

Article On the Reciprocal Sums of Products of Balancing and Lucas-Balancing Numbers

Younseok Choo ወ

Department of Electronic and Electrical Convergence Engineering, Hongik University, Sejong-Ro 2639, Sejong 30016, Korea; yschoo@hongik.ac.kr

Abstract: Recently Panda et al. obtained some identities for the reciprocal sums of balancing and Lucas-balancing numbers. In this paper, we derive general identities related to reciprocal sums of products of two balancing numbers, products of two Lucas-balancing numbers and products of balancing and Lucas-balancing numbers. The method of this paper can also be applied to even-indexed and odd-indexed Fibonacci, Lucas, Pell and Pell–Lucas numbers.

Keywords: balancing numbers; Lucas-balancing numbers; Fibonacci numbers; reciprocal; floor function

MSC: 11B37; 11B39

1. Introduction

The classical Fibonacci numbers $\{F_n\}_{n=0}^{\infty}$ are generated from the recurrence relation $F_n = F_{n-1} + F_{n-2}$ ($n \ge 2$) with the initial conditions $F_0 = 0$ and $F_1 = 1$. As is well known, the Fibonacci numbers possess many interesting properties and appear in a variety of application fields [1].

Recently Ohtsuka and Nakamura [2] reported an interesting property of the Fibonacci numbers and proved the following identities:

$$\left(\sum_{k=n}^{\infty} \frac{1}{F_k}\right)^{-1} = \begin{cases} F_n - F_{n-1}, & \text{if } n \ge 2 \text{ and } n \text{ is even;} \\ F_n - F_{n-1} - 1, & \text{if } n \ge 1 \text{ and } n \text{ is odd,} \end{cases}$$
(1)

$$\sum_{k=n}^{\infty} \frac{1}{F_k^2} = \begin{cases} F_{n-1}F_n - 1, & \text{if } n \ge 2 \text{ and } n \text{ is even;} \\ F_{n-1}F_n, & \text{if } n \ge 1 \text{ and } n \text{ is odd,} \end{cases}$$
(2)

where $\lfloor \cdot \rfloor$ is the floor function.

Following the work of Ohtsuka and Nakamura, diverse results in the same direction have been reported in the literature [3–15].

A positive integer *n* is called the balancing number if [16]

$$1 + 2 + \dots + (n - 1) = (n + 1) + (n + 2) + \dots + (n + r),$$

for some positive integer *r*. As shown in [16], the balancing numbers $\{B_n\}_{n=0}^{\infty}$ satisfy the recurrence relation $B_n = 6B_{n-1} - B_{n-2}$ $(n \ge 2)$ with the initial conditions $B_0 = 0$ and $B_1 = 1$. The balancing numbers are useful in studying the Diophantine equations [17,18]. The numbers $\{C_n\}_{n=0}^{\infty}$ with $C_n = \sqrt{8B_n^2 + 1}$ are called the Lucas-balancing numbers [19] and obtained from the recurrence relation $C_n = 6C_{n-1} - C_{n-2}$ $(n \ge 2)$ with the initial conditions $C_0 = 1$ and $C_1 = 3$.

Citation: Choo, Y. On the Reciprocal Sums of Products of Balancing and Lucas-Balancing Numbers. *Mathematics* **2021**, *9*, 350. https:// doi.org/10.3390/math9040350

Academic Editor: Luca Gemignani

Received: 23 January 2021 Accepted: 9 February 2021 Published: 10 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Panda et al. [20] recently studied the reciprocal sums of balancing and Lucas-balancing numbers, and obtained various identities. For example, they showed that

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{B_k}\right)^{-1} \right\rfloor = B_n - B_{n-1} - 1 \quad (n \ge 1),$$
(3)

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_k^2} \right)^{-1} \right] = B_n^2 - B_{n-1}^2 - 1 \quad (n \ge 1),$$
(4)

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_{2k}} \right)^{-1} \right] = B_{2n} - B_{2n-2} - 1 \quad (n \ge 1),$$
 (5)

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_{2k}^2} \right)^{-1} \right] = B_{2n}^2 - B_{2n-2}^2 - 1 \quad (n \ge 1), \tag{6}$$

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_k B_{k+1}} \right)^{-1} \right] = B_n B_{n+1} - B_{n-1} B_n - 1 \quad (n \ge 1),$$
(7)

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{B_{2k} B_{2k+2}} \right)^{-1} \right\rfloor = B_{2n+1}^2 - B_{2n-1}^2 - 2 \quad (n \ge 1),$$
(8)

and

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{C_k}\right)^{-1} \right\rfloor = C_n - C_{n-1} \quad (n \ge 2), \tag{9}$$

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_k^2} \right) \right] = C_n^2 - C_{n-1}^2 \quad (n \ge 1),$$
(10)

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_{2k}} \right)^{-1} \right] = C_{2n} - C_{2n-2} \quad (n \ge 1),$$
(11)

$$\left(\sum_{k=n}^{\infty} \frac{1}{C_{2k}^2}\right)^{-1} = C_{2n}^2 - C_{2n-2}^2 \quad (n \ge 1),$$
(12)

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_k C_{k+1}} \right)^{-1} \right] = C_n C_{n+1} - C_{n-1} C_n + 1 \quad (n \ge 1),$$
(13)

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{C_{2k}C_{2k+2}} \right)^{-1} \right\rfloor = C_{2n+1}^2 - C_{2n-1}^2 + 8 \quad (n \ge 1),$$
(14)

etc.

We note that (3), (4) and (9), (10) also can be obtained, respectively from ([12] [Theorem 2.1]) and ([12] [Theorem 2.2]).

In this paper, we derive general identities related to reciprocal sums of products of two balancing numbers, products of two Lucas-balancing numbers and products of balancing and Lucas-balancing numbers. The results obtained here not only include most identities in [20] as special cases but also can be used to derive similar identities for even-indexed and odd-indexed Fibonacci, Lucas, Pell and Pell–Lucas numbers.

2. Results

For the ease of presentation, we use the notation $G_n = S(G_0, G_1, a, b)$ to denote the numbers $\{G_n\}_{n=0}^{\infty}$ generated from the recurrence relation

$$G_n = aG_{n-1} + bG_{n-2} \ (n \ge 2),$$

with the initial conditions G_0 and G_1 .

To deal with the balancing numbers $B_n = S(0, 1, 6, -1)$ and Lucas-balancing numbers $C_n = S(1, 3, 6, -1)$ in a unified manner, we consider the numbers $G_n = S(G_0, G_1, a, -1)$, where G_0 is a nonnegative integer, G_1 and a are positive integers. As in [12], we assume that

$$a \geq \max\{3, 1 + G_0/G_1\}.$$

Firstly we present two lemmas which will be used to prove our main results. For $G_n = S(G_0, G_1, a, -1)$ and $H_n = S(H_0, H_1, a, -1)$, define

$$\begin{split} \Phi_{G} &:= aG_{0}G_{1} - G_{0}^{2} - G_{1}^{2}, \\ \Phi_{H} &:= aH_{0}H_{1} - H_{0}^{2} - H_{1}^{2}, \\ \Delta_{n} &:= \frac{G_{n-1}G_{n+1}H_{n+m-1}H_{n+m+1} - G_{n}^{2}H_{n+m}^{2}}{G_{n+1}H_{n+m+1} - G_{n-1}H_{n+m=1}}, \\ \Delta_{m} &:= \lim_{n \to \infty} \Delta_{n}. \end{split}$$

Lemma 1 (See [21]). *For* $G_n = S(G_0, G_1, a, -1)$, we have

$$G_n^2 - G_{n-r}G_{n+r} = (G_1G_r - G_0G_{r+1})Q_r,$$

where $Q_n = S(0, 1, a, -1)$.

Lemma 2. For $G_n = S(G_0, G_1, a, -1)$ and $H_n = S(H_0, H_1, a, -1)$, we have

$$\Delta_m = \frac{(\Phi_H G_1^2 + \Phi_G H_{m+1}^2)\alpha^4 - 2(\Phi_H G_0 G_1 + \Phi_G H_m H_{m+1})\alpha^3 + (\Phi_H G_0^2 + \Phi_G H_m^2)\alpha^2}{G_1 H_{m+1} \alpha^6 - (G_1 H_m + G_0 H_{m+1})\alpha^5 + G_0 H_0 \alpha^4 - G_1 H_{m+1} \alpha^2 + (G_1 H_m + G_0 H_{m+1})\alpha - G_0 H_m},$$

where

$$\alpha = \frac{a + \sqrt{a^2 - 4}}{2}.$$

Proof. From Lemma 1, we have

 $G_{n-1}G_{n+1}H_{n+m-1}H_{n+m+1} - G_n^2H_{n+m}^2 = \Phi_H G_n^2 + \Phi_G H_{n+m}^2 + \Phi_G \Phi_H.$ G_n and H_{n+m} can be expressed as [21]

$$G_n = \frac{G_1(\alpha^n - \beta^n) - G_0(\alpha^{n-1} - \beta^{n-1})}{\alpha - \beta},$$

$$H_{n+m} = \frac{H_{m+1}(\alpha^n - \beta^n) - H_m(\alpha^{n-1} - \beta^{n-1})}{\alpha - \beta}.$$

where $\alpha > 1$ and $0 < \beta < 1$ are solutions of the equation $x^2 - ax + 1 = 0$, i.e.,

$$\alpha = \frac{a + \sqrt{a^2 - 4}}{2}$$
 and $\beta = \frac{a - \sqrt{a^2 - 4}}{2}$.

Since

4 of 10

$$\begin{aligned} & (\alpha - \beta)^2 (\Phi_H G_n^2 + \Phi_G H_{n+m}^2 + \Phi_G \Phi_H) \\ & = \alpha^{2n-2} \left[(\Phi_H G_1^2 + \Phi_G H_{m+1}^2) \alpha^2 - 2 (\Phi_H G_0 G_1 + \Phi_G H_m H_{m+1}) \alpha + (\Phi_H G_0^2 + \Phi_G H_m^2) \right] + \gamma_{n,n} \end{aligned}$$

and

$$\begin{aligned} & (\alpha - \beta)^2 (G_{n+1}H_{n+m+1} - G_{n-1}H_{n+m-1}) \\ &= \alpha^{2n-4} \big[G_1 H_{m+1} \alpha^6 - (G_1 H_m + G_0 H_{m+1}) \alpha^5 + G_0 H_0 \alpha^4 - G_1 H_{m+1} \alpha^2 + (G_1 H_m + G_0 H_{m+1}) \alpha - G_0 H_m \big] + \delta_n, \end{aligned}$$

where $\lim_{n\to\infty} \gamma_n = 0$ and $\lim_{n\to\infty} \delta_n = 0$, then the proof is completed. \Box

Now we state our main results.

Theorem 1. For $G_n = S(G_0, G_1, a, -1)$ and $H_n = S(H_0, H_1, a, -1)$, there exists a positive integer N such that

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{G_k H_{k+m}}\right)^{-1} \right\rfloor = G_n H_{n+m} - G_{n-1} H_{n+m-1} + g_m, \quad \text{if } n \ge N,$$
(15)

where

$$g_m = \lfloor \Delta_m \rfloor.$$

Proof. Consider

$$= \frac{\frac{1}{G_n H_{n+m} - G_{n-1} H_{n+m-1} + g_m} - \frac{1}{G_{n+1} H_{n+m+1} - G_n H_{n+m} + g_m} - \frac{1}{G_n H_{n+m}}}{\frac{X_1}{(G_n H_{n+m} - G_{n-1} H_{n+m-1} + g_m)(G_{n+1} H_{n+m+1} - G_n H_{n+m} + g_m)G_n H_{n+m}}},$$

where

$$X_{1} = G_{n-1}G_{n+1}H_{n+m-1}H_{n+m+1} - G_{n}^{2}H_{n+m}^{2} - g_{m}(G_{n+1}H_{n+m+1} - G_{n-1}H_{n+m-1}) - g_{m}^{2}$$

= $(G_{n+1}H_{n+m+1} - G_{n-1}H_{n+m-1})(\Delta_{n} - g_{m}) - g_{m}^{2}.$

Since Δ_n converges to Δ_m and $\Delta_m - g_m > 0$, there exists a positive integer n_0 such that $X_1 > 0$ if $n \ge n_0$ or

$$\frac{1}{G_n H_{n+m}} < \frac{1}{G_n H_{n+m} - G_{n-1} H_{n+m-1} + g_m} - \frac{1}{G_{n+1} H_{n+m+1} - G_n H_{n+m} + g_m}, \quad \text{if } n \ge n_0.$$

Repeatedly applying the above inequality, we have

$$\sum_{k=n}^{\infty} \frac{1}{G_k H_{k+m}} < \frac{1}{G_n H_{n+m} - G_{n-1} H_{n+m-1} + g_m}, \quad \text{if } n \ge n_0.$$
(16)

Similarly,

$$\frac{1}{G_{n}H_{n+m}-G_{n-1}H_{n+m-1}+g_{m}+1} - \frac{1}{G_{n+1}H_{n+m+1}-G_{n}H_{n+m}+g_{m}+1} - \frac{1}{G_{n}H_{n+m}}}{\frac{X_{2}}{(G_{n}H_{n+m}-G_{n-1}H_{n+m-1}+g_{m}+1)(G_{n+1}H_{n+m+1}-G_{n}H_{n+m}+g_{m}+1)G_{n}H_{n+m}}}'$$

where

=

$$\begin{aligned} X_2 &= G_{n-1}G_{n+1}H_{n+m-1}H_{n+m+1} - G_n^2H_{n+m}^2 - G_{n+1}H_{n+m+1} + G_{n-1}H_{n+m-1} \\ &- g_m(G_{n+1}H_{n+m+1} - G_{n-1}H_{n+m-1}) - (g_m+1)^2 \\ &= (G_{n+1}H_{n+m+1} - G_{n-1}H_{n+m-1})(\Delta_n - g_m) - G_{n+1}H_{n+m+1} + G_{n-1}H_{n+m-1} - (g_m+1)^2. \end{aligned}$$

Since Δ_n converges to Δ_m and $0 < \Delta_m - g_m < 1$, then there exists a positive integer n_1 such that $X_2 < 0$ if $n \ge n_1$ or

$$\frac{1}{G_n H_{n+m} - G_{n-1} H_{n+m-1} + g_m} - \frac{1}{G_{n+1} H_{n+m+1} - G_n H_{n+m} + g_m} < \frac{1}{G_n H_{n+m}}, \quad \text{if } n \ge n_1,$$

from which we obtain

$$\frac{1}{G_n H_{n+m} - G_{n-1} H_{n+m-1} + g_m + 1} < \sum_{k=n}^{\infty} \frac{1}{G_k H_{k+m}}, \quad \text{if } n \ge n_1.$$
(17)

Then (15) follows from (16) and (17). \Box

Setting $G_n = H_n = S(0, 1, 6, -1)$ in Theorem 1, we obtain Corollary 1 below.

Corollary 1. For balancing numbers $B_n = S(0, 1, 6, -1)$, there exists a positive integer N such that

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_k B_{k+m}} \right)^{-1} \right] = B_n B_{n+m} - B_{n-1} B_{n+m-1} + g_m, \quad \text{if } n \ge N,$$
(18)

where

$$g_m = \left\lfloor \frac{-(B_{m+1}^2 + 1)\alpha^3 + 2B_m B_{m+1} \alpha^2 - B_m^2 \alpha}{B_{m+1} \alpha^5 - B_m \alpha^4 - B_{m+1} \alpha + B_m} \right\rfloor,$$

with $\alpha = 3 + 2\sqrt{2}$.

For balancing numbers, $g_0 = g_1 = -1$ and we obtain (4) and (7) from (18). In addition we have

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_k B_{k+2}} \right)^{-1} \right] = B_n B_{n+2} - B_{n-1} B_{n+1} - 2, \text{ if } n \ge 1,$$
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_k B_{k+3}} \right)^{-1} \right] = B_n B_{n+3} - B_{n-1} B_{n+2} - 6, \text{ if } n \ge 1,$$

etc.,

Setting $G_n = H_n = S(1, 3, 6, -1)$ in Theorem 1, we obtain Corollary 2 below.

Corollary 2. For Lucas-balancing numbers $C_n = S(0, 1, 6, -1)$, there exists a positive integer N such that

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_k C_{k+m}} \right)^{-1} \right] = C_n C_{n+m} - C_{n-1} C_{n+m-1} + g_m, \quad \text{if } n \ge N,$$
(19)

where

$$g_m = \left\lfloor \frac{(8C_{m+1}^2 + 72)\alpha^4 - (16C_mC_{m+1} + 48)\alpha^3 + (8C_m^2 + 8)\alpha^2}{3C_{m+1}\alpha^6 - (3C_m + C_{m+1})\alpha^5 + \alpha^4 - 3C_{m+1}\alpha^2 + (3C_m + C_{m+1})\alpha - C_m} \right\rfloor,$$

with $\alpha = 3 + 2\sqrt{2}$.

For Lucas-balancing numbers, $g_0 = 0$ and $g_1 = 1$ and we obtain (10) and (13) from (19). In addition we have

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_k C_{k+2}} \right)^{-1} \right] = C_n C_{n+2} - C_{n-1} C_{n+1} + 8, \text{ if } n \ge 1,$$
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_k C_{k+3}} \right)^{-1} \right] = C_n C_{n+3} - C_{n-1} C_{n+2} + 46, \text{ if } n \ge 1,$$

etc.

Setting $G_n = S(0, 1, 6, -1)$ and $H_n = S(1, 3, 6, -1)$ in Theorem 1, we obtain Corollary 3 below.

Corollary 3. For balancing numbers $B_n = S(0, 1, 6, -1)$ and Lucas-balancing numbers $C_n = S(0, 1, 6, -1)$, there exists a positive integer N such that

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{B_k C_{k+m}}\right)^{-1} \right\rfloor = B_n C_{n+m} - B_{n-1} C_{n+m-1} + g_m, \quad \text{if } n \ge N,$$
(20)

where

$$g_m = \left\lfloor \frac{(8 - C_{m+1}^2)\alpha^3 + 2C_m C_{m+1} \alpha^2 - C_m^2 \alpha}{C_{m+1} \alpha^5 - C_m \alpha^4 - C_{m+1} \alpha + C_m} \right\rfloor$$

with $\alpha = 3 + 2\sqrt{2}$.

From (20), we have

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_k C_k} \right)^{-1} \right] = B_n C_n - B_{n-1} C_{n-1} - 1, \text{ if } n \ge 1,$$
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_k C_{k+1}} \right)^{-1} \right] = B_n C_{n+1} - B_{n-1} C_n - 1, \text{ if } n \ge 1,$$
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_k C_{k+2}} \right)^{-1} \right] = B_n C_{n+2} - B_{n-1} C_{n+1} - 3, \text{ if } n \ge 1.$$

etc.

Setting $G_n = S(1,3,6,-1)$ and $H_n = S(0,1,6,-1)$ in Theorem 1, we obtain Corollary 4 below.

Corollary 4. For balancing numbers $B_n = S(0, 1, 6, -1)$ and Lucas-balancing numbers $C_n = S(0, 1, 6, -1)$, there exists a positive integer N such that

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_{k+m}C_k} \right)^{-1} \right] = B_{n+m}C_n - B_{n+m-1}C_{n-1} + g_m, \quad \text{if } n \ge N,$$
(21)

where

$$g_m = \left\lfloor \frac{(8B_{m+1}^2 - 9)\alpha^4 - (16B_m B_{m+1} - 6)\alpha^3 + (8B_m^2 - 1)\alpha^2}{3B_{m+1}\alpha^6 - (3B_m + B_{m+1})\alpha^5 - 3B_{m+1}\alpha^2 + (3B_m + B_{m+1})\alpha - B_m} \right\rfloor,$$

with $\alpha = 3 + 2\sqrt{2}$.

From (21), we have

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_{k+1}C_k} \right)^{-1} \right] = B_{n+1}C_n - B_n C_{n-1}, \text{ if } n \ge 1,$$
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_{k+2}C_k} \right)^{-1} \right] = B_{n+2}C_n - B_{n+1}C_{n-1} + 2, \text{ if } n \ge 1,$$

etc.

We can obtain similar results for the even-indexed and odd-indexed numbers of $G_n = S(G_0, G_1, a, -1)$ and $H_n = S(H_0, H_1, a, -1)$. It is easily seen that

$$G_{2n} = (a^2 - 2)G_{2n-2} - G_{2n-4},$$

$$G_{2n+1} = (a^2 - 2)G_{2n-1} - G_{2n-3}.$$

Let $G_n^e = G_{2n}$ and $G_n^o = G_{2n+1}$. Then

$$\begin{aligned} G_n^e &= S(G_0^e, G_1^e, a^2 - 2, -1), \\ G_n^o &= S(G_0^o, G_1^o, a^2 - 2, -1), \end{aligned}$$

where $G_0^e = G_0$, $G_1^e = aG_1 - G_0$, $G_0^o = G_1$ and $G_1^o = (a^2 - 1)G_1 - aG_0$. Similarly

$$\begin{aligned} H_n^e &= S(H_0^e, H_1^e, a^2 - 2, -1), \\ H_n^o &= S(H_0^o, H_1^o, a^2 - 2, -1), \end{aligned}$$

where $H_0^e = H_0$, $H_1^e = aH_1 - H_0$, $H_0^o = H_1$ and $H_1^o = (a^2 - 1)H_1 - aH_0$. As before, for $U_n \in \{G_n^e, G_n^o, H_n^e, H_n^o\}$ and $V_n \in \{G_n^e, G_n^o, H_n^e, H_n^o\}$, let

$$\begin{split} \Phi_{U} &:= (a^{2}-2)U_{0}U_{1} - U_{0}^{2} - U_{1}^{2}, \\ \Phi_{V} &:= (a^{2}-2)V_{0}V_{1} - V_{0}^{2} - V_{1}^{2}, \\ \hat{\Delta}_{n} &:= \frac{U_{n-1}U_{n+1}V_{n+m-1}V_{n+m+1} - U_{n}^{2}V_{n+m}^{2}}{U_{n+1}V_{n+m+1} - U_{n-1}V_{n+m-1}} \\ \hat{\Delta}_{m} &:= \lim_{n \to \infty} \hat{\Delta}_{n}. \end{split}$$

Then

$$\hat{\Delta}_{m} = \frac{(\Phi_{V}U_{1}^{2} + \Phi_{U}V_{m+1}^{2})\hat{\alpha}^{4} - 2(\Phi_{V}U_{0}U_{1} + \Phi_{U}V_{m}V_{m+1})\hat{\alpha}^{3} + (\Phi_{V}U_{0}^{2} + \Phi_{U}V_{m}^{2})\hat{\alpha}^{2}}{U_{1}V_{m+1}\hat{\alpha}^{6} - (U_{1}V_{m} + U_{0}V_{m+1})\hat{\alpha}^{5} + U_{0}V_{0}\hat{\alpha}^{4} - U_{1}V_{m+1}\hat{\alpha}^{2} + (U_{1}V_{m} + U_{0}V_{m+1})\hat{\alpha} - U_{0}V_{m}}$$

where

$$\hat{\alpha} = rac{a^2 - 2 + \sqrt{(a^2 - 2)^2 - 4}}{2},$$

and we obtain the following results.

Theorem 2. For $G_n = S(G_0, G_1, a, -1)$ and $H_n = S(H_0, H_1, a, -1)$, let $U_n \in \{G_n^e, G_n^o, H_n^e, H_n^o\}$ and $V_n \in \{G_n^e, G_n^o, H_n^e, H_n^o\}$. Then, for each pair (U_n, V_n) , there exists a positive integer N such that

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{U_k V_{k+m}}\right)^{-1} \right\rfloor = U_n V_{n+m} - U_{n-1} V_{n+m-1} + \hat{g}_m, \quad \text{if } n \ge N,$$
(22)

where

$$\hat{g}_m = \lfloor \hat{\Delta}_m \rfloor.$$

For balancing numbers $B_n = S(0, 1, 6, -1)$, setting $U_n = V_n = B_n^e$ in Theorem 2, we obtain Corollary 5 below.

Corollary 5. For balancing numbers $B_n = S(0, 1, 6, -1)$, there exists a positive integer N such that

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{B_{2k}B_{2k+2m}}\right)^{-1} \right\rfloor = B_{2n}B_{2n+2m} - B_{2n-2}B_{2n+2m-2} + \hat{g}_m$$
(23)
$$= B_{2n+m}^2 - B_{2n+m-2}^2 + \hat{g}_m, \quad \text{if } n \ge N,$$

where

$$\hat{g}_m = \left[\frac{-(6B_{2m+2}^2 + 216)\hat{\alpha}^3 + 12B_{2m}B_{2m+2}\hat{\alpha}^2 - 6B_{2m}^2\hat{\alpha}}{B_{2m+2}\hat{\alpha}^5 - B_{2m}\hat{\alpha}^4 - B_{2m+2}\hat{\alpha} + B_{2m}} \right]$$

with $\hat{\alpha} = 17 + 12\sqrt{2}$.

For balancing numbers, $\hat{g}_0 = -1$ and $\hat{g}_1 = -2$, and (6) and (8) are obtained from (23). In addition we have

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_{2k} B_{2k+4}} \right)^{-1} \right] = B_{2n+2}^2 - B_{2n}^2 - 37, \text{ if } n \ge 1,$$
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{B_{2k} B_{2k+6}} \right)^{-1} \right] = B_{2n+3}^2 - B_{2n+1}^2 - 1223, \text{ if } n \ge 1.$$

etc.

For Lucas-balancing numbers $C_n = S(1,3,6,-1)$, setting $U_n = V_n = C_n^e$ in Theorem 2, we obtain Corollary 6 below.

Corollary 6. For Lucas-balancing numbers $C_n = S(1, 3, 6, -1)$, there exists a positive integer N such that

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_{2k}C_{2k+2m}} \right)^{-1} \right] = C_{2n}C_{2n+2m} - C_{2n-2}C_{2n+2m-2} + \hat{g}_m$$
(24)
$$= C_{2n+m}^2 - C_{2n+m-2}^2 + \hat{g}_m, \quad \text{if } n \ge N,$$

where

$$\hat{g}_m = \left\lfloor \frac{(288C_{2m+2}^2 + 83232)\hat{\alpha}^4 - (576C_{2m}C_{2m+2} + 9792)\hat{\alpha}^3 + (288C_{2m}^2 + 288)\hat{\alpha}^2}{17C_{2m+2}\hat{\alpha}^6 - (17C_{2m} + C_{2m+2})\hat{\alpha}^5 + \hat{\alpha}^4 - 17C_{2m+2}\hat{\alpha}^2 + (17C_{2m} + C_{2m+2})\hat{\alpha} - C_{2m}} \right\rfloor$$

with $\hat{\alpha} = 17 + 12\sqrt{2}$.

For Lucas-balancing numbers, $\hat{g}_0 = 0$ and $\hat{g}_1 = 8$, and (12) and (14) are obtained from (24). In addition we have

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_{2k}C_{2k+4}} \right)^{-1} \right] = C_{2n+2}^2 - C_{2n}^2 + 288, \text{ if } n \ge 1,$$
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{C_{2k}C_{2k+6}} \right)^{-1} \right] = C_{2n+3}^2 - C_{2n+1}^2 + 9783, \text{ if } n \ge 1,$$

etc.

For $U_n \in \{Gn^e, G_n^o, H_n^e, H_n^o\}$ and $V_n \in \{G_n^e, G_n^o, H_n^e, H_n^o\}$, we have sixteen pairs of (U_n, V_n) , and we can obtain more identities from Theorem 2. Other identities are left to the interested readers.

3. Discussion

In this paper, we derived general identities related to reciprocal sums of products of two balancing numbers, products of two Lucas-balancing numbers and products of balancing and Lucas-balancing numbers. Repeatedly applying Theorem 2, we can obtain similar results for (B_{4n}, C_{4n}) , (B_{8n}, C_{8n}) , etc.

The method of this paper can also be applied to even-indexed and odd-indexed numbers of $G_n = S(G_0, G_1, a, 1)$. In fact, for the numbers of the form $G_n = S(G_0, G_1, a, 1)$, we have

$$G_{2n} = (a^2 + 2)G_{2n-2} - G_{2n-4},$$

$$G_{2n+1} = (a^2 + 2)G_{2n-1} - G_{2n-3}.$$

Hence Theorem 2 can be used to obtain various identities for even-indexed and odd-indexed Fibonacci, Lucas, Pell and Pell–Lucas numbers.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: New York, NY, USA, 2001.
- 2. Ohtsuka, H.; Nakamura, S. On the sum of reciprocal Fibonacci numbers. *Fibonacci Quart.* 2008, 46, 153–159.
- 3. Holliday, S.; Komatsu, T. On the sum of reciprocal generalized Fibonacci numbers. Integers 2011, 2011A, 11. [CrossRef]
- 4. Zhang, W.; Wang, T. The infinite sum of reciprocal Pell numbers. Appl. Math. Comput. 2012, 218, 6164–6167.
- 5. Kuhapatanakul, K. On the sums of reciprocal generalized Fibonacci numbers. J. Integer Seq. 2013, 16, 13.7.1.
- 6. Wang, A.; Wen, P. On the partial finite sums of the reciprocals of the Fibonacci numbers. J. Inequal. Appl. 2015, 15, 73. [CrossRef]
- Wang, A.; Zhang, F. The reciprocal sums of even and odd terms in the Fibonacci sequence. J. Inequal. Appl. 2015, 2015, 376. [CrossRef]
- 8. Liu, R.; Wang, A. Sums of products of two reciprocal Fibonacci numbers. Adv. Diff. Eqn. 2016, 2016, 1136. [CrossRef]
- 9. Basbuk, M.; Yazlik, Y. On the sum of reciprocal of generalized bi-periodic Fibonacci numbers. *Miskolc Math. Notes* **2016**, *17*, 35–41. [CrossRef]
- 10. Wang, A.; Yuan, T. Alternating sums of the reciprocal Fibonacci numbers. J. Integer Seq. 2017, 20, 17.1.4.
- 11. Choi, G.; Choo, Y. On the reciprocal sums of products of Fibonacci and Lucas numbers. Filomat 2018, 32, 2911–2920. [CrossRef]
- 12. Choo, Y. Some results on the infinite sums of reciprocal generalized Fibonacci numbers. *Int. J. Math. Anal.* **2018**, *12*, 621–629. [CrossRef]
- 13. Choi, G.; Choo, Y. On the reciprocal sums of square of generalized bi-periodic Fibonacci numbers. *Miskolc Math. Notes* **2018**, 19, 201–209. [CrossRef]
- 14. Choo, Y. On the reciprocal sums of products of two generalized Fibonacci numbers. *Int. J. Math. Anal.* **2019**, *13*, 539–549. [CrossRef]
- 15. Choo, Y. On the reciprocal sums of products of two generalized bi-periodic Fibonacci numbers. *Mathematics* **2021**, *9*, 178. [CrossRef]

- 16. Behera, A.; Panda, G.K. On the square roots of triangular numbers. *Fibonacci Quart.* 1999, 37, 98–105.
- 17. Karaatli, O.; Keskin, R. On some Diophantine equations related to square triangular and balancing numbers. *J. Algebra Number Theory Adv. Appl.* **2010**, *4*, 71–89.
- 18. Karaatli, O.; Keskin, R.; Zhu, H. Infinitely many positive integer solutions of the quadratic Diophantine equations $x^2 8B_n xy 2y^2 = \pm 2^r$. *Irish. Math. Soc. Bull.* **2014**, *73*, 29–45.
- 19. Panda, G.K. Some fascinating properties of balancing numbers. *Congr. Numer.* **2009**, *194*, 185–189.
- 20. Panda, G.K.; Komatsu, T.; Davala, R.K. Reciprocal sums of sequences involving Balancing and Lucas-Balancing numbers. *Math. Rep.* 2018, 20, 201–214.
- 21. Choo, Y. On the generalizations of Fibonacci identities. Results Math. 2017, 71, 347–356. [CrossRef]