shown in Table A3
in Appendix A, where the bold text in the table indicates values greater than 5% or NaN.

From Table A3, it can be concluded that on F9, the MSMPA, MPA, and WOA tests
show results for NaN because on F9, all three algorithms take the theoretical optimum;
both MSMPA and MPA took the theoretical optimum on F11 and CF2, with no statisti-
cally significant differences between MSMPA and GWO and WOA on F11; MSMPA was
not statistically significantly different from MPA only on F14; No statistically significant
differences between MSMPA and MFO on F16, F17, CF3, CF9, and CF22; No statisti-
cally significant differences between MSMPA and PSO on CF2, CF11, CF20, CF23, and
CF28; MSMPA was statistically significantly different from SOA only on CF21. In general,
MSMPA is statistically significantly different from other algorithms in most functions,
demonstrating its superior ability to find the global optimum and jump out of the local
optimum.

3.6. High-Dimensional Functional Test Analysis

MPA performs poorly when dealing with complex high-dimensional problems and
tends to fall into local optimality. In order to verify the better performance of the proposed
MSMPA in global search and local optimization avoidance, the dimensions of F1–F13 are
set to 100, 200, and 500, respectively. It is stills run independently with the other seven
algorithms at the population size of 30 and the maximum number of iterations of 1000
for 30 times, and the results are counted and used in the Friedman test. The test results
for each high-dimensional function with dimensions of 100, 200, and 500 are shown in
Tables A4–A6 in Appendix A, respectively.

It can be seen from Tables A4–A6 that, apart from the second better performance
of MSMPA on F2 with a dimension of 500 than WOA, MSMPA is significantly more
competitive than other algorithms in dealing with complex and high-dimensional problems.
The final result of its Friedman test for the mean is ranked first. It is worth noting that, on
F1~F4, F9 and F11, MSMPA achieved the theoretical optimal value. These just prove the
stability and effectiveness of MSMPA in solving complex high-dimensional problems.
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4. Semi-Supervised Extreme Learning Machines and Its Improvements

4.1. Semi-Supervised Extreme Learning Machine

The mathematical expression for the objective function of SSELM is defined by intro-
ducing a Laplacian regularization term and using information from unlabeled samples
as follows:

min
β∈Rnh×no

1
2 ‖ β ‖2 + 1

2

l
∑

i=1
Ci ‖ ei ‖2 + λ

2 Tr
(

FT LF
)

s.t. h(xi)β = yT
i − eT

i , i = 1, . . . , l
fi = h(xi)β, i = 1, . . . , l + u

(23)

The solution to SSELM can be obtained with the following expression:

β∗ =
(

Inh + HTCH + λHT LH
)−1

HTCỸ (24)

where Inh is the unit matrix of nh.
If the number of crypto neurons is greater than the number of labeled samples, then

the following solution can be adopted, with the following expression:

β∗ = HT
(

Il+u + CHHT + λLHHT
)−1

CỸ (25)

where Il+u is the unit matrix of l + u.

4.2. Joint Hessian and Supervised Information Regularization Semi-Supervised Extreme
Learning Machine

4.2.1. Hessian Regularization

The Hessian regularization term [41] provides a simple way to establish the rela-
tionship between mappings and manifolds, which is derived from the Eells energy. The
Hessian energy can also be estimated by applying a simplified form of the derivative of
the second order of regular coordinates. Let Nk(Xi) be the set of k hypotenuse samples at
sample point Xi, and estimate the Hessian of f at Xi by computing H. The Hessian can be
approximated as follows:

∂2(XTU)

∂xr∂xs
| xi ≈

k

∑
j=1

H(i)
rsj f
(
Xj
)

(26)

The above equation can be solved by using linear least squares for a second-order
polynomial. The ideal form of H(i)

rsj . Hessian’s estimate of the Frobenius paradigm is thus
obtained:

5a5b f 2 ≈
m

∑
r,s=1

(
m

∑
α=1

H(i)
rsα fα

)2

=
k

∑
α,β=1

fα fβB(i)
αβ (27)

where B(i)
αβ =

m
∑

r,s=1
H(i)

rsαH(i)
rsβ is the Hessian energy to complete all the estimates.

Given a European clustering expression for Hessian at point Xi:

Hess( f ) =
n

∑
i=1

n

∑
i=1

(
∂2 f

∂xrxs
Xi

)2

=
n

∑
i=1

∑
Nk(Xi)β∈Nk(Xi)

fα fβB(i)
αβ (28)

where matrix B is the sum of all data points, and n represents the number of all labeled
and unlabeled data.
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4.2.2. Supervisory Information Regularization

Assuming that the labels of Xi and Xj are the same, then, assuming that the coefficients
Ls_ij = 1 at this time, the difference between their decision functions [ f (Xi)− f (Xj)] is

also small, then the optimization problem can be defined as
(

f (xi)− f
(

xj
))2Ls_ij with the

following expression for the elements of the coefficient matrix LS:

Ls_ij =
{ 1

Ls , Xi and Xjare in the same category
0, otherwise

(29)

where Ls is the number of combinations of all labeled consistent samples, others include the
case where one of the comparative combinations exists with or without labeled samples,
and i,j = 1, 2, ..., l, ..., l + u.

Assuming that the labels of Xi and Xj are different at the same time, then the product
of the decision function (f(Xi)*f(Xj)) is small, assuming that the coefficients Ld_ij = 1. The
optimization problem can be defined as f (xi) f

(
xj
)

Ld_ij, with the following expression for
the elements of the coefficient matrix LD:

Ld_ij =
{ 1

Ld , Xi and Xjare in the different category
0, otherwise

(30)

where Ld is the number of combinations of all label inconsistent samples, and the others
include the cases where one of the comparative combinations has an unlabeled sample.

The mathematical expression defining the regularization term of the supervision
constraint is as follows:

S =
l+u
∑

i=1

l+u
∑

j=1

(
f (Xi)− f

(
Xj
))2Ls_ij +

l+u
∑

i=1

l+u
∑

j=1
f (Xi) f

(
Xj
)

Ld_ij

= 2FT(LS_D− LS)F + 2FT(0.5× LD)F
= 2FT(LS_D− LS + 0.5× LD)F

(31)

where LS _D is the diagonal matrix of the matrix LS.

4.2.3. Joint Regularization SSELM

In order to make full use of the direct associations of various categories contained in
the label information, a regularization term of supervision information is introduced to
enhance SSELM. Then, the Laplacian regularization in the original SSELM is replaced with
the joint Hessian regularization and supervision information regularization term, hence,
JRSSELM is proposed.

Assume that the training set consists of L labeled data and U unlabeled data, repre-
sented by {Xl , Yl} = {Xi, Yi}L

i=1 and Xu = {Xi}U
i=1, respectively. Among the L labeled

data, there are Ls combinations with the same label, and Ld combinations with different
labels. The Hessian regularization and supervision information regularization terms are
introduced to replace the original Laplace regularization terms, and the objective function
optimized by JRSSELM can be obtained. The mathematical expression is defined as follows:

min
β∈Rnh×no

1
2 ‖ β ‖2 + 1

2

l
∑

i=1
ciei

2 + λ1
2 FTHessF + λ2

2 S

s.t. h(xi)β = yT
i − eT

i , i = 1, · · · , l

fi = h(xi)β, i = 1, · · · , u + l

(32)

where λ1 and λ2 are tradeoff parameters.
Substituting the constraints into the objective function, a new optimized objective

function can be obtained, and its expression is as follows:

min
β∈Rn ,x,no

1
2
‖ β ‖2 +

1
2
‖ C

1
2 (Ỹ− Hβ) ‖2 +

λ1

2
Tr
(

βT HT HessHβ
)
+

λ2

2
Tr
[

βT HT(LS_D− LS + 0.5× LD)Hβ
]

(33)
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where Ỹ ∈ R(l+u)×no represents the training target to be reinforced, C is a (l + u)× (l + u)-
dimensional matrix whose first l diagonal element is [C]ii = Ci, and all the other elements
are zero.

Then the derivative of the objective function to β is expressed as follows:

∇LJRSSELM = β + HTC(Ỹ− Hβ) + λ1 · HT HessHβ + λ2 · HT(LS_D− LS + 0.5× LD)Hβ (34)

If the derivative value is set to zero, then the JRSSELM solution can be obtained, and
its expression is as follows:

β∗ =
[

Inh + HTCH + λ1HTHessH + λ2HT(LS_D− LS + 0.5× LD)H
]−1

HTCỸ (35)

If the number of hidden layer neurons is greater than the number of labeled samples,
the following solutions can be adopted, and the expression is as follows:

β∗ = HT
[

Il+u + CHHT + λ1HessHHT + λ2(LS_D− LS + 0.5× LD)HHT
]−1

CỸ (36)

where Il+u is the unit matrix of l + u.

4.3. Hybrid MSMPA and Joint Regularized Semi-Supervised Extreme Learning Machine

The input weights and hidden layer deviations in the original SSELM are generated
by randomization and will not be adjusted in the future. The grid selection of its hyperpa-
rameters often leads to limited performance and poor stability of the model. The values of
hyperparameters are all {10−5, 10−4, . . . , 104, 105}, which can be calculated by the following
mathematical expressions:

C0 = 106−i (37)

λ = 106−j (38)

where i and j are integers between [0, 11].
JRSSELM and SSELM maintain consistency in parameter settings. The input weights

and hidden layer deviations are also randomly generated and will not be updated in the
future. The hyperparameters are also selected for gridding, and the value range remains
the same as in SSELM. Its mathematical expression is as follows:

λ1 = 106−l (39)

λ2 = 106−m (40)

where l and m are integers between [0, 11].
MSMPA is proposed to optimize the selection of various parameters in JRSSELM. To

further improve the classification performance and robustness of JRSSELM, first, input
weight w, hidden layer deviation b, C0, λ1, and λ2 as the coordinates of the search agent.
If the number of hidden layers at this time is hn, and the number of neurons in the input
layer is hi, then each prey dimension is [hn(hi + 1) + 3]. It is worth noting that the first
[hn(hi + 1) + 3]-dimensional coordinates represent the input weight and hidden layer
threshold, so its value range is [−1, 1], and the last three dimensions represent the position
information of C0, λ1 and λ2, respectively. The range is set to [−5, 5]. To be consistent with
the value range of JRSSELM, the calculation can be performed as follows:

C0 = 10XM−2
i (41)

λ1 = 10XM−1
i (42)

λ2 = 10XM
i (43)
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where M = [hn(hi + 1) + 3] is the total dimension and XM
i represents the M-dimensional

coordinates of the i-th search agents.
Secondly, the selection of the fitness function is particularly important. In order to

make a fair comparison with SSELM and JRSSELM, both SSELM and JRSSELM select the
optimal hyperparameter combination by calculating the prediction error of the test set.
Therefore, the fitness function is also selected as the test set prediction error in MSMPA,
and its mathematical expression is as follows:

f itness = 1− TP + TN
TP + TN + FP + FN

(44)

where TP stands for true positive, TN stands for true negative, FP stands for false positive,
and FN stands for false negative.

The pseudo code for the MSMPA and JRSSELM mix is shown in Algorithm 2.

Algorithm 2. Pseudo-code of the MSMPA-JRSSELM

Input: L labeled samples {Xl , Yl} = {Xi, Yi}L
i=1

U unlabeled samples, Xu = {Xi}U
i=1

Number of Search Agents: N, Dim, Max_Iter
Output: The best mapping function of JRSSELM:f:Rni → Rno

Step 1: Constructing Hessian regularization terms and supervisory information regularization
terms via Xl and Xu.
Step 2: Generate chaotic tent mapping sequences by the Equation (11)

Initialized populations by the Equation (12)
Generation of Opposing Populations by the Equation (13)
Selection of the first N well-adapted individuals as the first generation of the population

Step 3:
If hn ≤ N
Calculate the output weights β∗ by Equation (35)
Else if
Calculate the output weights β∗ by Equation (36)

Step 4:
While Iter < Max_Iter
Update all population positions by MSMPA
Repeat step 3
Calculate the fitness of each search agent by the Equation (44)
End while

Step 5: Outputs the best search agent position and optimal value
Step 6: Optimal mapping functions of JLSSELM: f ∗(x) = h(x)β∗

5. Oil Logging Oil Layer Identification Applications

5.1. Design of Oil Layer Identification System

In oil logging, the oil layer identification technology is a very complex dynamic
research technology, and it is also a very critical element. Many factors affect the oil
layer distribution, such as reservoir thickness, oil pressure, permeability, water content,
reservoir pressure, storage effective thickness, and so on. The most important thing is the
accuracy of the identification, which can assist the oil layer exploration and provide effective
information for the engineers to make the decision. The MSMPA-JRSSELM proposed in
this paper is highly accurate in classification and can make accurate predictions of oil layer
distribution on a test set using a small number of marker samples and a large number of
unmarked samples. Therefore, MSMPA-JRSSELM is applied to oil logging to verify the
effectiveness of this algorithm by using oil data provided by a Chinese oil field. The block
diagram of the oil layer identification system is shown in Figure 3.

From Figure 3, it can be seen that there are several major steps in oil layer identification.
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Phase 1 (Data set delineation and pre-processing). The selection of the dataset should
be complete and comprehensive and should be closely related to the oil layer evaluation.
The data set is divided into two parts: training sample and test sample, in which a small
portion of samples from the training set are selected as labeled samples.

Phase 2 (Attribute discretization and generalization). In order to approximate the
attributes of the sample information, the decision attributes D = {d},d = {di = i, i = −1, 1},
where −1 and 1 represent the dry layer and the oil layer, respectively. For the discretization
of the conditional attributes, in order to conform to the actual geophysical characteristics,
the continuous attributes are discretized by the curvilinear inflection point method [54],
in which each attribute is discretized separately in turn, i.e., first, the attribute values
are arranged from small to large to find the possible inflection point locations, and then
the appropriate discretization points are filtered out according to the target layer range
constraints.

Phase 3 (Attribute reduction of data information). Since the degree of decisiveness of
each conditional attribute on the oil layer distribution is not consistent, there are more than
ten conditional attributes in the logging data, but only a few conditional attributes play a
decisive role, so it is necessary to eliminate other redundant attributes to avoid algorithm
redundancy. In this paper, we adopt a Rough Set based on consistent coverage for attribute
reduction [55].

Phase 4 (Training the MSMPA-JRSSELM classifier). In the MSMPA-JRSSELM model,
the sample information is input after attribute reduction, and training is carried out using
the JRSSELM model. The MSMPA is used to find better training parameters to improve the
model recognition accuracy until the iterations are completed, and the optimal MSMPA-
JRSSELM classification model is obtained.

Phase 5 (Test Set Prediction Task). The trained MSMPA-JRSSELM model is used to
predict the formation for the entire well oil layer of the test set and output the results. To
validate the validity and stability of the model, we selected data from two wells for the
experimental comparative analysis.

5.2. Practical Applications

In order to verify the application effect of the semi-supervised model optimized by
the improved algorithm, three logging data were selected from the database for training
and testing, and they were recorded as well 1 and well 2. The data set division of these
two wells is shown in Table 4. It can be seen from Table 4 that the oil layer and dry layer
distribution range in the training set and test set. In addition, the attribute reduction
results of the two wells are shown in Table 5. It can be seen from Table 5 that there are
many redundant conditional attributes in the original data. After Rough Set attribute
reduction, important attributes can be selected, which greatly simplifies the complexity of
the algorithm. The value range of attributes after attribute reduction is shown in Table 6.
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Table 4. Details of the data set division between the two wells.

Well Depth (m)
Training Set Test Set

Oil Layers Dry Layers Depth (m) Oil Layers Dry Layers

Well 1 3150~3330 88 247 3330~3460 115 981
Well 2 1180~1255 45 192 1230~1300 92 469

Table 5. Results of attribute reduction.

Well Attributes

Original results (Well 1) U,TH,K,DT,SP,WQ,LLD,LLS,CALI,GR,DEN,NPHI,PE
Reduction results (Well 1) GR,DT,SP,LLD,LLS,DEN,K

Original results (Well 2) AC,C2,CALI,RINC,PORT, RHOG,SW,VO,WO,PORE,VCL,VMA1,
CNL,DEN,GR,RT,RI,RXO,SP,VMA6, VXO,VW,so,rnsy,rsly,rny,AC1, R2M,R025,BZSP,RA2,C1

Reduction results (Well 2) AC,GR,RT,RXO,SP
Decision attribute D = {d},d = {di = i, i = −1, 1} where −1, 1 represent the dry layer and oil layer, respectively.

Table 6. Range of values for each attribute after attribute reduction.

Attributes
Range of Values

Well 1 Well 2

GR [6, 200] [27, 100]
DT [152, 462] /
SP [−167, −68] [−32, −6]

LLD [0, 2.5 × 104] /
LLS [0, 3307] /
DEN [1, 4] /

K [0, 5] /
AC / [54, 140]
RT / [2, 90]
RI / /

RXO / [1, 328]
NG / /

From Table 6, we can see the range of values for each of the well 1 and well 2 properties,
where GR stands for natural gamma, DT stands for acoustic time difference, SP stands for
natural potential, LLD stands for deep lateral resistivity, LLS stands for shallow lateral
resistivity, DEN stands for compensation density, and K stands for potassium. AC stands
for acoustic time difference, RT stands for in situ ground resistivity, and RXO stands for
flush zone resistivity. For the simplified conditional attributes, since the units of each
attribute are different and the value ranges are different, the data should be normalized
first, so that the range of the sample data is between [0, 1], and then the normalized
influencing factor data should be substituted into the network for training and testing to
obtain the results. The formula for normalizing the sample is as follows:

x = 2× (x− xmin)

xmax − xmin
− 1 (45)

where x ∈ [xmin, xmax], xmin is the minimum value of the data sample attribute, and xmax
is the maximum value of the data sample attribute.

After normalizing the reduced attributes, the logging curve is shown in Figure 4, where
the horizontal axis represents the depth and the vertical axis represents the normalized
value. It can be seen from Figure 4 that the logging curves of each condition attribute
are completely different, and effective information cannot be obtained directly from the
logging curves.
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To evaluate the performance of the recognition model, in addition to the test set
prediction accuracy, we defined the following performance metrics:

RMSE =

√
1
m

m

∑
i=1

( f (x)− y)2 (46)

MAE =
1
m

m

∑
i=1
| f (x)− y| (47)

where f (x) and y are the predicted and desired output values, respectively.
The RMSE is a measure of the deviation between the predicted value and the true

value, and the MAE is the average of the absolute errors. The smaller the RMSE and MAE,
the better the performance of the algorithmic model. Therefore, RMSE is used as a criterion
for evaluating the accuracy of each algorithmic model, and MAE is often used as the actual
prediction and prediction error because it better reflects the actual error of the predicted
value.

In order to comprehensively test the superiority of the proposed JRSSELM and
MSMPA-JRSSELM models on semi-supervised learning, we divided the labeled sam-
ples into two categories of 10% and 20% in the training set and conducted comparison
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experiments with the supervised learning model ELM and other semi-supervised learning
models, including LapSVM [56], SSELM, and MPA-JRSSELM. They were run indepen-
dently for 30 times, the number of hidden layer neurons was 100, and the maximum
number of iterations was 100. Then, the average of the individual performance metrics
was calculated. The classification performance of each model on well 1 is shown in Table 7.
It should be noted that although the number of labeled samples has different ratios, the
training set is invariant for ELM, so its ACC, MAE, and RMSE are consistent across the
labeled samples.

Table 7. Performance of each model on well 1.

Proportion of
Labeled Samples

Evaluation
Indicators ELM LapSVM SSELM JRSSELM MPA-

JRSSELM
MSMPA-
JRSSELM

10%
ACC (%) 89.9038 84.1346 90.3846 92.7885 93.4615 95.0962

MAE 0.2019 0.3714 0.1923 0.1442 0.1308 0.0981
RMSE 0.6355 0.7966 0.6202 0.5371 0.5114 0.4429

20%
ACC (%) 89.9038 86.4423 90.5769 93.2692 94.1346 95.3846

MAE 0.2019 0.2712 0.1885 0.1346 0.1173 0.0923
RMSE 0.6355 0.7364 0.6139 0.5189 0.4844 0.4641

From Table 7, it can be seen that LapSVM performs the worst, with the proposed
JRSSELM improving its classification accuracy by nearly 3% over SSELM. With the increase
in the number of labeled samples in the training set, the MSMPA-JRSSELM performance
was further improved after MSMPA optimized selection parameters, with nearly 5% higher
than SSELM and 2% higher than JRSSELM, and with the lowest MAE and RMSE, reflecting
the significant competitive advantage of MSMPA-JRSSELM on well 1.

The classification performance of each model on Well 2 is shown in Table 8. It can be
seen from Table 8 that LapSVM performs the worst, and the classification performance
of SSELM is inferior to ELM, while the classification accuracy of JRSSELM proposed by
us is slightly higher than that of ELM, and it is more noteworthy that MSMPA-JRSSELM
improves the classification accuracy by nearly 8% compared to SSELM, reaching about 98%
classification accuracy, and its MAE and RMSE are also the lowest values, which is helpful
for well discrimination decision making. It has engineering applications, which reflect the
obvious advantages of the proposed classifier for oil layer identification in oil logging.

Table 8. Performance of each model on well 2.

Proportion of
Labeled Samples

Evaluation
Indicators ELM LapSVM SSELM JRSSELM MPA-

JRSSELM
MSMPA-
JRSSELM

10%
ACC (%) 93.5829 88.2353 89.6613 93.7611 96.7914 97.3262

MAE 0.1283 0.2352 0.2068 0.1248 0.0642 0.0535
RMSE 0.5066 0.6860 0.6431 0.499554 0.3582 0.3270

20%
ACC (%) 93.5829 89.1266 90.0178 94.1177 97.8610 98.7522

MAE 0.1283 0.2175 0.1996 0.1176 0.0428 0.0250
RMSE 0.5066 0.6595 0.6319 0.4851 0.2925 0.2234

In order to more intuitively observe the original oil test conclusions and predicted oil
layer distribution of the test set, the original and predicted oil layer distributions of the two
wells are shown in Figure 5. It can be seen from Figure 5 that for Well 1, as the proportion
of labeled samples increases, the oil layer prediction is significantly more accurate, and
the oil layer distribution position is basically consistent with the oil test conclusion. For
Well 2, whether it is a training model with 10% or 20% of the training set of labeled samples,
its predictions are almost consistent with the oil test conclusions, which has application
significance for auxiliary oil logging.
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6. Conclusions

In this paper, in order to better utilize only a small number of labeled samples and
a large number of unlabeled samples to obtain better classification performance, a novel
semi-supervised classification model, namely MSMPA-JRSSELM, is proposed.

First, the MSMPA is designed to address the shortcomings of the original MPA in solv-
ing global optimization problems such as slow convergence and poor ability to avoid local
optima. There are 3 efficient strategies introduced in MPA. A chaotic opposition learning
strategy is used to ensure high quality initial populations, adaptive inertial weights, and
adaptive step control factors are adopted to enhance early global exploration and later
fine-grained exploitation behavior and speed up convergence, and a neighbor dimensional
learning strategy is proposed to ensure population diversity in each iteration. Among
the 18 classical benchmark functions and 30 CEC2017 competition functions, MSMPA ex-
hibits significant superiority over other algorithms, especially in solving high-dimensional
complex problems, MSMPA exhibits strong global search and the ability to avoid local
optimality.

Secondly, since SSELM uses Laplace regularization with weaker inferential power,
Hessian regularization with stronger extrapolation power and the ability to maintain the
manifold structure is used instead of Laplace regularization. Third, in response to the
SSELM’s inability to fully utilize the valid information embedded in the labeled samples, a
supervised regularization term that assigns new coefficient weights to the given labeled
information is proposed. Hessian regularization and supervised regularization are added
to ELM to propose JRSSELM. finally, to further improve the classification performance
of JRSSELM, MSMPA is proposed to optimize the selection of input weights, implied
thresholds and hyperparameters in JRSSELM. To verify the effectiveness of JRSSELM and
MSMPA-JRSSELM, they are applied to oil layer identification in logging. The experimental
results show that JRSSELM and MSMPA-JRSSELM outperform SSELM and other popular
classification methods in ACC, MAE and RMSE, especially MSMPA-JRSSELM shows the
most excellent classification performance.

Further research and applications of MPA and SSELM are warranted, considering
the combination of MPA with other meta-heuristics, the introduction of cost-sensitive
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learning in SSELM, and the application of MPA and SSELM to other complex engineering
problems. We consider combining SSELM with deep learning, adding self-encoder, con-
volution, down sampling, and other deep learning methods, which can realize automatic
feature extraction and finally apply to regression problems such as short-term power load
forecasting, meteorological load forecasting and wind power interval forecasting.
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Abbreviations
The main abbreviations in this paper are shown below.

ELM Extreme Learning Machines
SSELM Semi-Supervised Extreme Learning Machine
JRSSELM Joint Regularized Semi-Supervised Extreme Learning Machine
MPA Marine Predator Algorithm
MSMPA Multi-Strategy Marine Predator Algorithm
PSO Particle Swarm Optimization
GWO Gray Wolf Optimization
MFO Moth Flame Optimization
SOA Seagull Optimization Algorithm
SCA Sine Cosine Algorithm
WOA Whale Optimization Algorithm
COA Coyote Optimization Algorithm
CPA Carnivorous Plant Algorithm
TSA Transient Search Algorithm
RF Random Forests
SVM Support Vector Machines
LapSVM Laplace Support Vector Machines
FADS Fish Aggregation Device Effects
NDL Neighborhood Dimensional Learning
GR natural gamma
DT acoustic time difference
SP natural potential
LLD deep lateral resistivity
LLS shallow lateral resistivity
DEN compensation density
K Potassium
AC acoustic time difference
RT in situ ground resistivity
RXO flush zone resistivity

Appendix A

The experimental results in Section 3 are presented below, including statistics for each
algorithm, Wilcoxon’s rank sum test results, convergence curves, and box line plots.
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Table A1. Test results of 18 benchmark functions.

Function Criteria MSMPA MPA PSO GWO WOA MFO SOA SCA

F1

Ave 0.00 × 10+00 2.69 × 10−46 6.83 × 10+00 6.68 × 10−44 1.04 × 10−147 7.07 × 10+03 1.51 × 10−20 2.49 × 10+02

Std 0.00 × 10+00 5.14 × 10−46 2.36 × 10+00 6.83 × 10−44 5.56 × 10−147 8.97 × 10+03 6.40 × 10−20 4.54 × 10+02

Max 0.00 × 10+00 2.51 × 10−45 1.32 × 10+01 2.82 × 10−43 3.10 × 10−146 3.00 × 10+04 3.58 × 10−19 2.10 × 10+03

Min 0.00 × 10+00 8.73 × 10−50 2.58 × 10+00 1.17 × 10−45 7.10 × 10−169 5.58 × 10−01 8.03 × 10−24 3.35 × 10−01

F2

Ave 0.00 × 10+00 1.54 × 10−26 1.07 × 10+01 4.86 × 10−26 1.53 × 10−102 7.23 × 10+01 5.22 × 10−14 3.62 × 10−02

Std 0.00 × 10+00 1.84 × 10−26 1.99 × 10+00 7.31 × 10−26 7.40 × 10−102 3.59 × 10+01 4.46 × 10−14 1.07 × 10−01

Max 0.00 × 10+00 6.62 × 10−26 1.43 × 10+01 4.06 × 10−25 4.13 × 10−101 1.60 × 10+02 1.68 × 10−13 6.03 × 10−01

Min 0.00 × 10+00 2.69 × 10−29 6.18 × 10+00 6.58 × 10−27 2.77 × 10−113 1.02 × 10+01 2.92 × 10−15 1.68 × 10−04

F3

Ave 0.00 × 10+00 1.41 × 10−07 1.14 × 10+03 4.79 × 10−05 1.26 × 10+05 5.10 × 10+04 5.27 × 10−08 3.40 × 10+04

Std 0.00 × 10+00 4.73 × 10−07 2.68 × 10+02 2.41 × 10−04 3.33 × 10+04 2.18 × 10+04 1.54 × 10−07 1.27 × 10+04

Max 0.00 × 10+00 1.94 × 10−06 1.72 × 10+03 1.35 × 10−03 1.92 × 10+05 9.65 × 10+04 7.80 × 10−07 6.49 × 10+04

Min 0.00 × 10+00 1.15 × 10−15 4.71 × 10+02 9.28 × 10−10 6.77 × 10+04 1.72 × 10+04 2.45 × 10−13 9.15 × 10+03
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Table A1. Cont.

Function Criteria MSMPA MPA PSO GWO WOA MFO SOA SCA

F4

Ave 0.00 × 10+00 1.34 × 10−17 3.27 × 10+00 1.54 × 10−09 6.31 × 10+01 8.44 × 10+01 2.51 × 10−01 5.97 × 10+01

Std 0.00 × 10+00 1.04 × 10−17 3.66 × 10−01 1.77 × 10−09 2.58 × 10+01 4.68 × 10+00 7.91 × 10−01 8.01 × 10+00

Max 0.00 × 10+00 4.37 × 10−17 4.44 × 10+00 7.16 × 10−09 9.30 × 10+01 9.22 × 10+01 4.09 × 10+00 7.34 × 10+01

Min 0.00 × 10+00 2.09 × 10−18 2.30 × 10+00 1.35 × 10−10 6.17 × 10+00 7.73 × 10+01 6.95 × 10−07 4.50 × 10+01

F5

Ave 7.20 × 10−06 4.44 × 10+01 3.46 × 10+03 4.73 × 10+01 4.77 × 10+01 1.34 × 10+07 4.84 × 10+01 6.32 × 10+05

Std 1.10 × 10−05 7.72 × 10−01 1.57 × 10+03 7.86 × 10−01 5.31 × 10−01 3.62 × 10+07 3.98 × 10−01 9.81 × 10+05

Max 4.12 × 10−05 4.77 × 10+01 7.11 × 10+03 4.86 × 10+01 4.86 × 10+01 1.60 × 10+08 4.88 × 10+01 4.37 × 10+06

Min 3.86 × 10−12 4.32 × 10+01 1.32 × 10+03 4.61 × 10+01 4.67 × 10+01 4.03 × 10+02 4.72 × 10+01 4.06 × 10+03

F6

Ave 7.49 × 10−07 1.13 × 10−02 6.38 × 10+00 2.40 × 10+00 4.11 × 10−01 8.09 × 10+03 7.19 × 10+00 1.75 × 10+02

Std 9.73 × 10−07 4.31 × 10−02 2.08 × 10+00 5.60 × 10−01 2.24 × 10−01 9.11 × 10+03 5.36 × 10−01 3.22 × 10+02

Max 3.87 × 10−06 2.16 × 10−01 1.25 × 10+01 3.25 × 10+00 1.04 × 10+00 4.02 × 10+04 8.13 × 10+00 1.22 × 10+03

Min 1.05 × 10−08 3.24 × 10−08 3.04 × 10+00 1.25 × 10+00 8.74 × 10−02 1.08 × 10+00 5.89 × 10+00 8.70 × 10+00

F7

Ave 2.48 × 10−05 6.96 × 10−04 1.63 × 10+02 1.24 × 10−03 1.50 × 10−03 1.56 × 10+01 1.62 × 10−03 9.81 × 10−01

Std 1.95 × 10−05 3.03 × 10−04 6.65 × 10+01 6.62 × 10−04 1.77 × 10−03 1.87 × 10+01 1.59 × 10−03 1.29 × 10+00

Max 8.65 × 10−05 1.17 × 10−03 3.12 × 10+02 2.75 × 10−03 7.74 × 10−03 7.84 × 10+01 7.56 × 10−03 5.10 × 10+00

Min 8.50 × 10−07 1.76 × 10−04 4.01 × 10+01 4.42 × 10−04 2.61 × 10−06 4.46 × 10−01 2.76 × 10−04 2.77 × 10−02

F8

Ave −4.67 × 10+04 −1.51× 10+04 −9.99× 10+03 −9.71× 10+03 −1.86× 10+04 −1.31× 10+04 −7.25× 10+03 −5.02× 10+03

Std 1.12 × 10+04 6.77 × 10+02 2.01 × 10+03 8.12 × 10+02 2.60 × 10+03 1.27 × 10+03 1.09 × 10+03 3.08 × 10+02

Max −1.85 × 10+04 −1.39× 10+04 −4.30× 10+03 −8.11× 10+03 −1.32× 10+04 −1.10× 10+04 −5.82× 10+03 −4.61× 10+03

Min −5.45 × 10+04 −1.63× 10+04 −1.25× 10+04 −1.12× 10+04 −2.09× 10+04 −1.51× 10+04 −1.00× 10+04 −5.68× 10+03

F9

Ave 0.00 × 10+00 0.00 × 10+00 3.18 × 10+02 3.24 × 10−01 0.00 × 10+00 2.98 × 10+02 1.16 × 10−01 6.41 × 10+01

Std 0.00 × 10+00 0.00 × 10+00 4.37 × 10+01 1.39 × 10+00 0.00 × 10+00 6.59 × 10+01 6.23 × 10−01 4.72 × 10+01

Max 0.00 × 10+00 0.00 × 10+00 4.11 × 10+02 7.48 × 10+00 0.00 × 10+00 4.26 × 10+02 3.47 × 10+00 1.74 × 10+02

Min 0.00 × 10+00 0.00 × 10+00 2.25 × 10+02 0.00 × 10+00 0.00 × 10+00 1.73 × 10+02 0.00 × 10+00 1.32 × 10−01

F10

Ave 8.88 × 10−16 4.32 × 10−15 3.18 × 10+00 3.32 × 10−14 3.73 × 10−15 1.95 × 10+01 2.00 × 10+01 1.94 × 10+01

Std 0.00 × 10+00 6.38 × 10−16 3.72 × 10−01 4.71 × 10−15 2.81 × 10−15 5.73 × 10−01 9.30 × 10−04 3.73 × 10+00

Max 8.88 × 10−16 4.44 × 10−15 4.04 × 10+00 4.35 × 10−14 7.99 × 10−15 2.00 × 10+01 2.00 × 10+01 2.05 × 10+01

Min 8.88 × 10−16 8.88 × 10−16 2.49 × 10+00 2.22 × 10−14 8.88 × 10−16 1.76 × 10+01 2.00 × 10+01 9.91 × 10−02

F11

Ave 0.00 × 10+00 0.00 × 10+00 1.90 × 10−01 2.40 × 10−03 8.03 × 10−03 7.33 × 10+01 4.70 × 10−03 1.31 × 10+00

Std 0.00 × 10+00 0.00 × 10+00 7.04 × 10−02 7.28 × 10−03 2.42 × 10−02 7.82 × 10+01 1.35 × 10−02 7.09 × 10−01

Max 0.00 × 10+00 0.00 × 10+00 4.10 × 10−01 2.71 × 10−02 8.76 × 10−02 2.71 × 10+02 6.16 × 10−02 4.82 × 10+00

Min 0.00 × 10+00 0.00 × 10+00 9.82 × 10−02 0.00 × 10+00 0.00 × 10+00 7.64 × 10−01 0.00 × 10+00 6.90 × 10−01

F12

Ave 2.33 × 10−09 1.88 × 10−04 1.96 × 10−01 7.81 × 10−02 1.15 × 10−02 1.71 × 10+07 4.92 × 10−01 5.61 × 10+06

Std 2.83 × 10−09 6.10 × 10−04 3.31 × 10−01 2.68 × 10−02 7.35 × 10−03 6.39 × 10+07 1.00 × 10−01 1.42 × 10+07

Max 1.42 × 10−08 2.96 × 10−03 1.88 × 10+00 1.54 × 10−01 3.48 × 10−02 2.56 × 10+08 7.93 × 10−01 7.01 × 10+07

Min 2.10 × 10−12 1.78 × 10−09 3.36 × 10−02 3.38 × 10−02 3.39 × 10−03 2.27 × 10+00 3.42 × 10−01 5.09 × 10+00

F13

Ave 4.59 × 10−08 9.99 × 10−02 1.96 × 10+00 1.92 × 10+00 6.35 × 10−01 4.10 × 10+07 3.95 × 10+00 3.43 × 10+06

Std 5.09 × 10−08 9.80 × 10−02 5.29 × 10−01 3.47 × 10−01 2.93 × 10−01 1.23 × 10+08 2.44 × 10−01 5.41 × 10+06

Max 2.06 × 10−07 3.73 × 10−01 2.82 × 10+00 2.45 × 10+00 1.41 × 10+00 4.10 × 10+08 4.46 × 10+00 2.59 × 10+07

Min 5.46 × 10−11 8.88 × 10−08 1.14 × 10+00 7.63 × 10−01 1.92 × 10−01 2.27 × 10+01 3.54 × 10+00 6.89 × 10+02

F14

Ave 9.98 × 10−01 9.98 × 10−01 3.30 × 10+00 3.52 × 10+00 2.08 × 10+00 2.25 × 10+00 1.59 × 10+00 1.59 × 10+00

Std 0.00 × 10+00 5.73 × 10−17 2.67 × 10+00 3.54 × 10+00 2.45 × 10+00 2.10 × 10+00 9.09 × 10−01 9.08 × 10−01

Max 9.98 × 10−01 9.98 × 10−01 1.08 × 10+01 1.27 × 10+01 1.08 × 10+01 1.08 × 10+01 2.98 × 10+00 2.98 × 10+00

Min 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01

F15

Ave 0.0004 0.0003 0.0008 0.0038 0.0007 0.001 0.0012 0.0009
Std 0.0002 0 0.0003 0.0074 0.0005 0.0004 0 0.0004

Max 0.0012 0.0003 0.0019 0.0204 0.0022 0.0023 0.0012 0.0015
Min 0.0003 0.0003 0.0004 0.0003 0.0003 0.0006 0.0012 0.0003

F16

Ave −10.1532 −10.1532 −7.7963 −9.6475 −8.6505 −8.0628 −3.5614 −2.885
Std 0 0 2.7564 1.5157 2.5831 3.0377 4.3677 1.8174

Max −10.1532 −10.1532 −2.6305 −5.1003 −0.881 −2.6305 −0.3507 −0.4965
Min −10.1532 −10.1532 −10.1532 −10.1531 −10.153 −10.1532 −10.1373 −4.9475

F17

Ave −10.4028 −10.4028 −10.2258 −10.2267 −8.5934 −8.7168 −6.0807 −4.1795
Std 0 0 0.9541 0.9467 2.7846 3.065 4.5085 2.4846
Max −10.4028 −10.4028 −5.0877 −5.1284 −2.7655 −2.7659 −0.3724 −0.5224
Min −10.4028 −10.4028 −10.4028 −10.4028 −10.4028 −10.4028 −10.4005 −9.5476

F18

Ave −10.5363 −10.5363 −9.8201 −10.536 −9.014 −8.2934 −8.0033 −4.7824
Std 0 0 1.8263 0.0002 2.5492 3.225 3.938 1.5385

Max −10.5363 −10.5363 −5.1285 −10.5354 −2.8064 −2.4273 −0.5542 −0.9448
Min −10.5363 −10.5363 −10.5363 −10.5363 −10.5363 −10.5363 −10.5342 −8.8356

Friedman Average Rank 1.6551 2.4101 4.9058 4.4775 4.3225 5.3986 5.7667 7.0638
Rank 1 2 5 4 3 6 7 8
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Table A2. CEC2017 optimization function results.

Function Criteria MSMPA MPA PSO GWO WOA MFO SOA SCA

CF1 Ave 1.00 × 10+02 1.00 × 10+02 2.67 × 10+03 2.46 × 10+06 1.37 × 10+10 4.68 × 10+06 1.84 × 10+08 6.00 × 10+08

Std 1.58 × 10−05 6.00 × 10−03 2.86 × 10+03 6.44 × 10+06 5.50 × 10+09 1.75 × 10+07 1.83 × 10+08 2.07 × 10+08

CF2 Ave 2.00 × 10+02 2.00 × 10+02 2.00 × 10+02 3.68 × 10+06 1.57 × 10+12 1.04 × 10+08 1.29 × 10+07 7.48 × 10+06

Std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.08 × 10+07 5.97 × 10+12 4.01 × 10+08 1.78 × 10+07 1.45 × 10+07

CF3 Ave 3.00 × 10+02 3.00 × 10+02 3.00 × 10+02 8.85 × 10+02 2.36 × 10+04 3.13 × 10+03 1.47 × 10+03 1.06 × 10+03

Std 4.01 × 10−10 2.83 × 10−08 2.29 × 10−08 1.15 × 10+03 1.33 × 10+04 4.97 × 10+03 1.08 × 10+03 4.75 × 10+02

CF4 Ave 4.00 × 10+02 4.00 × 10+02 4.03 × 10+02 4.12 × 10+02 1.50 × 10+03 4.09 × 10+02 4.40 × 10+02 4.33 × 10+02

Std 1.20 × 10−07 8.73 × 10−08 1.07 × 10+00 1.37 × 10+01 6.46 × 10+02 1.94 × 10+01 3.81 × 10+01 1.11 × 10+01

CF5 Ave 5.06 × 10+02 5.08 × 10+02 5.08 × 10+02 5.12 × 10+02 6.22 × 10+02 5.24 × 10+02 5.24 × 10+02 5.44 × 10+02

Std 2.00 × 10+00 2.36 × 10+00 3.43 × 10+00 4.20 × 10+00 2.05 × 10+01 8.03 × 10+00 8.55 × 10+00 5.94 × 10+00

CF6 Ave 6.00 × 10+02 6.00 × 10+02 6.00 × 10+02 6.00 × 10+02 6.74 × 10+02 6.00 × 10+02 6.08 × 10+02 6.16 × 10+02

Std 3.28 × 10−02 1.02 × 10−04 4.34 × 10−11 7.31 × 10−01 1.50 × 10+01 9.98 × 10−01 4.30 × 10+00 3.22 × 10+00

CF7 Ave 7.12 × 10+02 7.19 × 10+02 7.17 × 10+02 7.26 × 10+02 9.65 × 10+02 7.35 × 10+02 7.53 × 10+02 7.70 × 10+02

Std 2.42 × 10+00 2.65 × 10+00 4.55 × 10+00 9.34 × 10+00 1.01 × 10+02 1.24 × 10+01 1.49 × 10+01 7.80 × 10+00

CF8 Ave 8.05 × 10+02 8.06 × 10+02 8.08 × 10+02 8.10 × 10+02 8.92 × 10+02 8.26 × 10+02 8.24 × 10+02 8.37 × 10+02

Std 2.27 × 10+00 1.98 × 10+00 3.04 × 10+00 4.00 × 10+00 1.98 × 10+01 1.21 × 10+01 6.17 × 10+00 5.99 × 10+00

CF9 Ave 9.00 × 10+02 9.00 × 10+02 9.00 × 10+02 9.04 × 10+02 2.74 × 10+03 9.38 × 10+02 9.84 × 10+02 9.72 × 10+02

Std 1.40 × 10−04 2.01 × 10−08 6.56 × 10−14 9.47 × 10+00 9.39 × 10+02 1.01 × 10+02 9.03 × 10+01 2.60 × 10+01

CF10 Ave 1.19 × 10+03 1.27 × 10+03 1.28 × 10+03 1.57 × 10+03 2.80 × 10+03 1.79 × 10+03 1.71 × 10+03 2.19 × 10+03

Std 1.19 × 10+02 9.66 × 10+01 1.23 × 10+02 2.44 × 10+02 1.70 × 10+02 3.19 × 10+02 2.22 × 10+02 1.99 × 10+02

CF11 Ave 1.10 × 10+03 1.10 × 10+03 1.10 × 10+03 1.13 × 10+03 5.46 × 10+03 1.13 × 10+03 1.20 × 10+03 1.19 × 10+03

Std 1.26 × 10+00 7.50 × 10−01 2.34 × 10+00 1.06 × 10+01 5.34 × 10+03 3.89 × 10+01 7.76 × 10+01 6.08 × 10+01

CF12 Ave 1.20 × 10+03 1.20 × 10+03 1.95 × 10+04 4.05 × 10+05 4.95 × 10+08 9.56 × 10+05 2.58 × 10+06 8.06 × 10+06

Std 1.68 × 10+01 5.14 × 10+00 1.91 × 10+04 5.72 × 10+05 4.98 × 10+08 2.16 × 10+06 2.43 × 10+06 6.55 × 10+06

CF13 Ave 1.30 × 10+03 1.30 × 10+03 5.92 × 10+03 1.07 × 10+04 3.07 × 10+07 1.17 × 10+04 1.67 × 10+04 2.28 × 10+04

Std 1.84 × 10+00 1.92 × 10+00 6.17 × 10+03 6.91 × 10+03 5.54 × 10+07 1.25 × 10+04 1.13 × 10+04 1.85 × 10+04

CF14 Ave 1.40 × 10+03 1.40 × 10+03 1.43 × 10+03 2.16 × 10+03 5.72 × 10+03 2.25 × 10+03 1.55 × 10+03 1.57 × 10+03

Std 1.95 × 10+00 2.07 × 10+00 1.10 × 10+01 1.40 × 10+03 8.46 × 10+03 9.25 × 10+02 6.39 × 10+01 5.21 × 10+01

CF15 Ave 1.50 × 10+03 1.50 × 10+03 1.53 × 10+03 3.10 × 10+03 2.09 × 10+04 4.43 × 10+03 2.26 × 10+03 2.09 × 10+03

Std 4.36 × 10−01 4.79 × 10−01 2.45 × 10+01 1.90 × 10+03 2.58 × 10+04 2.65 × 10+03 7.50 × 10+02 5.56 × 10+02

CF16 Ave 1.61 × 10+03 1.60 × 10+03 1.61 × 10+03 1.69 × 10+03 2.24 × 10+03 1.68 × 10+03 1.68 × 10+03 1.70 × 10+03

Std 2.97 × 10+01 4.22 × 10−01 3.35 × 10+01 5.79 × 10+01 2.38 × 10+02 9.95 × 10+01 7.44 × 10+01 5.33 × 10+01

CF17 Ave 1.71 × 10+03 1.71 × 10+03 1.71 × 10+03 1.75 × 10+03 2.01 × 10+03 1.74 × 10+03 1.77 × 10+03 1.77 × 10+03

Std 6.04 × 10+00 6.48 × 10+00 9.17 × 10+00 2.50 × 10+01 1.60 × 10+02 1.76 × 10+01 3.37 × 10+01 9.68 × 10+00

CF18 Ave 1.80 × 10+03 1.80 × 10+03 4.59 × 10+03 2.62 × 10+04 3.92 × 10+07 2.38 × 10+04 3.88 × 10+04 6.88 × 10+04

Std 1.41 × 10+00 1.17 × 10+00 2.47 × 10+03 1.43 × 10+04 7.49 × 10+07 1.82 × 10+04 1.08 × 10+04 3.97 × 10+04

CF19 Ave 1.90 × 10+03 1.90 × 10+03 1.92 × 10+03 4.64 × 10+03 8.76 × 10+05 8.04 × 10+03 7.50 × 10+03 2.68 × 10+03

Std 2.72 × 10−01 4.28 × 10−01 2.52 × 10+01 4.73 × 10+03 2.30 × 10+06 1.03 × 10+04 6.35 × 10+03 1.64 × 10+03

CF20 Ave 2.01 × 10+03 2.01 × 10+03 2.01 × 10+03 2.06 × 10+03 2.29 × 10+03 2.04 × 10+03 2.09 × 10+03 2.09 × 10+03

Std 4.48 × 10+00 8.41 × 10+00 1.06 × 10+01 4.01 × 10+01 7.52 × 10+01 2.26 × 10+01 5.71 × 10+01 2.08 × 10+01

CF21 Ave 2.24 × 10+03 2.20 × 10+03 2.29 × 10+03 2.30 × 10+03 2.35 × 10+03 2.27 × 10+03 2.20 × 10+03 2.23 × 10+03

Std 5.24 × 10+01 1.29 × 10−05 4.64 × 10+01 3.84 × 10+01 5.63 × 10+01 6.23 × 10+01 2.77 × 10+00 4.56 × 10+01

CF22 Ave 2.30 × 10+03 2.24 × 10+03 2.30 × 10+03 2.31 × 10+03 3.32 × 10+03 2.30 × 10+03 2.45 × 10+03 2.35 × 10+03

Std 1.84 × 10+01 4.78 × 10+01 1.51 × 10+01 4.85 × 10+00 4.75 × 10+02 2.19 × 10+01 3.61 × 10+02 1.83 × 10+01

CF23 Ave 2.51 × 10+03 2.58 × 10+03 2.61 × 10+03 2.61 × 10+03 2.73 × 10+03 2.63 × 10+03 2.63 × 10+03 2.65 × 10+03

Std 2.17 × 10+00 8.39 × 10+01 4.08 × 10+00 6.63 × 10+00 2.71 × 10+01 8.45 × 10+00 6.90 × 10+00 6.25 × 10+00

CF24 Ave 2.70 × 10+03 2.49 × 10+03 2.72 × 10+03 2.75 × 10+03 2.90 × 10+03 2.76 × 10+03 2.75 × 10+03 2.76 × 10+03

Std 7.88 × 10+01 2.49 × 10+01 5.98 × 10+01 1.03 × 10+01 6.38 × 10+01 9.34 × 10+00 9.90 × 10+00 6.77 × 10+01

CF25 Ave 2.91 × 10+03 2.86 × 10+03 2.92 × 10+03 2.93 × 10+03 4.01 × 10+03 2.93 × 10+03 2.94 × 10+03 2.95 × 10+03

Std 2.00 × 10+01 1.01 × 10+02 2.34 × 10+01 1.89 × 10+01 4.44 × 10+02 2.80 × 10+01 2.61 × 10+01 1.51 × 10+01

CF26 Ave 2.90 × 10+03 2.70 × 10+03 2.93 × 10+03 2.93 × 10+03 4.47 × 10+03 2.98 × 10+03 3.06 × 10+03 3.06 × 10+03

Std 2.44 × 10−04 1.05 × 10+02 1.69 × 10+02 1.78 × 10+02 3.99 × 10+02 5.46 × 10+01 2.37 × 10+02 2.22 × 10+01

CF27 Ave 3.08 × 10+03 3.09 × 10+03 3.10 × 10+03 3.09 × 10+03 3.26 × 10+03 3.09 × 10+03 3.09 × 10+03 3.10 × 10+03

Std 1.14 × 10+00 5.67 × 10−01 1.15 × 10+01 2.90 × 10+00 6.07 × 10+01 1.95 × 10+00 1.91 × 10+00 1.90 × 10+00

CF28 Ave 3.11 × 10+03 3.07 × 10+03 3.23 × 10+03 3.35 × 10+03 3.69 × 10+03 3.25 × 10+03 3.23 × 10+03 3.25 × 10+03

Std 3.23 × 10+01 9.00 × 10+01 1.59 × 10+02 8.68 × 10+01 1.15 × 10+02 8.01 × 10+01 8.22 × 10+01 5.64 × 10+01

CF29 Ave 3.14 × 10+03 3.13 × 10+03 3.16 × 10+03 3.17 × 10+03 3.58 × 10+03 3.20 × 10+03 3.18 × 10+03 3.21 × 10+03

Std 7.29 × 10+00 9.20 × 10+00 1.90 × 10+01 1.98 × 10+01 1.34 × 10+02 4.05 × 10+01 2.57 × 10+01 2.17 × 10+01

CF30 Ave 3.31 × 10+03 3.40 × 10+03 6.02 × 10+05 5.65 × 10+05 1.23 × 10+07 5.64 × 10+05 7.35 × 10+04 6.44 × 10+05

Std 3.66 × 10+01 4.54 × 10+00 8.68 × 10+05 6.42 × 10+05 1.03 × 10+07 5.53 × 10+05 1.25 × 10+05 4.64 × 10+05

Friedman Average Rank 1.6167 2.4489 2.9056 4.6561 7.9300 4.7728 5.3978 6.2722
Rank 1 2 3 4 8 5 6 7
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Table A3. p-values obtained from Wilcoxon’s rank sum test for MSMPA and other algorithms.

Function
MSMPA VS.

MPA PSO GWO WOA MFO SOA SCA

F1 p-value 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F2 p-value 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F3 p-value 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F4 p-value 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F5 p-value 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F6 p-value 8.56 × 10−04 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F7 p-value 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.07 × 10−09 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F8 p-value 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 8.10 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F9 p-value NaN 1.21 × 10−12 1.14 × 10−05 NaN 1.21 × 10−12 2.79 × 10−03 1.21 × 10−12

F10 p-value 1.17 × 10−13 1.21 × 10−12 8.56 × 10−13 1.97 × 10−06 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F11 p-value NaN 1.21 × 10−12 8.15 × 10−02 8.15 × 10−02 1.21 × 10−12 5.58 × 10−03 1.21 × 10−12

F12 p-value 1.25 × 10−07 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F13 p-value 8.15 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

F14 p-value 1.61 × 10−01 4.42 × 10−08 1.21 × 10−12 1.21 × 10−12 2.90 × 10−05 1.21 × 10−12 1.21 × 10−12

F15 p-value 1.05 × 10−05 6.59 × 10−09 1.30 × 10−09 2.69 × 10−09 1.08 × 10−09 2.73 × 10−11 1.30 × 10−09

F16 p-value 3.49 × 10−04 1.38 × 10−09 8.87 × 10−12 8.87 × 10−12 2.04 × 10−01 8.87 × 10−12 8.87 × 10−12

F17 p-value 4.18 × 10−02 3.03 × 10−03 4.08 × 10−12 4.08 × 10−12 5.20 × 10−02 4.08 × 10−12 4.08 × 10−12

F18 p-value 2.85 × 10−05 1.22 × 10−09 4.08 × 10−12 4.08 × 10−12 3.40 × 10−02 4.08 × 10−12 4.08 × 10−12

CF1 p-value 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.95 × 10−11 3.02 × 10−11 3.02 × 10−11

CF2 p-value NaN NaN 4.57 × 10−12 1.21 × 10−12 5.60 × 10−11 1.21 × 10−12 1.21 × 10−12

CF3 p-value 3.02 × 10−11 3.50 × 10−03 3.02 × 10−11 3.02 × 10−11 8.77 × 10−01 3.02 × 10−11 3.02 × 10−11

CF4 p-value 1.09 × 10−01 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 2.86 × 10−11 3.02 × 10−11 3.02 × 10−11

CF5 p-value 1.06 × 10−03 5.82 × 10−03 1.25 × 10−07 3.02 × 10−11 3.02 × 10−11 4.62 × 10−10 3.02 × 10−11

CF6 p-value 3.02 × 10−11 9.37 × 10−12 9.35 × 10−01 3.02 × 10−11 3.46 × 10−04 3.02 × 10−11 3.02 × 10−11

CF7 p-value 5.86 × 10−06 1.87 × 10−05 5.49 × 10−01 3.02 × 10−11 2.57 × 10−07 3.02 × 10−11 3.02 × 10−11

CF8 p-value 6.35 × 10−02 5.94 × 10−05 1.25 × 10−07 3.02 × 10−11 2.15 × 10−10 3.02 × 10−11 3.02 × 10−11

CF9 p-value 3.02 × 10−11 1.14 × 10−11 3.02 × 10−11 3.02 × 10−11 7.26 × 10−02 3.02 × 10−11 3.02 × 10−11

CF10 p-value 1.38 × 10−02 2.32 × 10−02 7.12 × 10−09 3.02 × 10−11 8.99 × 10−11 4.97 × 10−11 3.02 × 10−11

CF11 p-value 2.03 × 10−07 7.96 × 10−01 4.50 × 10−11 3.02 × 10−11 7.09 × 10−08 3.02 × 10−11 3.02 × 10−11

CF12 p-value 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

CF13 p-value 1.56 × 10−08 9.92 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

CF14 p-value 7.77 × 10−09 2.02 × 10−08 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

CF15 p-value 4.69 × 10−08 6.70 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

CF16 p-value 4.42 × 10−06 2.68 × 10−06 6.72 × 10−10 3.34 × 10−11 3.96 × 10−08 8.10 × 10−10 4.20 × 10−10

CF17 p-value 3.82 × 10−09 1.04 × 10−04 1.33 × 10−10 3.02 × 10−11 4.80 × 10−07 4.08 × 10−11 3.02 × 10−11

CF18 p-value 1.60 × 10−07 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

CF19 p-value 3.02 × 10−11 4.50 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

CF20 p-value 2.90 × 10−01 5.59 × 10−01 4.50 × 10−11 3.02 × 10−11 1.07 × 10−07 3.02 × 10−11 3.02 × 10−11

CF21 p-value 4.29 × 10−01 1.41 × 10−04 2.38 × 10−07 4.11 × 10−07 3.99 × 10−04 1.86 × 10−01 4.21 × 10−02

CF22 p-value 1.78 × 10−10 1.68 × 10−04 1.00 × 10−03 3.02 × 10−11 1.62 × 10−01 6.74 × 10−06 5.07 × 10−10

CF23 p-value 2.12 × 10−01 3.63 × 10−01 2.15 × 10−06 3.02 × 10−11 3.34 × 10−11 3.34 × 10−11 3.02 × 10−11

CF24 p-value 4.62 × 10−10 4.11 × 10−07 9.76 × 10−10 1.96 × 10−10 3.02 × 10−11 8.89 × 10−10 3.96 × 10−08

CF25 p-value 4.50 × 10−11 2.77 × 10−05 7.60 × 10−07 3.02 × 10−11 1.39 × 10−06 7.66 × 10−05 4.11 × 10−07

CF26 p-value 2.61 × 10−10 6.44 × 10−09 8.48 × 10−09 3.02 × 10−11 9.47 × 10−06 3.02 × 10−11 3.02 × 10−11

CF27 p-value 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

CF28 p-value 1.67 × 10−01 3.04 × 10−01 9.92 × 10−11 3.02 × 10−11 4.59 × 10−10 2.92 × 10−09 3.02 × 10−11

CF29 p-value 3.03 × 10−03 1.17 × 10−05 5.00 × 10−09 3.02 × 10−11 7.38 × 10−10 5.07 × 10−10 3.02 × 10−11

CF30 p-value 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.01 × 10−11
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Table A4. Test results for each high-dimensional function in dimension 100.

Function Criteria MSMPA MPA PSO GWO WOA MFO SOA SCA

F1

Ave 0.00 × 10+00 3.85 × 10−43 9.41 × 10+01 1.84 × 10−29 7.06 × 10−146 3.17 × 10+04 6.07 × 10−15 5.59 × 10+03

Std 0.00 × 10+00 3.58 × 10−43 1.46 × 10+01 1.73 × 10−29 3.80 × 10−145 1.25 × 10+04 1.14 × 10−14 4.77 × 10+03

Max 0.00 × 10+00 1.50 × 10−42 1.37 × 10+02 6.52 × 10−29 2.12 × 10−144 5.46 × 10+04 4.98 × 10−14 1.91 × 10+04

Min 0.00 × 10+00 2.21 × 10−44 7.18 × 10+01 4.12 × 10−30 2.81 × 10−169 1.43 × 10+04 1.68 × 10−17 2.73 × 10+01

F2

Ave 0.00 × 10+00 8.27 × 10−25 1.10 × 10+02 5.34 × 10−18 3.13 × 10−101 1.79 × 10+02 8.13 × 10−11 1.99 × 10+00

Std 0.00 × 10+00 1.44 × 10−24 2.24 × 10+01 3.05 × 10−18 1.63 × 10−100 5.48 × 10+01 6.58 × 10−11 2.27 × 10+00

Max 0.00 × 10+00 6.14 × 10−24 1.71 × 10+02 1.66 × 10−17 9.06 × 10−100 3.30 × 10+02 2.30 × 10−10 9.10 × 10+00

Min 0.00 × 10+00 2.27 × 10−27 6.46 × 10+01 2.06 × 10−18 1.63 × 10−110 1.03 × 10+02 5.48 × 10−12 8.84 × 10−02

F3

Ave 0.00 × 10+00 2.49 × 10−02 1.39 × 10+04 1.06 × 10+01 8.92 × 10+05 1.80 × 10+05 2.11 × 10−02 1.92 × 10+05

Std 0.00 × 10+00 9.79 × 10−02 2.69 × 10+03 2.70 × 10+01 2.40 × 10+05 4.35 × 10+04 8.57 × 10−02 4.22 × 10+04

Max 0.00 × 10+00 5.42 × 10−01 2.00 × 10+04 1.41 × 10+02 1.45 × 10+06 2.80 × 10+05 4.77 × 10−01 2.93 × 10+05

Min 0.00 × 10+00 1.13 × 10−07 1.00 × 10+04 2.38 × 10−02 4.91 × 10+05 1.04 × 10+05 3.52 × 10−07 1.12 × 10+05

F4

Ave 0.00 × 10+00 5.90 × 10−16 1.03 × 10+01 1.60 × 10−02 7.20 × 10+01 9.32 × 10+01 5.60 × 10+01 8.66 × 10+01

Std 0.00 × 10+00 3.81 × 10−16 1.03 × 10+00 7.52 × 10−02 2.86 × 10+01 1.78 × 10+00 2.47 × 10+01 3.84 × 10+00

Max 0.00 × 10+00 1.88 × 10−15 1.25 × 10+01 4.21 × 10−01 9.62 × 10+01 9.60 × 10+01 8.51 × 10+01 9.34 × 10+01

Min 0.00 × 10+00 1.52 × 10−16 8.46 × 10+00 3.78 × 10−05 1.10 × 10−04 8.84 × 10+01 3.28 × 10+00 7.87 × 10+01

F5

Ave 2.25 × 10−05 9.57 × 10+01 1.04 × 10+05 9.76 × 10+01 9.78 × 10+01 6.84 × 10+07 9.86 × 10+01 5.17 × 10+07

Std 3.40 × 10−05 1.11 × 10+00 3.00 × 10+04 6.31 × 10−01 4.12 × 10−01 5.92 × 10+07 1.90 × 10−01 3.00 × 10+07

Max 1.32 × 10−04 9.78 × 10+01 2.10 × 10+05 9.85 × 10+01 9.83 × 10+01 2.62 × 10+08 9.88 × 10+01 1.21 × 10+08

Min 7.28 × 10−15 9.41 × 10+01 6.35 × 10+04 9.61 × 10+01 9.70 × 10+01 3.05 × 10+06 9.80 × 10+01 1.04 × 10+07

F6

Ave 1.45 × 10−05 9.22 × 10−01 1.00 × 10+02 9.29 × 10+00 2.08 × 10+00 3.19 × 10+04 1.83 × 10+01 6.73 × 10+03

Std 4.13 × 10−05 4.35 × 10−01 1.87 × 10+01 8.26 × 10−01 7.60 × 10−01 1.34 × 10+04 7.55 × 10−01 4.69 × 10+03

Max 2.25 × 10−04 1.82 × 10+00 1.40 × 10+02 1.09 × 10+01 4.49 × 10+00 5.75 × 10+04 1.97 × 10+01 1.78 × 10+04

Min 1.85 × 10−08 1.03 × 10−01 7.24 × 10+01 7.69 × 10+00 1.03 × 10+00 5.68 × 10+03 1.66 × 10+01 1.57 × 10+02

F7

Ave 3.26 × 10−05 7.46 × 10−04 1.41 × 10+03 2.48 × 10−03 2.60 × 10−03 1.81 × 10+02 2.95 × 10−03 6.74 × 10+01

Std 2.41 × 10−05 3.55 × 10−04 2.64 × 10+02 7.68 × 10−04 2.09 × 10−03 1.27 × 10+02 1.82 × 10−03 3.73 × 10+01

Max 1.05 × 10−04 2.00 × 10−03 2.07 × 10+03 4.45 × 10−03 7.12 × 10−03 5.70 × 10+02 7.85 × 10−03 1.55 × 10+02

Min 1.16 × 10−06 3.16 × 10−04 9.92 × 10+02 1.29 × 10−03 7.26 × 10−05 4.24 × 10+01 3.40 × 10−04 8.02 × 10+00

F8

Ave −1.02 × 10+05 −2.76× 10+04 −2.14× 10+04 −1.59× 10+04 −3.77× 10+04 −2.34× 10+04 −1.12× 10+04 −7.30× 10+03

Std 1.36 × 10+04 9.19 × 10+02 3.47 × 10+03 2.36 × 10+03 4.85 × 10+03 1.94 × 10+03 1.49 × 10+03 5.79 × 10+02

Max −3.73 × 10+04 −2.56× 10+04 −7.61× 10+03 −5.92× 10+03 −2.87× 10+04 −2.04× 10+04 −8.71× 10+03 −6.30× 10+03

Min −1.09 × 10+05 −2.99× 10+04 −2.65× 10+04 −2.01× 10+04 −4.19× 10+04 −2.75× 10+04 −1.48× 10+04 −8.72× 10+03

F9

Ave 0.00 × 10+00 0.00 × 10+00 1.10 × 10+03 3.57 × 10−01 7.58 × 10−15 7.61 × 10+02 2.10 × 10−12 2.45 × 10+02

Std 0.00 × 10+00 0.00 × 10+00 1.06 × 10+02 1.00 × 10+00 4.08 × 10−14 7.43 × 10+01 8.14 × 10−12 9.94 × 10+01

Max 0.00 × 10+00 0.00 × 10+00 1.27 × 10+03 3.92 × 10+00 2.27 × 10−13 9.24 × 10+02 4.48 × 10−11 4.81 × 10+02

Min 0.00 × 10+00 0.00 × 10+00 8.67 × 10+02 0.00 × 10+00 0.00 × 10+00 5.95 × 10+02 0.00 × 10+00 5.70 × 10+01

F10

Ave 8.88 × 10−16 4.44 × 10−15 5.45 × 10+00 1.12 × 10−13 3.73 × 10−15 1.98 × 10+01 2.00 × 10+01 1.93 × 10+01

Std 0.00 × 10+00 0.00 × 10+00 2.94 × 10−01 1.09 × 10−14 2.66 × 10−15 2.26 × 10−01 2.26 × 10−04 3.81 × 10+00

Max 8.88 × 10−16 4.44 × 10−15 5.93 × 10+00 1.47 × 10−13 7.99 × 10−15 2.00 × 10+01 2.00 × 10+01 2.07 × 10+01

Min 8.88 × 10−16 4.44 × 10−15 4.71 × 10+00 9.33 × 10−14 8.88 × 10−16 1.92 × 10+01 2.00 × 10+01 5.48 × 10+00

F11

Ave 0.00 × 10+00 0.00 × 10+00 7.96 × 10−01 3.16 × 10−03 3.78 × 10−03 2.98 × 10+02 5.27 × 10−03 4.75 × 10+01

Std 0.00 × 10+00 0.00 × 10+00 7.24 × 10−02 6.69 × 10−03 2.03 × 10−02 1.28 × 10+02 1.77 × 10−02 3.63 × 10+01

Max 0.00 × 10+00 0.00 × 10+00 9.26 × 10−01 2.59 × 10−02 1.13 × 10−01 5.81 × 10+02 8.51 × 10−02 1.27 × 10+02

Min 0.00 × 10+00 0.00 × 10+00 6.41 × 10−01 0.00 × 10+00 0.00 × 10+00 6.68 × 10+01 0.00 × 10+00 3.69 × 10+00

F12

Ave 3.17 × 10−09 9.65 × 10−03 5.95 × 10+00 2.45 × 10−01 1.50 × 10−02 5.35 × 10+07 7.53 × 10−01 1.63 × 10+08

Std 1.26 × 10−08 4.30 × 10−03 3.16 × 10+00 6.61 × 10−02 5.90 × 10−03 6.46 × 10+07 6.75 × 10−02 9.46 × 10+07

Max 7.02 × 10−08 1.98 × 10−02 1.53 × 10+01 4.50 × 10−01 2.84 × 10−02 2.65 × 10+08 8.78 × 10−01 3.77 × 10+08

Min 2.48 × 10−15 3.03 × 10−03 2.84 × 10+00 1.61 × 10−01 8.09 × 10−03 7.58 × 10+05 6.21 × 10−01 1.73 × 10+07

F13

Ave 1.40 × 10−07 7.00 × 10+00 1.02 × 10+02 6.04 × 10+00 1.75 × 10+00 2.97 × 10+08 8.98 × 10+00 3.38 × 10+08

Std 3.46 × 10−07 1.76 × 10+00 3.79 × 10+01 4.62 × 10−01 6.43 × 10−01 2.67 × 10+08 2.88 × 10−01 2.02 × 10+08

Max 1.44 × 10−06 8.86 × 10+00 1.99 × 10+02 6.84 × 10+00 3.40 × 10+00 9.02 × 10+08 9.63 × 10+00 8.89 × 10+08

Min 8.81 × 10−14 2.32 × 10+00 5.92 × 10+01 5.25 × 10+00 7.38 × 10−01 1.48 × 10+07 8.36 × 10+00 8.08 × 10+07

Friedman Average Rank 1.2192 2.5654 6.0026 3.9192 3.2449 7.0949 4.9436 7.0103
Rank 1 2 6 4 3 8 5 7
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Table A5. Test results for each high-dimensional function in dimension 200.

Function Criteria MSMPA MPA PSO GWO WOA MFO SOA SCA

F1

Ave 0.00 × 10+00 3.65 × 10−41 6.66 × 10+02 4.56 × 10−20 2.02 × 10−145 1.85 × 10+05 7.43 × 10−12 3.09 × 10+04

Std 0.00 × 10+00 5.44 × 10−41 7.06 × 10+01 3.74 × 10−20 1.09 × 10−144 2.68 × 10+04 9.09 × 10−12 1.20 × 10+04

Max 0.00 × 10+00 2.13 × 10−40 7.89 × 10+02 1.78 × 10−19 6.05 × 10−144 2.51 × 10+05 3.52 × 10−11 4.97 × 10+04

Min 0.00 × 10+00 5.40 × 10−43 5.44 × 10+02 6.38 × 10−21 3.67 × 10−167 1.28 × 10+05 1.61 × 10−13 8.45 × 10+03

F2

Ave 0.00 × 10+00 6.55 × 10−24 1.66 × 10+21 1.41 × 10−12 1.40 × 10−101 5.62 × 10+02 6.40 × 10−09 1.61 × 10+01

Std 0.00 × 10+00 8.57 × 10−24 8.94 × 10+21 4.75 × 10−13 7.52 × 10−101 5.37 × 10+01 5.07 × 10−09 1.46 × 10+01

Max 0.00 × 10+00 3.26 × 10−23 4.98 × 10+22 2.44 × 10−12 4.19 × 10−100 6.90 × 10+02 1.88 × 10−08 7.48 × 10+01

Min 0.00 × 10+00 8.37 × 10−27 5.42 × 10+02 5.81 × 10−13 9.51 × 10−116 4.59 × 10+02 7.53 × 10−10 7.98 × 10−01

F3

Ave 0.00 × 10+00 1.82 × 10+01 8.16 × 10+04 3.22 × 10+03 4.56 × 10+06 7.31 × 10+05 1.74 × 10+02 8.38 × 10+05

Std 0.00 × 10+00 4.51 × 10+01 2.07 × 10+04 2.46 × 10+03 1.42 × 10+06 1.37 × 10+05 3.79 × 10+02 1.51 × 10+05

Max 0.00 × 10+00 2.50 × 10+02 1.62 × 10+05 1.10 × 10+04 7.63 × 10+06 1.02 × 10+06 1.77 × 10+03 1.17 × 10+06

Min 0.00 × 10+00 1.83 × 10−05 5.26 × 10+04 1.67 × 10+02 1.70 × 10+06 4.24 × 10+05 8.97 × 10−03 5.52 × 10+05

F4

Ave 0.00 × 10+00 1.01 × 10−14 1.95 × 10+01 9.86 × 10+00 7.72 × 10+01 9.70 × 10+01 9.20 × 10+01 9.51 × 10+01

Std 0.00 × 10+00 4.83 × 10−15 1.53 × 10+00 5.31 × 10+00 2.46 × 10+01 7.95 × 10−01 3.87 × 10+00 1.34 × 10+00

Max 0.00 × 10+00 2.33 × 10−14 2.41 × 10+01 2.33 × 10+01 9.83 × 10+01 9.87 × 10+01 9.81 × 10+01 9.69 × 10+01

Min 0.00 × 10+00 3.70 × 10−15 1.70 × 10+01 1.70 × 10+00 2.14 × 10+01 9.53 × 10+01 7.82 × 10+01 9.18 × 10+01

F5

Ave 1.02 × 10−04 1.96 × 10+02 1.66 × 10+06 1.98 × 10+02 1.97 × 10+02 6.50 × 10+08 1.99 × 10+02 3.48 × 10+08

Std 2.67 × 10−04 9.30 × 10−01 2.85 × 10+05 6.41 × 10−01 2.29 × 10−01 1.09 × 10+08 1.44 × 10−01 1.06 × 10+08

Max 1.42 × 10−03 1.97 × 10+02 2.15 × 10+06 1.98 × 10+02 1.98 × 10+02 9.02 × 10+08 1.99 × 10+02 6.70 × 10+08

Min 1.70 × 10−13 1.94 × 10+02 1.14 × 10+06 1.96 × 10+02 1.97 × 10+02 4.56 × 10+08 1.98 × 10+02 1.85 × 10+08

F6

Ave 1.26 × 10−05 8.10 × 10+00 6.94 × 10+02 2.79 × 10+01 5.90 × 10+00 1.76 × 10+05 4.22 × 10+01 3.33 × 10+04

Std 2.31 × 10−05 1.04 × 10+00 9.50 × 10+01 1.05 × 10+00 1.60 × 10+00 2.03 × 10+04 8.24 × 10−01 1.29 × 10+04

Max 1.13 × 10−04 1.13 × 10+01 9.09 × 10+02 3.03 × 10+01 9.21 × 10+00 2.08 × 10+05 4.44 × 10+01 6.01 × 10+04

Min 3.84 × 10−08 6.64 × 10+00 4.85 × 10+02 2.56 × 10+01 2.94 × 10+00 1.40 × 10+05 4.08 × 10+01 5.36 × 10+03

F7

Ave 2.76 × 10−05 8.44 × 10−04 7.55 × 10+03 4.41 × 10−03 1.83 × 10−03 1.85 × 10+03 4.48 × 10−03 9.36 × 10+02

Std 2.47 × 10−05 2.82 × 10−04 9.21 × 10+02 1.57 × 10−03 2.02 × 10−03 4.40 × 10+02 2.51 × 10−03 3.30 × 10+02

Max 8.58 × 10−05 1.42 × 10−03 9.37 × 10+03 7.72 × 10−03 5.60 × 10−03 2.87 × 10+03 1.09 × 10−02 1.77 × 10+03

Min 3.62 × 10−07 3.35 × 10−04 5.62 × 10+03 1.58 × 10−03 3.43 × 10−05 1.02 × 10+03 7.65 × 10−04 3.59 × 10+02

F8

Ave −2.09 × 10+05 −4.89× 10+04 −3.92× 10+04 −2.95× 10+04 −7.18× 10+04 −3.97× 10+04 −1.55× 10+04 −1.04× 10+04

Std 2.57 × 10+04 1.67 × 10+03 8.71 × 10+03 2.16 × 10+03 1.08 × 10+04 3.44 × 10+03 2.77 × 10+03 7.08 × 10+02

Max −8.16 × 10+04 −4.50× 10+04 −8.93× 10+03 −2.52× 10+04 −5.03× 10+04 −3.38× 10+04 −1.21× 10+04 −8.57× 10+03

Min −2.18 × 10+05 −5.28× 10+04 −5.31× 10+04 −3.35× 10+04 −8.38× 10+04 −4.85× 10+04 −2.32× 10+04 −1.19× 10+04

F9

Ave 0.00 × 10+00 0.00 × 10+00 2.71 × 10+03 1.48 × 10+00 1.52 × 10−14 1.96 × 10+03 2.06 × 10+00 4.89 × 10+02

Std 0.00 × 10+00 0.00 × 10+00 1.72 × 10+02 3.30 × 10+00 8.16 × 10−14 9.12 × 10+01 5.77 × 10+00 2.06 × 10+02

Max 0.00 × 10+00 0.00 × 10+00 3.03 × 10+03 1.47 × 10+01 4.55 × 10−13 2.13 × 10+03 2.69 × 10+01 9.71 × 10+02

Min 0.00 × 10+00 0.00 × 10+00 2.40 × 10+03 2.27 × 10−13 0.00 × 10+00 1.74 × 10+03 4.55 × 10−13 3.80 × 10+01

F10

Ave 8.88 × 10−16 4.44 × 10−15 8.26 × 10+00 1.35 × 10−11 4.09 × 10−15 2.00 × 10+01 2.00 × 10+01 1.85 × 10+01

Std 0.00 × 10+00 0.00 × 10+00 3.02 × 10−01 3.57 × 10−12 2.12 × 10−15 1.56 × 10−02 1.73 × 10−04 4.14 × 10+00

Max 8.88 × 10−16 4.44 × 10−15 9.01 × 10+00 2.03 × 10−11 7.99 × 10−15 2.00 × 10+01 2.00 × 10+01 2.07 × 10+01

Min 8.88 × 10−16 4.44 × 10−15 7.69 × 10+00 6.78 × 10−12 8.88 × 10−16 1.99 × 10+01 2.00 × 10+01 8.37 × 10+00

F11

Ave 0.00 × 10+00 0.00 × 10+00 1.19 × 10+00 4.17 × 10−04 0.00 × 10+00 1.67 × 10+03 5.75 × 10−03 2.94 × 10+02

Std 0.00 × 10+00 0.00 × 10+00 2.46 × 10−02 2.24 × 10−03 0.00 × 10+00 2.06 × 10+02 1.54 × 10−02 1.67 × 10+02

Max 0.00 × 10+00 0.00 × 10+00 1.26 × 10+00 1.25 × 10−02 0.00 × 10+00 2.03 × 10+03 6.44 × 10−02 8.22 × 10+02

Min 0.00 × 10+00 0.00 × 10+00 1.15 × 10+00 1.11 × 10−16 0.00 × 10+00 1.35 × 10+03 8.15 × 10−14 6.68 × 10+01

F12

Ave 4.26 × 10−10 4.80 × 10−02 1.35 × 10+02 4.84 × 10−01 2.44 × 10−02 1.28 × 10+09 8.91 × 10−01 9.91 × 10+08

Std 1.71 × 10−09 6.59 × 10−03 1.35 × 10+02 5.06 × 10−02 9.13 × 10−03 3.11 × 10+08 3.28 × 10−02 3.66 × 10+08

Max 9.41 × 10−09 6.18 × 10−02 6.02 × 10+02 5.71 × 10−01 5.21 × 10−02 2.14 × 10+09 9.56 × 10−01 1.82 × 10+09

Min 1.31 × 10−19 3.57 × 10−02 3.67 × 10+01 3.88 × 10−01 9.73 × 10−03 8.47 × 10+08 8.10 × 10−01 3.88 × 10+08

F13

Ave 1.35 × 10−07 1.80 × 10+01 2.17 × 10+04 1.61 × 10+01 4.29 × 10+00 2.48 × 10+09 1.90 × 10+01 1.56 × 10+09

Std 4.51 × 10−07 4.03 × 10−01 9.83 × 10+03 4.78 × 10−01 1.33 × 10+00 5.53 × 10+08 2.17 × 10−01 5.53 × 10+08

Max 2.39 × 10−06 1.87 × 10+01 4.99 × 10+04 1.70 × 10+01 7.36 × 10+00 3.76 × 10+09 1.97 × 10+01 2.81 × 10+09

Min 2.74 × 10−20 1.71 × 10+01 8.75 × 10+03 1.51 × 10+01 1.48 × 10+00 1.47 × 10+09 1.85 × 10+01 6.37 × 10+08

Friedman Average Rank 1.1615 2.6487 6.0256 4.0372 2.9410 7.2051 5.1038 6.8769
Rank 1 2 6 4 3 8 5 7
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Table A6. Test results for each high-dimensional function with dimension 500.

Function Criteria MSMPA MPA PSO GWO WOA MFO SOA SCA

F1

Ave 0.00 × 10+00 4.83 × 10−39 7.34 × 10+03 1.47 × 10−12 2.28 × 10−145 9.71 × 10+05 5.54 × 10−09 1.45 × 10+05

Std 0.00 × 10+00 5.89 × 10−39 4.01 × 10+02 7.71 × 10−13 1.22 × 10−144 3.73 × 10+04 5.53 × 10−09 4.32 × 10+04

Max 0.00 × 10+00 2.68 × 10−38 7.94 × 10+03 3.35 × 10−12 6.82 × 10−144 1.04 × 10+06 1.81 × 10−08 2.37 × 10+05

Min 0.00 × 10+00 9.09 × 10−41 6.32 × 10+03 4.23 × 10−13 3.36 × 10−164 9.02 × 10+05 7.71 × 10−11 4.46 × 10+04

F2

Ave 4.63 × 10−36 3.83 × 10−12 2.47 × 10+134 5.89 × 10−08 4.95 × 10−99 2.24 × 10+03 2.05 × 10−07 7.28 × 10+01

Std 1.57 × 10−35 2.06 × 10−11 1.33 × 10+135 1.37 × 10−08 2.66 × 10−98 9.70 × 10+01 1.80 × 10−07 4.68 × 10+01

Max 7.61 × 10−35 1.15 × 10−10 7.42 × 10+135 9.51 × 10−08 1.48 × 10−97 2.37 × 10+03 8.30 × 10−07 2.15 × 10+02

Min 6.78 × 10−66 7.25 × 10−25 4.29 × 10+28 3.55 × 10−08 7.77 × 10−113 2.00 × 10+03 3.58 × 10−08 1.47 × 10+01

F3

Ave 0.00 × 10+00 1.63 × 10+03 5.50 × 10+05 1.31 × 10+05 2.87 × 10+07 3.97 × 10+06 3.07 × 10+04 5.83 × 10+06

Std 0.00 × 10+00 2.12 × 10+03 1.15 × 10+05 4.40 × 10+04 9.45 × 10+06 6.08 × 10+05 5.00 × 10+04 1.09 × 10+06

Max 0.00 × 10+00 7.46 × 10+03 9.02 × 10+05 2.27 × 10+05 5.00 × 10+07 5.65 × 10+06 2.34 × 10+05 8.20 × 10+06

Min 0.00 × 10+00 1.85 × 10+01 3.77 × 10+05 5.61 × 10+04 1.40 × 10+07 3.03 × 10+06 9.77 × 10+00 2.78 × 10+06

F4

Ave 0.00 × 10+00 5.34 × 10−13 2.79 × 10+01 5.74 × 10+01 8.08 × 10+01 9.89 × 10+01 9.80 × 10+01 9.88 × 10+01

Std 0.00 × 10+00 4.83 × 10−13 1.04 × 10+00 5.82 × 10+00 1.57 × 10+01 3.50 × 10−01 7.60 × 10−01 3.71 × 10−01

Max 0.00 × 10+00 2.35 × 10−12 2.99 × 10+01 6.81 × 10+01 9.84 × 10+01 9.95 × 10+01 9.93 × 10+01 9.93 × 10+01

Min 0.00 × 10+00 6.38 × 10−14 2.59 × 10+01 4.41 × 10+01 3.26 × 10+01 9.81 × 10+01 9.53 × 10+01 9.79 × 10+01

F5

Ave 2.22 × 10−04 4.96 × 10+02 5.16 × 10+07 4.98 × 10+02 4.96 × 10+02 4.01 × 10+09 4.99 × 10+02 1.48 × 10+09

Std 8.38 × 10−04 4.67 × 10−01 5.90 × 10+06 2.36 × 10−01 3.08 × 10−01 2.39 × 10+08 5.87 × 10−02 2.87 × 10+08

Max 4.62 × 10−03 4.96 × 10+02 6.31 × 10+07 4.98 × 10+02 4.97 × 10+02 4.32 × 10+09 4.99 × 10+02 2.00 × 10+09

Min 1.16 × 10−21 4.94 × 10+02 3.78 × 10+07 4.97 × 10+02 4.95 × 10+02 3.48 × 10+09 4.98 × 10+02 9.03 × 10+08

F6

Ave 1.77 × 10−05 5.21 × 10+01 7.37 × 10+03 9.29 × 10+01 2.04 × 10+01 9.54 × 10+05 1.16 × 10+02 1.70 × 10+05

Std 3.55 × 10−05 1.74 × 10+00 4.36 × 10+02 1.72 × 10+00 7.52 × 10+00 3.83 × 10+04 8.53 × 10−01 6.92 × 10+04

Max 1.93 × 10−04 5.63 × 10+01 8.27 × 10+03 9.58 × 10+01 4.01 × 10+01 1.07 × 10+06 1.17 × 10+02 3.91 × 10+05

Min 1.32 × 10−10 4.92 × 10+01 6.30 × 10+03 8.98 × 10+01 1.01 × 10+01 8.82 × 10+05 1.14 × 10+02 5.59 × 10+04

F7

Ave 3.04 × 10−05 1.30 × 10−03 5.68 × 10+04 1.25 × 10−02 2.16 × 10−03 3.08 × 10+04 9.87 × 10−03 1.13 × 10+04

Std 2.37 × 10−05 7.40 × 10−04 2.14 × 10+03 4.40 × 10−03 2.16 × 10−03 1.95 × 10+03 6.62 × 10−03 2.83 × 10+03

Max 1.06 × 10−04 2.77 × 10−03 6.12 × 10+04 2.35 × 10−02 1.17 × 10−02 3.40 × 10+04 3.47 × 10−02 1.65 × 10+04

Min 2.04 × 10−06 1.28 × 10−04 5.19 × 10+04 6.37 × 10−03 2.64 × 10−05 2.72 × 10+04 2.55 × 10−03 5.74 × 10+03

F8

Ave −5.35 × 10+05 −9.78× 10+04 −9.25× 10+04 −5.96× 10+04 −1.92× 10+05 −7.43× 10+04 −2.65× 10+04 −1.59× 10+04

Std 1.93 × 10+04 2.46 × 10+03 2.53 × 10+04 9.63 × 10+03 2.29 × 10+04 6.21 × 10+03 5.83 × 10+03 1.01 × 10+03

Max −4.49 × 10+05 −9.20× 10+04 −1.36× 10+04 −1.34× 10+04 −1.45× 10+05 −6.32× 10+04 −1.89× 10+04 −1.41× 10+04

Min −5.45 × 10+05 −1.05× 10+05 −1.15× 10+05 −7.17× 10+04 −2.09× 10+05 −8.84× 10+04 −4.58× 10+04 −1.90× 10+04

F9

Ave 0.00 × 10+00 0.00 × 10+00 7.90 × 10+03 5.58 × 10+00 0.00 × 10+00 6.47 × 10+03 4.53 × 10−01 1.24 × 10+03

Std 0.00 × 10+00 0.00 × 10+00 2.80 × 10+02 6.52 × 10+00 0.00 × 10+00 1.62 × 10+02 2.03 × 10+00 5.14 × 10+02

Max 0.00 × 10+00 0.00 × 10+00 8.34 × 10+03 2.38 × 10+01 0.00 × 10+00 6.85 × 10+03 1.11 × 10+01 2.37 × 10+03

Min 0.00 × 10+00 0.00 × 10+00 6.99 × 10+03 7.46 × 10−11 0.00 × 10+00 6.21 × 10+03 2.73 × 10−12 3.61 × 10+02

F10

Ave 8.88 × 10−16 4.44 × 10−15 1.29 × 10+01 5.84 × 10−08 4.09 × 10−15 2.01 × 10+01 2.00 × 10+01 1.89 × 10+01

Std 0.00 × 10+00 0.00 × 10+00 1.93 × 10−01 1.60 × 10−08 2.49 × 10−15 1.35 × 10−01 6.35 × 10−05 3.77 × 10+00

Max 8.88 × 10−16 4.44 × 10−15 1.32 × 10+01 9.69 × 10−08 7.99 × 10−15 2.04 × 10+01 2.00 × 10+01 2.08 × 10+01

Min 8.88 × 10−16 4.44 × 10−15 1.26 × 10+01 3.53 × 10−08 8.88 × 10−16 2.00 × 10+01 2.00 × 10+01 8.93 × 10+00

F11

Ave 0.00 × 10+00 0.00 × 10+00 3.47 × 10+00 1.22 × 10−03 0.00 × 10+00 8.69 × 10+03 1.69 × 10−03 1.55 × 10+03

Std 0.00 × 10+00 0.00 × 10+00 1.24 × 10−01 4.84 × 10−03 0.00 × 10+00 4.05 × 10+02 6.37 × 10−03 5.95 × 10+02

Max 0.00 × 10+00 0.00 × 10+00 3.75 × 10+00 2.45 × 10−02 0.00 × 10+00 9.32 × 10+03 2.87 × 10−02 3.26 × 10+03

Min 0.00 × 10+00 0.00 × 10+00 3.27 × 10+00 7.19 × 10−14 0.00 × 10+00 7.66 × 10+03 3.62 × 10−12 5.10 × 10+02

F12

Ave 2.97 × 10−11 2.01 × 10−01 9.21 × 10+05 7.52 × 10−01 4.25 × 10−02 9.39 × 10+09 1.02 × 10+00 3.98 × 10+09

Std 1.57 × 10−10 1.83 × 10−02 3.10 × 10+05 3.43 × 10−02 1.51 × 10−02 8.34 × 10+08 2.24 × 10−02 1.01 × 10+09

Max 8.76 × 10−10 2.42 × 10−01 1.57 × 10+06 8.25 × 10−01 7.47 × 10−02 1.09 × 10+10 1.07 × 10+00 5.90 × 10+09

Min 5.25 × 10−22 1.69 × 10−01 4.69 × 10+05 6.86 × 10−01 1.85 × 10−02 7.38 × 10+09 9.78 × 10−01 1.75 × 10+09

F13

Ave 3.83 × 10−13 4.75 × 10+01 8.79 × 10+06 4.60 × 10+01 1.06 × 10+01 1.76 × 10+10 4.95 × 10+01 6.93 × 10+09

Std 1.53 × 10−12 5.31 × 10−01 1.67 × 10+06 5.50 × 10−01 3.28 × 10+00 1.39 × 10+09 5.33 × 10−01 1.57 × 10+09

Max 8.49 × 10−12 4.84 × 10+01 1.17 × 10+07 4.69 × 10+01 1.82 × 10+01 2.00 × 10+10 5.05 × 10+01 9.33 × 10+09

Min 1.55 × 10−22 4.64 × 10+01 5.43 × 10+06 4.51 × 10+01 5.31 × 10+00 1.41 × 10+10 4.87 × 10+01 3.15 × 10+09

Friedman Average Rank 1.2251 2.6936 5.9231 4.2103 2.7205 7.2692 5.0333 6.8949
Rank 1 2 6 4 3 8 5 7



Mathematics 2021, 9, 291 33 of 34

References
1. Chakraborty, A.; Kar, A.K. Swarm intelligence: A review of algorithms. In Modeling and Optimization in Science and Technologies;

Springer: Berlin/Heidelberg, Germany, 2017.
2. Wei, C.-L.; Wang, G.-G. Hybrid Annealing Krill Herd and Quantum-Behaved Particle Swarm Optimization. Mathematics 2020, 8,

1403. [CrossRef]
3. Blum, C.; Li, X. Swarm Intelligence in Optimization. In Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2008.
4. Fister, I.; Yang, X.S.; Brest, J.; Fister, D. A Brief Review of Nature-Inspired Algorithms for Optimization. arXiv 2013, arXiv:1307.4186.
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