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1. Introduction

The classical Fibonacci numbers {Fn}∞
n=0 are generated from the recurrence relation

Fn = Fn−1 + Fn−2 (n ≥ 2) with the initial conditions F0 = 0 and F1 = 1. As is well known,
the Fibonacci numbers possess many interesting properties and appear in a variety of
application fields [1].

Recently Ohtsuka and Nakamura [2] reported an interesting property of the Fibonacci
numbers and proved the following identities:⌊(

∞

∑
k=n

1
Fk

)−1⌋
=

{
Fn − Fn−1, if n ≥ 2 and n is even;
Fn − Fn−1 − 1, if n ≥ 1 and n is odd,

(1)

⌊(
∞

∑
k=n

1
F2

k

)−1⌋
=

{
Fn−1Fn − 1, if n ≥ 2 and n is even;
Fn−1Fn, if n ≥ 1 and n is odd,

(2)

where b·c is the floor function.
Following the work of Ohtsuka and Nakamura, diverse results in the same direction

have been reported in the literature [3–15].
A positive integer n is called the balancing number if [16]

1 + 2 + · · ·+ (n− 1) = (n + 1) + (n + 2) + · · ·+ (n + r),

for some positive integer r. As shown in [16], the balancing numbers {Bn}∞
n=0 satisfy the

recurrence relation Bn = 6Bn−1 − Bn−2 (n ≥ 2) with the initial conditions B0 = 0 and
B1 = 1. The balancing numbers are useful in studying the Diophantine equations [17,18].
The numbers {Cn}∞

n=0 with Cn =
√

8B2
n + 1 are called the Lucas-balancing numbers [19]

and obtained from the recurrence relation Cn = 6Cn−1 − Cn−2 (n ≥ 2) with the initial
conditions C0 = 1 and C1 = 3.
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Panda et al. [20] recently studied the reciprocal sums of balancing and Lucas-balancing
numbers, and obtained various identities. For example, they showed that⌊(

∞

∑
k=n

1
Bk

)−1⌋
= Bn − Bn−1 − 1 (n ≥ 1), (3)

⌊(
∞

∑
k=n

1
B2

k

)−1⌋
= B2

n − B2
n−1 − 1 (n ≥ 1), (4)

⌊(
∞

∑
k=n

1
B2k

)−1⌋
= B2n − B2n−2 − 1 (n ≥ 1), (5)

⌊(
∞

∑
k=n

1
B2

2k

)−1⌋
= B2

2n − B2
2n−2 − 1 (n ≥ 1), (6)

⌊(
∞

∑
k=n

1
BkBk+1

)−1⌋
= BnBn+1 − Bn−1Bn − 1 (n ≥ 1), (7)

⌊(
∞

∑
k=n

1
B2kB2k+2

)−1⌋
= B2

2n+1 − B2
2n−1 − 2 (n ≥ 1), (8)

and ⌊(
∞

∑
k=n

1
Ck

)−1⌋
= Cn − Cn−1 (n ≥ 2), (9)

⌊(
∞

∑
k=n

1
C2

k

)−1⌋
= C2

n − C2
n−1 (n ≥ 1), (10)

⌊(
∞

∑
k=n

1
C2k

)−1⌋
= C2n − C2n−2 (n ≥ 1), (11)

⌊(
∞

∑
k=n

1
C2

2k

)−1⌋
= C2

2n − C2
2n−2 (n ≥ 1), (12)

⌊(
∞

∑
k=n

1
CkCk+1

)−1⌋
= CnCn+1 − Cn−1Cn + 1 (n ≥ 1), (13)

⌊(
∞

∑
k=n

1
C2kC2k+2

)−1⌋
= C2

2n+1 − C2
2n−1 + 8 (n ≥ 1), (14)

etc.
We note that (3), (4) and (9), (10) also can be obtained, respectively from ([12]

[Theorem 2.1]) and ([12] [Theorem 2.2]).
In this paper, we derive general identities related to reciprocal sums of products of two

balancing numbers, products of two Lucas-balancing numbers and products of balancing
and Lucas-balancing numbers. The results obtained here not only include most identities
in [20] as special cases but also can be used to derive similar identities for even-indexed
and odd-indexed Fibonacci, Lucas, Pell and Pell–Lucas numbers.
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2. Results

For the ease of presentation, we use the notation Gn = S(G0, G1, a, b) to denote the
numbers {Gn}∞

n=0 generated from the recurrence relation

Gn = aGn−1 + bGn−2 (n ≥ 2),

with the initial conditions G0 and G1.
To deal with the balancing numbers Bn = S(0, 1, 6,−1) and Lucas-balancing numbers

Cn = S(1, 3, 6,−1) in a unified manner, we consider the numbers Gn = S(G0, G1, a,−1),
where G0 is a nonnegative integer, G1 and a are positive integers. As in [12], we assume that

a ≥ max{3, 1 + G0/G1}.

Firstly we present two lemmas which will be used to prove our main results. For
Gn = S(G0, G1, a,−1) and Hn = S(H0, H1, a,−1), define

ΦG := aG0G1 − G2
0 − G2

1 ,

ΦH := aH0H1 − H2
0 − H2

1 ,

∆n :=
Gn−1Gn+1Hn+m−1Hn+m+1 − G2

n H2
n+m

Gn+1Hn+m+1 − Gn−1Hn+m=1
,

∆m := lim
n→∞

∆n.

Lemma 1 (See [21]). For Gn = S(G0, G1, a,−1), we have

G2
n − Gn−rGn+r = (G1Gr − G0Gr+1)Qr,

where Qn = S(0, 1, a,−1).

Lemma 2. For Gn = S(G0, G1, a,−1) and Hn = S(H0, H1, a,−1), we have

∆m =
(ΦHG2

1+ΦG H2
m+1)α

4−2(ΦHG0G1+ΦG Hm Hm+1)α
3+(ΦHG2

0+ΦG H2
m)α

2

G1Hm+1α6−(G1Hm+G0Hm+1)α5+G0H0α4−G1Hm+1α2+(G1Hm+G0Hm+1)α−G0Hm
,

where

α =
a +
√

a2 − 4
2

.

Proof. From Lemma 1, we have

Gn−1Gn+1Hn+m−1Hn+m+1 − G2
n H2

n+m = ΦHG2
n + ΦG H2

n+m + ΦGΦH .

Gn and Hn+m can be expressed as [21]

Gn =
G1(α

n − βn)− G0(α
n−1 − βn−1)

α− β
,

Hn+m =
Hm+1(α

n − βn)− Hm(αn−1 − βn−1)

α− β
,

where α > 1 and 0 < β < 1 are solutions of the equation x2 − ax + 1 = 0, i.e.,

α =
a +
√

a2 − 4
2

and β =
a−
√

a2 − 4
2

.

Since
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(α− β)2(ΦHG2
n + ΦG H2

n+m + ΦGΦH)

= α2n−2[(ΦHG2
1 + ΦG H2

m+1)α
2 − 2(ΦHG0G1 + ΦG Hm Hm+1)α + (ΦHG2

0 + ΦG H2
m)
]
+ γn,

and

(α−β)2(Gn+1Hn+m+1−Gn−1Hn+m−1)

= α2n−4[G1Hm+1α6−(G1Hm+G0Hm+1)α
5+G0H0α4−G1Hm+1α2+(G1Hm+G0Hm+1)α−G0Hm

]
+δn,

where limn→∞ γn = 0 and limn→∞ δn = 0, then the proof is completed.

Now we state our main results.

Theorem 1. For Gn = S(G0, G1, a,−1) and Hn = S(H0, H1, a,−1), there exists a positive
integer N such that⌊(

∞

∑
k=n

1
Gk Hk+m

)−1⌋
= Gn Hn+m − Gn−1Hn+m−1 + gm, if n ≥ N, (15)

where

gm = b∆mc.

Proof. Consider

1
Gn Hn+m − Gn−1Hn+m−1 + gm

− 1
Gn+1Hn+m+1 − GnHn+m + gm

− 1
Gn Hn+m

=
X1

(Gn Hn+m − Gn−1Hn+m−1 + gm)(Gn+1Hn+m+1 − GnHn+m + gm)Gn Hn+m
,

where

X1 = Gn−1Gn+1Hn+m−1Hn+m+1 − G2
n H2

n+m − gm(Gn+1Hn+m+1 − Gn−1Hn+m−1)− g2
m

= (Gn+1Hn+m+1 − Gn−1Hn+m−1)(∆n − gm)− g2
m.

Since ∆n converges to ∆m and ∆m − gm > 0, there exists a positive integer n0 such that
X1 > 0 if n ≥ n0 or

1
Gn Hn+m

<
1

Gn Hn+m − Gn−1Hn+m−1 + gm
− 1

Gn+1Hn+m+1 − GnHn+m + gm
, if n ≥ n0.

Repeatedly applying the above inequality, we have

∞

∑
k=n

1
Gk Hk+m

<
1

Gn Hn+m − Gn−1Hn+m−1 + gm
, if n ≥ n0. (16)

Similarly,

1
Gn Hn+m − Gn−1Hn+m−1 + gm + 1

− 1
Gn+1Hn+m+1 − Gn Hn+m + gm + 1

− 1
Gn Hn+m

=
X2

(Gn Hn+m − Gn−1Hn+m−1 + gm + 1)(Gn+1Hn+m+1 − Gn Hn+m + gm + 1)Gn Hn+m
,

where
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X2 = Gn−1Gn+1Hn+m−1Hn+m+1 − G2
n H2

n+m − Gn+1Hn+m+1 + Gn−1Hn+m−1

−gm(Gn+1Hn+m+1 − Gn−1Hn+m−1)− (gm + 1)2

= (Gn+1Hn+m+1 − Gn−1Hn+m−1)(∆n − gm)− Gn+1Hn+m+1 + Gn−1Hn+m−1 − (gm + 1)2.

Since ∆n converges to ∆m and 0 < ∆m − gm < 1, then there exists a positive integer n1
such that X2 < 0 if n ≥ n1 or

1
Gn Hn+m − Gn−1Hn+m−1 + gm

− 1
Gn+1Hn+m+1 − Gn Hn+m + gm

<
1

GnHn+m
, if n ≥ n1,

from which we obtain

1
GnHn+m − Gn−1Hn+m−1 + gm + 1

<
∞

∑
k=n

1
Gk Hk+m

, if n ≥ n1. (17)

Then (15) follows from (16) and (17).

Setting Gn = Hn = S(0, 1, 6,−1) in Theorem 1, we obtain Corollary 1 below.

Corollary 1. For balancing numbers Bn = S(0, 1, 6,−1), there exists a positive integer N
such that ⌊(

∞

∑
k=n

1
BkBk+m

)−1⌋
= BnBn+m − Bn−1Bn+m−1 + gm, if n ≥ N, (18)

where

gm =

⌊
−(B2

m+1 + 1)α3 + 2BmBm+1α2 − B2
mα

Bm+1α5 − Bmα4 − Bm+1α + Bm

⌋
,

with α = 3 + 2
√

2.

For balancing numbers, g0 = g1 = −1 and we obtain (4) and (7) from (18). In addition
we have ⌊(

∞

∑
k=n

1
BkBk+2

)−1⌋
= BnBn+2 − Bn−1Bn+1 − 2, if n ≥ 1,

⌊(
∞

∑
k=n

1
BkBk+3

)−1⌋
= BnBn+3 − Bn−1Bn+2 − 6, if n ≥ 1,

etc.,
Setting Gn = Hn = S(1, 3, 6,−1) in Theorem 1, we obtain Corollary 2 below.

Corollary 2. For Lucas-balancing numbers Cn = S(0, 1, 6,−1), there exists a positive integer N
such that ⌊(

∞

∑
k=n

1
CkCk+m

)−1⌋
= CnCn+m − Cn−1Cn+m−1 + gm, if n ≥ N, (19)

where



Mathematics 2021, 9, 350 6 of 10

gm =

⌊
(8C2

m+1 + 72)α4 − (16CmCm+1 + 48)α3 + (8C2
m + 8)α2

3Cm+1α6 − (3Cm + Cm+1)α5 + α4 − 3Cm+1α2 + (3Cm + Cm+1)α− Cm

⌋
,

with α = 3 + 2
√

2.

For Lucas-balancing numbers, g0 = 0 and g1 = 1 and we obtain (10) and (13) from
(19). In addition we have⌊(

∞

∑
k=n

1
CkCk+2

)−1⌋
= CnCn+2 − Cn−1Cn+1 + 8, if n ≥ 1,

⌊(
∞

∑
k=n

1
CkCk+3

)−1⌋
= CnCn+3 − Cn−1Cn+2 + 46, if n ≥ 1,

etc.
Setting Gn = S(0, 1, 6,−1) and Hn = S(1, 3, 6,−1) in Theorem 1, we obtain

Corollary 3 below.

Corollary 3. For balancing numbers Bn = S(0, 1, 6,−1) and Lucas-balancing numbers
Cn = S(0, 1, 6,−1), there exists a positive integer N such that⌊(

∞

∑
k=n

1
BkCk+m

)−1⌋
= BnCn+m − Bn−1Cn+m−1 + gm, if n ≥ N, (20)

where

gm =

⌊
(8− C2

m+1)α
3 + 2CmCm+1α2 − C2

mα

Cm+1α5 − Cmα4 − Cm+1α + Cm

⌋
,

with α = 3 + 2
√

2.

From (20), we have⌊(
∞

∑
k=n

1
BkCk

)−1⌋
= BnCn − Bn−1Cn−1 − 1, if n ≥ 1,

⌊(
∞

∑
k=n

1
BkCk+1

)−1⌋
= BnCn+1 − Bn−1Cn − 1, if n ≥ 1,

⌊(
∞

∑
k=n

1
BkCk+2

)−1⌋
= BnCn+2 − Bn−1Cn+1 − 3, if n ≥ 1,

etc.
Setting Gn = S(1, 3, 6,−1) and Hn = S(0, 1, 6,−1) in Theorem 1, we obtain

Corollary 4 below.

Corollary 4. For balancing numbers Bn = S(0, 1, 6,−1) and Lucas-balancing numbers
Cn = S(0, 1, 6,−1), there exists a positive integer N such that⌊(

∞

∑
k=n

1
Bk+mCk

)−1⌋
= Bn+mCn − Bn+m−1Cn−1 + gm, if n ≥ N, (21)

where
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gm =

⌊
(8B2

m+1 − 9)α4 − (16BmBm+1 − 6)α3 + (8B2
m − 1)α2

3Bm+1α6 − (3Bm + Bm+1)α5 − 3Bm+1α2 + (3Bm + Bm+1)α− Bm

⌋
,

with α = 3 + 2
√

2.

From (21), we have⌊(
∞

∑
k=n

1
Bk+1Ck

)−1⌋
= Bn+1Cn − BnCn−1, if n ≥ 1,

⌊(
∞

∑
k=n

1
Bk+2Ck

)−1⌋
= Bn+2Cn − Bn+1Cn−1 + 2, if n ≥ 1,

etc.
We can obtain similar results for the even-indexed and odd-indexed numbers of

Gn = S(G0, G1, a,−1) and Hn = S(H0, H1, a,−1). It is easily seen that

G2n = (a2 − 2)G2n−2 − G2n−4,

G2n+1 = (a2 − 2)G2n−1 − G2n−3.

Let Ge
n = G2n and Go

n = G2n+1. Then

Ge
n = S(Ge

0, Ge
1, a2 − 2,−1),

Go
n = S(Go

0, Go
1, a2 − 2,−1),

where Ge
0 = G0, Ge

1 = aG1 − G0, Go
0 = G1 and Go

1 = (a2 − 1)G1 − aG0. Similarly

He
n = S(He

0, He
1, a2 − 2,−1),

Ho
n = S(Ho

0 , Ho
1 , a2 − 2,−1),

where He
0 = H0, He

1 = aH1 − H0, Ho
0 = H1 and Ho

1 = (a2 − 1)H1 − aH0.
As before, for Un ∈ {Ge

n, Go
n, He

n, Ho
n} and Vn ∈ {Ge

n, Go
n, He

n, Ho
n}, let

ΦU := (a2 − 2)U0U1 −U2
0 −U2

1 ,

ΦV := (a2 − 2)V0V1 −V2
0 −V2

1 ,

∆̂n :=
Un−1Un+1Vn+m−1Vn+m+1 −U2

nV2
n+m

Un+1Vn+m+1 −Un−1Vn+m=1
,

∆̂m := lim
n→∞

∆̂n.

Then

∆̂m =
(ΦVU2

1 + ΦUV2
m+1)α̂

4 − 2(ΦVU0U1 + ΦUVmVm+1)α̂
3 + (ΦVU2

0 + ΦUV2
m)α̂

2

U1Vm+1α̂6 − (U1Vm + U0Vm+1)α̂5 + U0V0α̂4 −U1Vm+1α̂2 + (U1Vm + U0Vm+1)α̂−U0Vm
,

where

α̂ =
a2 − 2 +

√
(a2 − 2)2 − 4
2

,

and we obtain the following results.
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Theorem 2. For Gn = S(G0, G1, a,−1) and Hn = S(H0, H1, a,−1), let Un ∈ {Ge
n, Go

n, He
n, Ho

n}
and Vn ∈ {Ge

n, Go
n, He

n, Ho
n}. Then, for each pair (Un, Vn), there exists a positive integer N

such that ⌊(
∞

∑
k=n

1
UkVk+m

)−1⌋
= UnVn+m −Un−1Vn+m−1 + ĝm, if n ≥ N, (22)

where

ĝm = b∆̂mc.

For balancing numbers Bn = S(0, 1, 6,−1), setting Un = Vn = Be
n in Theorem 2, we

obtain Corollary 5 below.

Corollary 5. For balancing numbers Bn = S(0, 1, 6,−1), there exists a positive integer N
such that ⌊(

∞

∑
k=n

1
B2kB2k+2m

)−1⌋
= B2nB2n+2m − B2n−2B2n+2m−2 + ĝm (23)

= B2
2n+m − B2

2n+m−2 + ĝm, if n ≥ N,

where

ĝm =

⌊
−(6B2

2m+2 + 216)α̂3 + 12B2mB2m+2α̂2 − 6B2
2mα̂

B2m+2α̂5 − B2mα̂4 − B2m+2α̂ + B2m

⌋
,

with α̂ = 17 + 12
√

2.

For balancing numbers, ĝ0 = −1 and ĝ1 = −2, and (6) and (8) are obtained from (23).
In addition we have⌊(

∞

∑
k=n

1
B2kB2k+4

)−1⌋
= B2

2n+2 − B2
2n − 37, if n ≥ 1,

⌊(
∞

∑
k=n

1
B2kB2k+6

)−1⌋
= B2

2n+3 − B2
2n+1 − 1223, if n ≥ 1,

etc.
For Lucas-balancing numbers Cn = S(1, 3, 6,−1), setting Un = Vn = Ce

n in Theorem 2,
we obtain Corollary 6 below.

Corollary 6. For Lucas-balancing numbers Cn = S(1, 3, 6,−1), there exists a positive integer N
such that ⌊(

∞

∑
k=n

1
C2kC2k+2m

)−1⌋
= C2nC2n+2m − C2n−2C2n+2m−2 + ĝm (24)

= C2
2n+m − C2

2n+m−2 + ĝm, if n ≥ N,

where

ĝm =

⌊
(288C2

2m+2 + 83232)α̂4 − (576C2mC2m+2 + 9792)α̂3 + (288C2
2m + 288)α̂2

17C2m+2α̂6 − (17C2m + C2m+2)α̂5 + α̂4 − 17C2m+2α̂2 + (17C2m + C2m+2)α̂− C2m

⌋
,
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with α̂ = 17 + 12
√

2.

For Lucas-balancing numbers, ĝ0 = 0 and ĝ1 = 8, and (12) and (14) are obtained from
(24). In addition we have⌊(

∞

∑
k=n

1
C2kC2k+4

)−1⌋
= C2

2n+2 − C2
2n + 288, if n ≥ 1,

⌊(
∞

∑
k=n

1
C2kC2k+6

)−1⌋
= C2

2n+3 − C2
2n+1 + 9783, if n ≥ 1,

etc.
For Un ∈ {Gne, Go

n, He
n, Ho

n} and Vn ∈ {Ge
n, Go

n, He
n, Ho

n}, we have sixteen pairs of
(Un, Vn), and we can obtain more identities from Theorem 2. Other identities are left to the
interested readers.

3. Discussion

In this paper, we derived general identities related to reciprocal sums of products
of two balancing numbers, products of two Lucas-balancing numbers and products of
balancing and Lucas-balancing numbers. Repeatedly applying Theorem 2, we can obtain
similar results for (B4n, C4n), (B8n, C8n), etc.

The method of this paper can also be applied to even-indexed and odd-indexed
numbers of Gn = S(G0, G1, a, 1). In fact, for the numbers of the form Gn = S(G0, G1, a, 1),
we have

G2n = (a2 + 2)G2n−2 − G2n−4,

G2n+1 = (a2 + 2)G2n−1 − G2n−3.

Hence Theorem 2 can be used to obtain various identities for even-indexed and
odd-indexed Fibonacci, Lucas, Pell and Pell–Lucas numbers.
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