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Abstract: In this article, it has been observed that a unit Killing vector field ξ on an n-dimensional
Riemannian manifold (M, g), influences its algebra of smooth functions C∞(M). For instance, if h is
an eigenfunction of the Laplace operator ∆ with eigenvalue λ, then ξ(h) is also eigenfunction with
same eigenvalue. Additionally, it has been observed that the HessianHh(ξ, ξ) of a smooth function
h ∈ C∞(M) defines a self adjoint operator �ξ and has properties similar to most of properties of the
Laplace operator on a compact Riemannian manifold (M, g). We study several properties of functions
associated to the unit Killing vector field ξ. Finally, we find characterizations of the odd dimensional
sphere using properties of the operator �ξ and the nontrivial solution of Fischer–Marsden differential
equation, respectively.

Keywords: Killing vector field; Killing calculus; sphere; isometry

1. Introduction

A smooth vector field ξ on an n-dimensional Riemannian manifold (M, g) is said to
be a Killing vector field if its flow consists of isometries of (M, g). We say that a Killing
vector field ξ is nontrivial if it is not parallel. It is known that a nontrivial Killing vector
field on a compact Riemannian manifold restricts its topology and geometry, for example,
it does not allow the Riemannian manifold (M, g) to have negative Ricci curvature and
that if (M, g) has positive sectional curvatures, then its fundamental group contains a
cyclic subgroup with constant index, depending only on the dimension of M (cf. [1–3]).
Riemannian manifolds with Killing vector fields has been subject of interest for many
mathematicians (cf. [2,4–13]). There are other important vector fields, such as Jacobi-type
vector fields, geodesic vector fields and torqued vector fields, which play important roles
in the geometry of a Riemannian manifold (cf. [10,11,14–16]). Moreover, incompressible
vector fields have applications in Physics, and as Killing vector fields are incompressible,
they have applications in Physics (cf. [17]).

Killing vector fields are found in abundance on Euclidean spaces En; for instance all
constant vector fields are Killing, though they are trivial Killing vector fields. If u1, ..., un

are Euclidean coordinates on En, then

ξ = uj ∂

∂ui − ui ∂

∂uj , i 6= j

for fixed i and j, is a nontrivial Killing vector field on En. Similarly, the vector field ξ = JΨ
is a Killing vector field on the even dimensional Euclidean space E2n, J being the complex
structure and Ψ being the position (Euler) vector field on E2n. However, all these nontrivial
Killing vector fields on the Euclidean spaces are of non-constant length. A natural question
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arises, whether there exists a nontrivial Killing vector field of constant length on a Euclidean
space? The answer is negative.

In this paper, we exhibit several properties of a unit Killing vector field ξ in relation
to algebra C∞(M) of smooth functions on (M, g). In particular, we show that there is an
operator �ξ : C∞(M)→ C∞(M) that has properties similar to that of the Laplace operator.

On the unit sphere S2n+1, there is a unit Killing vector field ξ provided by the Sasakian
structure (cf. [18]). This naturally raises a question of finding necessary and sufficient
conditions on a compact (M, g) that admits a unit Killing vector field to be isometric
to S2n+1. In this paper we use the properties of the operator �ξ associated to the unit
Killing vector field ξ on a compact (M, g) to find a characterization of the sphere S2n+1(c).
Additionally, we use properties of the nontrivial solution h of the Fischer–Marsden equation
(cf. [19]) on a compact Riemannian manifold (M, g) with Killing vector field ξ and a suitable
lower bound on the Ricci curvature Ric(gradh, gradh) to find a characterization of the unit
sphere S2n+1(c). Note that even dimensional unit spheres S2n do not admit unit Killing
vector fields, owing to the fact that a Killing vector field on a positively curved even
dimensional compact Riemannian manifold has a zero. However, other than unit sphere
S2n+1, there are ellipsoids admitting unit Killing vector fields (cf. [5]).

2. Preliminaries

A smooth vector field ξ on a Riemannian manifold (M, g) is said to be a Killing vector
field, if it satisfies

£ξ g = 0,

where £ξ g is the Lie derivative with respect to ξ, or equivalently

g(∇Xξ, Y) + g(∇Yξ, X) = 0, X, Y ∈ X(M), (1)

where∇ is the Riemannian connection and X(M) is the Lie algebra of smooth vector fields
on M.

The curvature tensor field R of (M, g) is given by

R(X, Y)Z = [∇X ,∇Y]Z−∇[X,Y]Z, X, Y, Z ∈ X(M) (2)

and Ricci tensor field is

Ric(X, Y) =
n

∑
i=1

g(R(ei, X)Y, ei),

for a local orthonormal frame {e1, ..., en} on M.
The Ricci operator S is a symmetric operator associated to the Ricci tensor, defined by

g(SX, Y) = Ric(X, Y).

The trace r = TrS is the scalar curvature of M. Note that gradr, the gradient of the
scalar curvature r, satisfies

1
2

gradr =
n

∑
i=1

(∇S)(ei, ei), (3)

where ∇S is given by
(∇S)(X, Y) = ∇XSY− S∇XY.

We denote by η, 1-form dual to the Killing vector field ξ on (M, g) and define an
operator F on (M, g) by

2g(FX, Y) = dη(X, Y), X, Y ∈ X(M). (4)

We use bold faced letters for scalar curvature and specific vectors on a Euclidean space
and some specific tensors. The operator F is skew-symmetric and using
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dη(X, Y) = g(∇Xξ, Y)− g(∇Yξ, X)

together with Equations (1) and (4), we conclude

∇Xξ = FX, X ∈ X(M). (5)

If the length of the Killing vector field ξ is a constant, then on taking the inner product
with ξ in above Equation (5), we conclude g(∇Xξ, ξ) = g(FX, ξ) = 0, and as F is skew-
symmetric operator, we get

F(ξ) = 0. (6)

Additionally, using Equation (5), we have

(∇F)(X, Y)− (∇F)(Y, X) = R(X, Y)ξ, X, Y ∈ X(M), (7)

where (∇F)(X, Y) = ∇XFY − F(∇XY). Using the fact that the 2-form dη is closed, F is
skew-symmetric and, from Equation (7), we conclude

R(X, ξ)Y = (∇F)(X, Y), X, Y ∈ X(M). (8)

We denote by C∞(M) the algebra of smooth functions on the Riemannian manifold
(M, g) and for a h ∈ C∞(M), we denote its gradient by gradh. Then the Hessian operator
Ah of h is defined by

Ah(X) = ∇X gradh, X ∈ X(M) (9)

and it is a symmetric operator. Moreover the HessianHh of h is defined by

Hh(X, Y) = g
(

Ah(X), Y
)

, X, Y ∈ X(M). (10)

The Laplace operator ∆ : C∞(M) → C∞(M) on a Riemannian manifold (M, g) is
defined by ∆h = div(gradh) and we also have

∆h = TrAh. (11)

If M is compact and h ∈ C∞(M) is, such that∫
M

h = 0,

then by minimum principle, we have∫
M
‖gradh‖2 ≥ λ1

∫
M

h2 (12)

λ1 being first nonzero eigenvalue of ∆.

3. Killing Calculus

Let ξ be a unit Killing vector field on an n-dimensional Riemannian manifold (M, g).
For each h ∈ C∞(M), we define h = ξ(h), h = ξ

(
h
)

. We are interested in studying the

properties of these functions h, h. From Equation (5), it follows that if ξ is a nontrivial
Killing vector field, then the skew-symmetric operator F is non-vanishing. If the Euclidean
space En admits a Killing vector field ξ that has constant length, then Equation (8) implies

(∇F)(X, Y) = 0, X, Y ∈ X(En).

Choosing Y = ξ in above equation and using Equation (6), we get −F2X = 0, that is,
‖F‖2 = 0, where
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‖F‖2 =
n

∑
i=1

g(Fei, Fei),

{e1, ..., en} being an orthonormal frame on the Euclidean space En. Thus, we have F = 0
and the Killing vector field ξ is trivial. Thus, we have the following:

Proposition 1. There does not exist a nontrivial Killing vector field of constant length on the
Euclidean space En.

Now, suppose ξ is a Killing vector field on a Riemannian manifold (M, g). Then as
F is skew-symmetric, using Equation (5), we have divξ = 0, and for each h ∈ C∞(M), we
have div(hξ) = h. Thus, we get

Lemma 1. Let ξ be a Killing vector field on a compact Riemannian manifold (M, g). Then for each
h ∈ C∞(M) ∫

M
h = 0.

As h = ξ(h), we find X
(

h
)
= Xg(ξ, gradh) = g(FX, gradh)+ g

(
ξ, Ah(X)

)
, X ∈ X(M)

and get the following expression

gradh = −F(gradh) + Ah(ξ). (13)

Lemma 2. Let ξ be a Killing vector field on a Riemannian manifold (M, g). Then for each
h ∈ C∞(M), ∆h = ξ(∆h).

Proof. Using Equation (9), we have

R(X, Y)gradh =
(
∇Ah

)
(X, Y)−

(
∇Ah

)
(Y, X), X, Y ∈ X(M),

and using a local orthonormal frame {e1, ..., en} on M, n = dimM in above equation, we
conclude

Ric(Y, gradh) = g

(
Y,

n

∑
i=1

(
∇Ah

)
(ei, ei)

)
−Y(∆h),

where we have used the symmetry of the Hessian operator Ah and TrAh = ∆h. Thus,
above equation implies

S(gradh) = −grad∆h +
n

∑
i=1

(
∇Ah

)
(ei, ei). (14)

Additionally, note that

Ric(ξ, X) =
n

∑
i=1

R(ei, ξ; X, ei) = −
n

∑
i=1

R(ei, ξ; ei, X), X ∈ X(M),

which implies

S(ξ) = −
n

∑
i=1

R(ei, ξ)ei.

Using the above equation with Equation (8), we conclude

n

∑
i=1

(∇F)(ei, ei) = −S(ξ). (15)
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Now, using Equations (9) and (15), we get

div(F(gradh)) = −
n

∑
i=1

g
(

Ahei, Fei

)
+ Ric(gradh, ξ) = Ric(gradh, ξ), (16)

where the first term is zero, owing to the symmetry of Ah and the skew-symmetry of F.
Similarly, using Equations (5) and (14), we compute

divAh(ξ) =
n

∑
i=1

g
(

Ahei, Fei

)
+ g

(
ξ,

n

∑
i=1

(
∇Ah

)
(ei, ei)

)
= Ric(gradh, ξ) + ξ(∆h). (17)

Thus, using Equations (13), (16) and (17), we get ∆h = ξ(∆h).

Lemma 3. Let ξ be a Killing vector field on a compact Riemannian manifold (M, g). Then for each
h ∈ C∞(M), ∫

M
h∆h =

∫
M

∥∥∥gradh
∥∥∥2

.

Proof. On using above Lemma, we have h∆h = ξ
(

h
)

∆h = ξ
(

h∆h
)
− hξ(∆h) = ξ

(
h∆h

)
−

h∆h. Now, using
1
2

∆h
2
= h∆h +

∥∥∥gradh
∥∥∥2

,

we get

h∆h = ξ
(

h∆h
)
+
∥∥∥gradh

∥∥∥2
− 1

2
∆h

2
.

Integrating the above equation while using Lemma 1, we get the desired result.

It is interesting, as the following Lemma suggests, to note that for each h ∈ C∞(M) on
a compact (M, g), functions h and h are orthogonal functions.

Lemma 4. Let ξ be a Killing vector field on a compact Riemannian manifold (M, g). Then for each
h ∈ C∞(M)

(i)
∫

M
hh = 0, (ii)

∫
M

hh = −
∫

M
h

2
.

Proof. Note that hh = hξ(h) = 1
2 ξ
(
h2). Integrating this equation and using Lemma 1, we

get (i). Additionally, we have

hh = hξ
(

h
)
= ξ

(
hh
)
− hξ(h) = ξ

(
hh
)
− h

2
.

Integrating the above equation and using Lemma 1, we get (ii).

Proposition 2. Let ξ be a unit Killing vector field on a compact Riemannian manifold (M, g).
Then for each h ∈ C∞(M), the volume V(M) of M satisfies

V(M) ≤
∫

M

(∥∥∥gradh− ξ
∥∥∥2
− λ1h

2
)

,

where λ1 is the first nonzero eigenvalue of the Laplace operator ∆ and the equality holds for h
satisfying ∆h = −λ1h.

Proof. Using Lemma 1, and Equation (12), for any h ∈ C∞(M), we get∫
M

∥∥∥gradh
∥∥∥2
≥ λ1

∫
M

h
2
. (18)
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We have ∥∥∥gradh− ξ
∥∥∥2

=
∥∥∥gradh

∥∥∥2
+ 1− 2ξ

(
h
)

.

Integrating the above equation and using Lemma 1 and Equation (18), we get the
result. Moreover, if ∆h = −λ1h, then by Lemma 2, we have ∆h = −λ1h and that the
equality in inequality (18) holds and consequently, the equality holds in the statement.

Next, given a unit Killing vector field ξ on a compact Riemannian manifold (M, g), we
define an operator �ξ : C∞(M)→ C∞(M) by �ξ(h) = Hh(ξ, ξ), whereHh is the Hessian
of the function h. We shall show that this operator �ξ is self adjoint operator with respect
to the inner product

( f , h) =
∫

M
f h, f , h ∈ C∞(M).

Proposition 3. Let ξ be a unit Killing vector field on a compact Riemannian manifold (M, g).
Then the operator �ξ is a self adjoint operator on C∞(M). Consequently,∫

M
�ξ h = 0, h ∈ C∞(M).

Proof. For f , h ∈ C∞(M), we have(
�ξ f , h

)
=
∫

M

(
�ξ f

)
h =

∫
M

hH f (ξ, ξ). (19)

In view of Equations (5) and (6), we have ∇ξξ = 0, and, therefore,

H f (ξ, ξ) = ξξ( f ).

Thus,

hH f (ξ, ξ) = hξξ( f ) = ξ(hξ( f ))− ξ(h)ξ( f )

= ξ(hξ( f ))− ξ( f ξ(h)) + f ξξh

= ξ(hξ( f ))− ξ( f ξ(h)) + fHh(ξ, ξ).

Integrating the above equation and using Lemma 1 and Equation (19), we conclude

(
�ξ f , h

)
=
∫

M
hH f (ξ, ξ) = ( f ,�ξ h).

Hence, the operator �ξ is self adjoint operator on C∞(M). Note for a constant c, we
have �ξ c = Hc(ξ, ξ) = 0 and, therefore,∫

M
�ξ h =

∫
M

h �ξ 1 = 0.

Note that the Laplace operator satisfies 1
2 ∆h2 = h∆h + ‖gradh‖2, h ∈ C∞(M) and we

will show that the operator �ξ has a similar property. Indeed, we have

H
1
2 h2

(ξ, ξ) = ξξ

(
1
2

h2
)
= ξ(hξ(h)) = ξ(h)2 + hHh(ξ, ξ),

that is, the operator �ξ satisfies

1
2
�ξ h2 = h �ξ h + h

2
. (20)
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Using Stokes’s Theorem, we know that, on a compact (M, g), ∆h = 0 implies h is a
constant. We have a similar result for the operator �ξ as a consequence of Proposition 3, as
seen in the following result.

Corollary 1. Let ξ be a unit Killing vector field on a compact Riemannian manifold (M, g). Then
�ξ h = 0, if and only if, h is a constant on the integral curves of ξ.

Proof. Let h ∈ C∞(M) be such that �ξ h = 0. Then, Equation (20) implies

1
2
�ξ h2 = h

2
.

Integrating the above equation and using Proposition 3, we conclude∫
M

h
2
= 0.

Thus, h = 0, that is, h is a constant on the integral curves of ξ. The converse is
obvious.

Recall that the unit sphere S2n+1 possesses a unit Killing vector field ξ provided by
the Sasakian structure (cf. [18]). Additionally, there is a h ∈ C∞(S2n+1) satisfying

∇X gradh = −hX, X ∈ X
(

S2n+1
)

,

that is, Ah(ξ) = −hξ. Note that h is the eigenfunction of the Laplace operator ∆ corre-
sponding to the first nonzero eigenvalue 2n + 1 and, also, we see thatHh(ξ, ξ) = −h. Thus,
�ξ h = −h, that is, h is an eigenfunction of the operator �ξ corresponding to eigenvalue 1.

Let h ∈ C∞(M) be a non-constant function, satisfying �ξ h = λh for a nonzero
constant λ and M be compact. Then in view of Proposition 3, Equation (20) implies∫

M

(
λh2 + h

2
)
= 0.

As the constant λ is nonzero and h is non-constant function, the above equation proves
λ < 0. Hence, if h is a non-constant eigenfunction, we have �ξ h = −µh for µ > 0 and we
say µ is the eigenvalue of the operator �ξ and conclude that nonzero eigenvalues of the
operator �ξ are positive.

Recall that, owing to Lemma 1, on a compact Riemannian manifold (M, g) that admits
a unit Killing vector field ξ, we have the Poisson equation ∆u = h and this is known to have
unique solution up to a constant. Additionally, we consider an analogue of the Poisson
equation involving the operator �ξ , the differential equation of the form

�ξu = h,

for a h ∈ C∞(M). We have the following result:

Proposition 4. Let ξ be a unit Killing vector field on a compact Riemannian manifold (M, g).
Then h ∈ C∞(M) is a solution of the differential equation �ξu = h, if and only if, h is a constant
on the integral curves of ξ.

Proof. Suppose h is a solution of �ξu = h . Then, using Equations (5) and (6), we have

∇ξξ = 0 and we getHh(ξ, ξ) = ξξ(h) = h . Thus, using �ξ h = h, we get h = h, that is,

hh = hh.
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Integrating the above equation and using (i) of Lemma 4, we get∫
M

hh = 0,

which in view of (ii) of Lemma 4, we conclude∫
M

h
2
= 0.

Hence, h = 0 and h is a constant on integral curves of ξ. The converse is trivial and it
follows from Corollary 1.

4. Characterizations of Odd Dimensional Spheres

In this section, we use the Killing calculus developed in the previous section to find a
characterization of the odd dimensional sphere S2m+1(c). We prove the following:

Theorem 1. Let ξ be a unit Killing vector field on an n-dimensional compact Riemannian manifold
(M, g), h ∈ C∞(M) be such that h is a non-constant function, and λ1 be the first nonzero
eigenvalue of the Laplace operator ∆. Then �ξ∆h = −nch, for a constant c > 0 and the Ricci

curvature in the direction of the vector field gradh, is bounded below by c
(

nc
λ1

+ n− 2
)

, if and only

if, n is odd (n = 2m + 1) and (M, g) is isometric to the sphere S2m+1(c).

Proof. Suppose h ∈ C∞(M) is such that h is a non-constant function, satisfying

�ξ ∆h = −nch (21)

for a positive constant c, and the Ricci curvature satisfies

Ric
(

gradh, gradh
)
≥ c
(

nc
λ1

+ n− 2
)∥∥∥gradh

∥∥∥2
. (22)

Note that, using Lemma 2, we have
(

∆h
)2

= (ξ(∆h))2 =
(

∆h
)2

, and combining it
with Equation (20), we have(

∆h
)2

=
1
2
�ξ (∆h)2 − ∆h �ξ ∆h.

Integrating the above equation and using Equation (21), we get∫
M

(
∆h
)2

= nc
∫

M
h∆h

and the above equation in view of Lemma 3 implies∫
M

(
∆h
)2

= nc
∫

M

∥∥∥gradh
∥∥∥2

. (23)

Using Bochner’s formula (cf. [20]), we have∫
M

(
Ric
(

gradh, gradh
)
+
∥∥∥Ah

∥∥∥2
−
(

∆h
)2
)
= 0. (24)

Additionally, we have∥∥∥Ah + chI
∥∥∥2

=
∥∥∥Ah

∥∥∥2
+ nc2h

2
+ 2ch∆h
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and integrating the above equation while using Equation (24), we get∫
M

∥∥∥Ah + chI
∥∥∥2

=
∫

M

((
∆h
)2
− Ric

(
gradh, gradh

)
+ nc2h

2
+ 2ch∆h

)
.

Using Lemma 1 and inequality (12), in the above equation, we get

∫
M

∥∥∥Ah + chI
∥∥∥2
≤
∫

M

((
∆h
)2
− Ric

(
gradh, gradh

)
+

nc2

λ1

∥∥∥gradh
∥∥∥2

+ 2ch∆h
)

and using 1
2 ∆h

2
= h∆h +

∥∥∥gradh
∥∥∥2

in last term of above inequality, we conclude

∫
M

∥∥∥Ah + chI
∥∥∥2
≤
∫

M

((
∆h
)2
− Ric

(
gradh, gradh

)
+

nc2

λ1

∥∥∥gradh
∥∥∥2
− 2c

∥∥∥gradh
∥∥∥2
)

.

Now, using Equation (23) in the above inequality, we arrive at∫
M

∥∥∥Ah + chI
∥∥∥2
≤
∫

M

(
c
(

nc
λ1

+ n− 2
)∥∥∥gradh

∥∥∥2
− Ric

(
gradh, gradh

))
.

Finally, inequality (22) and the above inequality implies Ah + chI = 0 and we have

∇X gradh = −chX, X ∈ X(M).

Thus, the function h satisfies the Obata’s differential equation (cf. [21,22]) and, there-
fore, (M, g) is isometric to Sn(c). However, if n is even, it is known that on an even
dimensional Riemannian manifold of positive sectional curvature, a Killing vector field
has a zero (cf. [12]) and we get a contradiction to the fact that ξ is a unit Killing vector field.
Hence, n must be odd, and 2m + 1 and (M, g) are isometric to the sphere S2m+1(c).

Conversely, suppose (M, g) is isometric to S2m+1(c). Treating S2m+1(c) as a hyper-
surface of the complex space C(m+1) with unit normal vector field ς and shape operator
A = −

√
cI. Using complex structure J on C(m+1), we get unit vector field ξ = −Jς on

S2m+1(c). Denote the Euclidean connection on C(m+1) by D and the Hermitian Euclidean
metric by 〈,〉, we have

DXξ =
√

cJX, X ∈ X(S2m+1(c)).

Denoting the induced Riemannian connection on S2m+1(c) by ∇ and defining FX =

(JX)T , the tangential component of JX, in the above equation gives

∇Xξ −
√

cg(X, ξ)ς =
√

cFX +
√

c(JX)⊥,

where (JX)⊥ is the normal component of JX and g is the induced metric on S2m+1(c).
Equating tangential components, we have

∇Xξ =
√

cFX, X ∈ X(M),

and since, by definition of F, it is skew-symmetric and we conclude that ξ is a unit Killing
vector field on S2m+1(c) and that

F(ξ) = 0. (25)

Now, choose a nonzero constant vector field u on the complex space C(m+1) and
define smooth function h on S2m+1(c) by h = 〈u, ς〉 and define a vector field v on S2m+1(c)
by v = uT , the tangential component of u to S2m+1(c). Then, we have u = v + hς.
Differentiating this equation with respect to X ∈ X(S2m+1(c)), we get

0 = ∇Xv−
√

cg(X, v)ς + X(h)ς +
√

chX
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and we conclude

∇Xv = −
√

chX, X(h) =
√

cg(X, v), X ∈ X(S2m+1(c)),

that is, v = 1√
c gradh and

∇X gradh = −chX, X ∈ X(S2m+1(c)). (26)

We claim that h is not a constant, if h is a constant, Equation (26) implies h = 0 and then
v = 0, which means constant vector field u = 0 on S2m+1(c). However, u being a constant
vector field, it will be zero on C(m+1), a contradiction to our assumption that u 6= 0. Hence,
h is a non-constant function. Additionally, we have h = ξ(h) = g(ξ, gradh) =

√
cg(ξ, v),

and it implies
X
(

h
)
= cg(FX, v)− chg(ξ, X),

that is,
gradh = −cFv− chξ.

If h is a constant, it will imply Fv = −hξ, that is, h = g(v, Fξ) = 0 (in view of
Equation (25)) and is a contradiction as h is non-constant. Hence, h is non-constant.
Additionally, Equation (26) implies ∆h = −(2m + 1)ch and, therefore, we have

�ξ∆h = −(2m + 1)c �ξ h = −(2m + 1)cHh(ξ, ξ) = −(2m + 1)ch.

Using the expression for the Ricci curvature of the sphere S2m+1(c), we have

Ric
(

gradh, gradh
)
= 2mc

∥∥∥gradh
∥∥∥2

.

Moreover, the first nonzero eigenvalue λ1 of the sphere S2m+1(c) is λ1 = (2m + 1)c
and, therefore, with n = 2m + 1, we have(

nc
λ1

+ n− 2
)
= 2m

and, consequently,

Ric
(

gradh, gradh
)
= c
(

nc
λ1

+ n− 2
)∥∥∥gradh

∥∥∥2

and all the requirements of the statement are met.

Recall that, Fischer and Marsden considered a differential equation

(∆h)g + hRic = Hh (27)

on a Riemannian manifold (M, g) (cf. [19]), and have shown that, if a Riemannian manifold
admits a nontrivial solution of this differential equation, then its scalar curvature r is a
constant.

Definition 1. We call a Riemannian manifold (M, g) admitting a nontrivial solution of the
differential Equation (27) a Fischer–Marsden manifold.

Observe that, on an n-dimensional Fischer–Marsden manifold (M, g), the nontrivial
solution h satisfies

∆h = − r
n− 1

h. (28)
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Suppose a Fischer–Marsden manifold (M, g) admits a unit Killing vector field ξ, then
using Equations (27) and (28), we observe that the nontrivial solution h of differential
Equation (27), satisfies

�ξ h =

(
Ric(ξ, ξ)− r

n− 1

)
h.

Using Equation (20), we conclude

1
2
�ξ h2 =

(
Ric(ξ, ξ)− r

n− 1

)
h2 + h

2
.

Thus, we have the following.

Corollary 2. Let ξ be a unit Killing vector field on an n-dimensional compact Fischer–Marsden
manifold (M, g) with constant Ricci curvature Ric(ξ, ξ). Then

Ric(ξ, ξ) ≤ r
n− 1

and the equality holds if, and only if, the nontrivial solution h of the Fischer–Marsden equation is a
constant on the integral curves of ξ.

In [19], Fischer and Marsden conjectured that a compact Fischer–Marsden manifold is
an Einstein manifold. Recall that a Riemannian manifold (M, g) is said to be an Einstein
manifold if Ric = λg, where λ is a constant. In the rest of this section, we show that
some additional conditions of Fischer–Marsden manifold gives additional outcomes to the
Einstein manifold—namely, with additional conditions, we show that a compact Fischer–
Marsden manifold is not only Einstein but also a sphere. Note that scalar curvature r is a
constant and on a compact Fischer–Marsden manifold (M, g), Equation (28) implies∫

M
‖gradh‖2 =

r
n− 1

∫
M

h2, (29)

that is, r > 0 (as h is a nontrivial solution of differential Equation (27)). On an n-dimensional
compact Fischer–Marsden manifold (M, g), we put r = n(n− 1)c, where constant c > 0.

Theorem 2. Let ξ be a unit Killing vector field on an n-dimensional compact Fischer–Marsden
manifold (M, g) with scalar curvature r = n(n− 1)c. Then, the Ricci curvature in the direction
of the vector field gradh is bounded below by (n− 1)c, if and only if, n is odd (n = 2m + 1) and
(M, g) is isometric to the sphere S2m+1(c).

Proof. Let (M, g) be a compact Fischer–Marsden manifold with scalar curvature r = n(n− 1)c
and h be a nontrivial solution of the Equation (27). Now,∥∥∥Ah + chI

∥∥∥2
=
∥∥∥Ah

∥∥∥2
+ nc2h2 + 2ch∆h =

∥∥∥Ah
∥∥∥2

+ nc2h2 + 2c
(

1
2

∆h2 − ‖gradh‖2
)

.

Integrating the above equation and using Equation (29), we conclude∫
M

∥∥∥Ah + hI
∥∥∥2

=
∫

M

(∥∥∥Ah
∥∥∥2
− c‖gradh‖2

)
. (30)

Additionally, the Bochner’s formula gives∫
M

∥∥∥Ah
∥∥∥2

=
∫

M

(
(∆h)2 − Ric(gradh, gradh)

)
,
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and in view of Equations (28) and (29), the above equation takes the form∫
M

∥∥∥Ah
∥∥∥2

=
∫

M

(
nc‖gradh‖2 − Ric(gradh, gradh)

)
.

Using above equation in Equation (30), we conclude∫
M

∥∥∥Ah + chI
∥∥∥2

=
∫

M

(
(n− 1)c‖gradh‖2 − Ric(gradh, gradh)

)
and using the bound on the Ricci curvature, Ric(gradh, gradh) ≥ (n− 1)c‖gradh‖2, in the
above equation, we get Ah = −chI. Thus,

∇X gradh = −chX, X ∈ X(M),

which is Obata’s differential equation (cf. [21,22]). This proves that (M, g) is isometric to
the sphere Sn(c). As seen in the proof of Theorem 1, we see that n is odd, n = 2m + 1 and
(M, g) is isometric to S2m+1(c).

Conversely, we have shown in the proof of Theorem 1, that there exists a unit Killing
vector field ξ on the sphere S2m+1(c) and the eigenfunction h of ∆ corresponding to first
nonzero eigenvalue (2m + 1)c. Moreover, using Equation (26), we have

Hh = −chg,

that is,
(∆h)g + hRic = −(2m + 1)chg + 2mchg = −chg.

Hence, the Fischer–Marsden differential Equation (27) holds and consequently, S2m+1(c)
is a Fischer–Marsden manifold with Ricci curvature equal to 2mc. Thus, all the conditions
in the statement are met.

5. Conclusions

We have seen that, given a unit Killing vector field ξ on a compact Riemannian
manifold (M, g), there is associated a self adjoint operator �ξ : C∞(M)→ C∞(M) that has
similar properties to that of the Laplace operator. As an application of this operator �ξ

we get a characterization of an odd dimensional sphere (Theorem 1). There are questions
related to this operator �ξthose could be subject of future research, such as showing
that eigenspaces of this operator �ξare finite dimensional and are mutually orthogonal
with respect to different eigenvalues, as well as the relation between volume and the first
nonzero eigenvalue.
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