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Abstract: This study explores the methods to de-trend the smooth structural break processes while
conducting the unit root tests. The two most commonly applied approaches for modelling smooth
structural breaks namely the smooth transition and the Fourier functions are considered. We perform
a sequence of power comparisons among alternative unit root tests that accommodate smooth or
sharp structural breaks. The power experiments demonstrate that the unit root tests utilizing the
Fourier function lead to unexpected results. Furthermore, through simulation studies, we investigate
the source of such unexpected outcomes. Moreover, we provide the asymptotic distribution of two
recently proposed unit root tests, namely Fourier-Augmented Dickey–Fuller (FADF) and Fourier-
Kapetanios, Shin and Shell (FKSS), which are not given in the original studies. Lastly, we find that
the selection of de-trending function is pivotal for unit root testing with structural breaks.

Keywords: structural break; nonlinear unit root tests; flexible Fourier form; smooth transition regression

1. Introduction

Macroeconomic variables are subject to either smooth or sharp structural breaks e.g.,
great moderation since the mid-1980s or the 2007–09 global financial crisis. This led to the
development of unit root tests allowing for different types of structural break. The unit
root tests that employ a flexible Fourier function to model the structural breaks (Enders
and Lee [1,2]) have attracted a great deal of attention compared to the tests employing the
smooth transition (ST) function. In this paper, we show that the Fourier function may lead
to an over-filtration problem when structural break and non-linearity are simultaneously
present in the data. In particular, when we apply unit root tests that embed the Fourier
function, we cannot identify whether the rejection of the unit root null is due to the presence
of a structural break, state-dependent non-linearity, or both.

Structural changes in economic variables, which are affected by the heterogeneous
behaviour of many economic agents, are more likely to follow a smooth, rather than an
instantaneous, time path. Therefore, the smooth transition regression (STR), where param-
eters are assumed to change smoothly over time, became a realistic setup for modelling
and testing structural changes [3,4]. To account for smooth breaks in the deterministic
components of a time series, studies have developed alternative unit root tests based on
Gallant’s [5] flexible Fourier form and the smooth transition (ST) method of Leybourne,
Newbold and Vougas [6] (LNV). The main advantage of the Fourier approach is its ability
to capture the behaviour of a deterministic function of unknown form even if the function
itself is not periodic. In addition, it works better than dummy variable methods irrespective
of whether the breaks are instantaneous or smooth [1]. Moreover, Fourier function avoids
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problems of selecting the dates, number and form of breaks [1,7]. Utilising the flexible
Fourier form (FFF) has its own share of disadvantages. In particular, there is no unique
way to selecting cumulative frequency components for the trigonometric functions. On the
other hand, ST models estimate the parameters by using an appropriate non-linear estima-
tion algorithm considering mean break, trend break or both, which gives extra important
information about the composition of the structural break (see [8] for details). Moreover,
the ST models are quite successful in modelling gradual or sharp structural breaks.

We also focus on the unit root tests that simultaneously allow for structural breaks
(in the deterministic component) and state dependent non-linearity (in the stochastic
component). Introducing both structural breaks and regime-switching behaviour into
the testing framework is expected to deliver power gains compared to tests considering
non-linearity or structural shift in isolation (see e.g., Christopoulos and Leon-Ledesma [9]
(henceforth, CL or FKSS), and Omay and Yıldırım [10] (OY), among others). The recently
developed FKSS and OY structural breaks unit root tests use the Fourier function and
logistic smooth transition function in their testing strategy, respectively. To account for
exponential smooth transition autoregressive (ESTAR) regime-wise nonlinearity, FKSS and
OY have employed the Kapetanios, Shin and Snell [11] (henceforth, KSS) test in the second
stage of their testing procedure.

Interestingly, our power analysis on the FKSS test, following same parameter specifi-
cations as in [1,2], show that Enders and Lee [2] (henceforth FADF) unit root test is superior.
Notably, the power analysis conducted in Christopoulos and Leon-Ledesma [9] show that
the FKSS test is superior to the FADF test. The better power performance was due to the
symmetric or equal parameter values for the Fourier transforms’ components, namely sine
and cosine. Symmetric values are very restrictive when we refer to the parameter specifi-
cations in [2]. Hence, the FADF captures all non-linearity (both time and state dependent
non-linearity), may be an indication of over-filtration problem. Further, [1] claim that the
LNV and KSS tests are alternatives to the FADF test. LNV test utilizes the smooth transition
function in the deterministic component and thereby can be a potential rival of the FADF
test. However, the KSS test, which includes an ESTAR type of non-linearity in its stochastic
term, is a non-linear unit root test that assumes a non-linear speed of mean reversion
and thus cannot be a potential alternative for the FADF. On the other hand, FKSS uses
the Fourier function in its testing procedure, but imposes ESTAR non-linearity for the
remaining part of the series. Therefore, FKSS supports that KSS test cannot be a potential
alternate for the FADF test. FKSS considers FFF as a de-trending tool for detecting only
structural breaks, but FADF considers FFF as a tool for detecting structural break and/or
state-dependent non-linearity. Enders and Lee [1] also support their claim implicitly by
using simulation analysis with low frequency k = 1 in order to capture different dynamics
such as exponential smooth transition break, which is unusual break type in structural
break literature. Furthermore, they analyse different types of smooth breaks and threshold
autoregressive (TAR) type breaks.

Enders and Lee [1] conclude that FFF can imitate a large variety of structural breaks
(or functions with low frequency components). They allow for only the structural break in
their testing procedure, and do not consider the interaction between the structural breaks
and non-linear stochastic components. Their claim that the KSS test is a rival of their testing
procedure can still be understood when the results of their simulation experiments on
different functional forms are considered. From their simulation experiments, it can be
seen that the Fourier function can also imitate any kind of series’ structure as well as state-
dependent non-linearity by using the low-frequency component, but this phenomenon
is not explained explicitly in their study. The Fourier function is extensively studied in
continuous form in the applied and theoretical mathematics literature. To consider all the
aforementioned issues, we first concentrate on the unit root tests which use the Fourier
function. Then, we use the smooth transition function to understand the behaviour of the
Fourier function in more complex data-generating processes (DGP). Moreover, we have
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also included other testing procedures to compare and contrast the behaviour of different
functions in different DGPs.

We start the power analysis by first using the FKSS-DGP. The Enders and Lee [2]
(henceforth EL) test is found to have better power performance than the FKSS unit root
test in this DGP setting. This contradiction is the main concern of our paper that the FFF
methodology has some over-filtration problem while detecting the structural break even
with its low frequency component k = 1. To elaborate more on this issue, we proceed
with the KSS-DGP, because the KSS test is claimed to be the alternative of the EL test.
The best performing test in a KSS-DGP setting is found to be the FKSS test, which is
again an unexpected result. In the original work of the KSS, except some of the parameter
region (where the ADF test power superior to other alternatives) best performing test is
their test. On the other hand, if we consider the Enders and Lee [1] claim, then power
analysis might exhibit better power performance of EL test. However, FKSS test has better
power performance in a state-dependent non-linear DGP with its two components, the FFF
and ESTAR non-linearity. This unexpected result is further investigated in the simulation
analysis. Moreover, since the LNV test is also considered as one of the alternatives to the EL
test, the LNV-DGP is also used for the power analysis. This power experiment shows that
the FKSS test’s power performance exceeds that of the EL test; however, the LNV is still the
best test in its DGP, which is an expected result. As the fourth and last candidate, OY-DGP
is taken into consideration which uses structural break (logistic smooth transition) and
non-linearity (ESTAR) simultaneously. The OY test can be seen as an alternative test to the
FKSS test which uses logistic smooth transition function as a tool for detecting structural
break instead of FFF. Again, we witness that the power performance of the FKSS is better
than that of the EL test, but the most powerful test is the OY test in this DGP, as expected.
The results of all these power experiments are discussed in detail in the fourth section. (We
have also conducted the additional simulation exercises in the Technical Annex, which also
supports the general conclusion of the current paper.) These exercises give important clues
for identifying the true modelling strategy of the structural breaks.

Now, we are left with one interesting question. Is there any degree of resemblance
between the STR type and FFF type of de-trending? To answer this question, the simplest
way is to generate a Fourier-type non-linear trend and approximate it with a STR type of
de-trending. This method is the opposite of what reference [1] have done in their paper.
They generated STR- and TAR-type non-linear trends and approximated them with Fourier
type de-trending. In this paper, by using STR-type de-trending, we approximate FFF
type of de-trending. By using this inverse methodology, we can determine the transition
speed of FFF. These simulation studies show that the STR type of de-trending can imitate
sharp breaks as well as smooth breaks as expected. Therefore, it can be concluded that
the STR type of de-trending is more flexible than the Fourier transforms in capturing the
one structural break. However, the Fourier transforms have an advantage over the STR
de-trending in that they can be applied in the case of more than one smooth structural break.

The rest of the paper is structured as follows: Section 2 describes the alternative testing
procedures and give the asymptotic distribution of the FADF and FKSS tests, since they
are not given in the original studies. Section 3 examines and compares the small sample
power performance of these tests in the context of the linear and non-linear unit root tests.
(We have also conducted substantial simulation studies in order to deal with anomalies
obtained in power analysis, which are not reported but can be given upon request.) We
provide two empirical illustrations in Section 4. Section 5 concludes.

2. The Unit Root Tests and their Testing Frameworks
2.1. FADF-FKSS Tests and their Asymptotic Distributions

Let us consider the following data generating process:

yt = α0 + α1t + ϕ1sin
(

2πkt
T

)
+ ϕ2cos

(
2πkt

T

)
+ xt, t = 1, . . . , T (1)
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where k denotes the integer Fourier frequency. Moreover, ϕ1 and ϕ2 measure the am-
plitude and displacement of the sinusoidal component of the deterministic term. Prior
studies [1,2,7,9,12,13] suggest that Fourier transforms will often lead to a good approx-
imation to a model with structural breaks. Following these studies, we allow a single
Fourier frequency in Equation (1). They observe that a single Fourier frequency can mimic
a large variety of breaks in the deterministic trend function. However, [1] demonstrate that
the presence of many frequency components uses degrees of freedom and can lead to an
over-fitting problem.

Remark 1. The deterministic components given in Equation (1) include a linear time trend.
However, we may also consider the case where only a constant and the Fourier terms are contained,
which it is α_1 = 0 in Equation (1). This will be referred to as the demeaned case in what follows,
while the more general case where α_1 6= 0 will be termed the detrended case.

In the above Equation (1), we assume that xt has the following two stochastic processes:

xt = φxt−1 + ut (2)

xt = φxt−1 + γxt−1

[
1− exp

(
−θx2

t−d

)]
+ ut (3)

where ut ∼ iid
(
0, σ2) and the initial condition x0 is zero. Equation (2) represents a

standard Dickey–Fuller (DF) regression that assumes linear adjustment toward equilibrium.
However, Equation (3) assumes that the adjustment speed is nonlinear and follows an
ESTAR process developed in KSS [11].

In this study, we propose the two-step testing procedure like CL [9]. In the first step,
we obtain the demeaned or detrended series, x̃t say.

x̃t = yt − α̂0 − ϕ̂1sin
(

2πkt
T

)
− ϕ̂2cos

(
2πkt

T

)
f or demeaned case

x̃t = yt − α̂0 − α̂1t− ϕ̂1sin
(

2πkt
T

)
− ϕ̂2cos

(
2πkt

T

)
f or detrended case

where α̂0, α̂1, ϕ̂1 and ϕ̂2 are OLS estimators. Next, we construct two Fourier based unit
root test with x̃t in the second step. Firstly, we consider the Dickey-Fuller type unit root
test. The DF Equation in (2) can be re-written as:

∆x̃t = βx̃t−1 + et (4)

where β = φ− 1 and et ∼ iid
(
0, σ2

e
)
. We are interested in testing the null hypothesis of

unit root (β = 0) against the stationary alternative (β < 0) in Equation (4). Relaxing the
assumption that et are serially uncorrelated, Equation (4) can be written by augmenting
with sufficient lags of the dependent variable as follows:

∆x̃t = βx̃t−1 +
p

∑
j=1

δj∆x̃t−j + et (5)

Then the test for the null hypothesis β = 0 against the alternative β < 0 is obtained
with the following t-statistics:

tFADF
i =

β̂

s.e.(β̂)
i = µ, τ (6)

where β̂ and s.e.(β̂) are the OLS estimate and associated standard error of β obtained from
Equation (5). Secondly, we examine the ESTAR-type unit root test. Equation (3) can be
reparametrized with x̃t instead of xt as follows:

∆x̃t = βx̃t−1 + γx̃t−1

[
1− exp

(
−θx̃2

t−d

)]
+ et (7)
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where β = φ− 1. KSS assume that d = 1, and that γ < 0 and γ + β < 0 (β ≥ 0 is possible)
for globally stationary process. After imposing β = 0, we can write Equation (7) as:

∆x̃t = γx̃t−1

[
1− exp

(
−θx̃2

t−d

)]
+ et (8)

We follow KSS and consider the null hypothesis, H0 : θ = 0 in Equation (8), under
which x̃t is non-stationary unit root. Notice under the null that the parameter θ is not
identified. Thus, we follow KSS [11] and Luukkonen et al. [14], and adopt the first-order
Taylor expansion of G(x̃t−d; θ) around θ = 0 with d = 1. KSS derive the auxiliary testing
regression as follows:

∆x̃t = δx̃3
t−1 + ηt (9)

where ηt = et + Rt with Rt representing the remainder terms from the Taylor expansion
and δ = θγ. If residuals ηt are serially correlated, Equation (9) can be extended to correct
for the serial correlation as:

∆x̃t = δx̃3
t−1 +

p

∑
j=1

ωj∆x̃t−j + ηt (10)

Thus, we can obtain the t–statistics for δ = 0 against δ < 0 as follows:

tFKSS
i =

δ̂

s.e.(δ̂)
i = µ, τ (11)

where δ̂ is the OLS estimator of δ in Equation (10) and s.e.(δ̂) is the standard error of δ̂.
To obtain the asymptotic distribution of the tFADF

i and tFKSS
i (i = µ, τ) statistics,

we need the following results, where we let [rT], r ∈ [0, 1], be an integer close to rT.
Throughout the paper,→ signifies weak convergence as T approaches ∞.

Proposition 1.
i T−3/2 ∑T

t=1 xt → σ
∫ 1

0 W(r)dr = σ f1
ii T−5/2 ∑T

t=1 txt → σ
∫ 1

0 rW(r)dr = σ f2

iii T−3/2 ∑T
t=1 sin

(
2πkt

T

)
xt → σ

∫ 1
0 sin(2πkr)W(r)dr = σ f3

iv T−3/2 ∑T
t=1 cos

(
2πkt

T

)
xt → σ

∫ 1
0 cos(2πkr)W(r)dr = σ f4

v 1
T ∑T

t=1 sin
(

2πkt
T

)
→ 0

vi 1
T ∑T

t=1 cos
(

2πkt
T

)
→ 0

vii 1
T2 ∑T

t=1 t sin
(

2πkt
T

)
→ − 1

2πk

viii 1
T2 ∑T

t=1 t cos
(

2πkt
T

)
→ 0

ix 1
T ∑T

t=1 sin2
(

2πk f t
T

)
→ 0.5

x 1
T ∑T

t=1 cos2
(

2πkt
T

)
→ 0.5

xi 1
T ∑T

t=1 sin
(

2πkt
T

)
cos
(

2πkt
T

)
→ 0

Theorem 1. The test statistics given in Equations (6) and (11) under the null have the following
asymptotic distributions:

tFADF
i

d→
∫ 1

0 Wi(k, r)dW(r)(∫ 1
0 Wi(k, r)2dr

)1/2 i = µ, τtFKSS
i

d→
∫ 1

0 Wi(k, r)3dW(r)(∫ 1
0 Wi(k, r)6dr

)1/2 i = µ, τ

where W(r) is the Wiener process as defined over the interval r ∈ [0, 1]. Wi(k, r) for i = µ, τ is
demeaned and detrended Brownian motion, respectively.

Proof. See the Appendix A. �
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Obviously, the asymptotic distribution of the resulting test statistics under the null
depends on the Fourier frequency k, but invariant to other parameters in the model. Table 1
gives asymptotic critical values of the tFADF

i and tFKSS
i statistics for different values of

k. These values are obtained from numerical simulations where the Wiener process is
approximated by partial sums of 2000 independent N(0, 1) variates and the number of
replications is 100,000.

Table 1. Asymptotic critical values of FADF and FKSS test statistics.

tFADF
µ tFKSS

µ

k 1% 5% 10% 1% 5% 10%
1 −4.309 −3.745 −3.448 −4.158 −3.574 −3.273
2 −3.886 −3.243 −2.905 −3.807 −3.246 −2.951
3 −3.693 −3.056 −2.727 −3.664 −3.094 −2.807
4 −3.582 −2.974 −2.652 −3.613 −3.037 −2.755
5 −3.578 −2.933 −2.626 −3.572 −3.020 −2.734

tFADF
τ tFKSS

τ

k 1% 5% 10% 1% 5% 10%
1 −4.777 −4.255 −3.982 −4.625 −4.089 −3.810
2 −4.532 −3.960 −3.657 −4.352 −3.798 −3.497
3 −4.339 −3.732 −3.411 −4.203 −3.622 −3.322
4 −4.205 −3.610 −3.298 −4.111 −3.539 −3.254
5 −4.130 −3.536 −3.237 −4.071 −3.503 −3.216

2.2. Unit Root Tests with Alternative Smooth Transition Type Break

Next, we introduce and describe the three other tests, which use the logistic smooth
transition function. They are the tests proposed by [6,10,15]. Suppose that yt follow a
smooth transition trend function on the time domain, t = 1, 2, . . . , T:

yt = α01 + α2St(λ, τ) + εt (12)

yt = α0 + β1t + α2St(λ, τ) + εt (13)

yt = α0 + β1t + α2St(λ, τ) + β2tSt(λ, τ) + εt (14)

where εt is a zero mean stationary process and St(λ, τ) is the logistic smooth transition
regression (STR) function.

St(λ, τ) = [1 + exp{−λ(t− τT)}]−1, λ > 0 (15)

Here, the structural change is assumed to follow a smooth transition between regimes
rather than an instantaneous structural break. St(λ, τ) is a continuous function bounded
between 0 and 1. The STR can be the interpreted as a regime-switching model between
the two extreme values of St(λ, τ) = 0 and St(λ, τ) = 1, which allows the transition from
one regime to the other is gradual. The parameter, λ determines the smoothness of the
transition. The two regimes are associated with small and large values of the transition
variable, st = t relative to the threshold, c = τ. For the large values of λ, St(λ, τ) passes
through the interval (0, 1) very rapidly. As λ approaches +∞, this function changes from
0 to 1 instantaneously at t = τT. Therefore, yt in Model 1 is a stationary process around a
mean changing from α1 to α1 + α2.

In these specifications, no change and one instantaneous structural change are limiting
cases. LNV [6] propose a two-step procedure:

• Step 1: We first estimate the deterministic component of the respective model by
applying a Nonlinear Least Squares (NLS), and construct the residuals:

# Model 1: ε̂t = yt − α̂0 − α̂2St(λ̂, τ̂)

# Model 2: ε̂t = yt − α̂0 − β̂1t− α̂2St(λ̂, τ̂)
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# Model 3: ε̂t = yt − α̂0 − β̂1t− α̂2St(λ̂, τ̂)− β̂2tSt(λ̂, τ̂)

• Step 2:

(i) Using an ADF test in the second step leads to the Leybourne et al. [6] LNV unit
root test.

(ii) Using an EG unit root test in the second step leads to the Sollis [15], S unit
root test.

(iii) Using a KSS test in the second step leads to the Omay and Yıldırım [10], OY unit
root test.

3. The Finite Sample Performances

In this section, we consider the number of DGP, which are designed to simultaneously
model structural breaks and regime-dependent non-linearities, in order to compare the
finite sample performances of the alternative estimators reviewed in Section 2.

3.1. The Fourier-Exponential Smooth Transition Autoregressive (ESTAR) Hybrid Data-Generating
Processes (DGP)

We first investigate the empirical power of the tests by using the FKSS-DGP where
the process is a stationary nonlinear adjustment around a smooth break. We construct the
Fourier-ESTAR(1) model by:

yt = ϕ1sin
(

2πkt
T

)
+ ϕ2cos

(
2πkt

T

)
+ εt (16)

∆εt = γεt−1
[
1− exp

(
−θε2

t−1
)]

+ ηt KSS 1st DGP
∆εt = ψεt−1 + γεt−1

[
1− exp

(
−θε2

t−1
)]

+ ηt KSS 2nd DGP
(17)

where ηt ∼ iidN(0, 1) and ϕ1 and ϕ2 are the parameters of the Fourier series and take the
values {0.0, 3.0} and {0.0, 3.0, 5.0}, respectively. We also consider the following parameter
values: for γ = {−0.1,−1.0,−1.5}, for the transition speed, θ = {0.01, 1.0}, k = 1 and
ψ = 0.1. These simulation results for T = 100 are presented in Table 2.

Table 2. The simulated powers of alternative tests under the FKSS-DGP.

ϕ1 ϕ2 θ γ tFKSS
µ sαNL tFADF

µ sα tsα Fα tNL,τ ττ

0.0 5.0 0.01 −0.1 0.045 0.007 0.080 0.010 0.014 0.009 0.009 0.007
3.0 0.0 0.01 −0.1 0.056 0.028 0.074 0.036 0.042 0.032 0.046 0.047
3.0 5.0 0.01 −0.1 0.033 0.004 0.073 0.003 0.005 0.002 0.003 0.002
0.0 5.0 0.01 −1.0 0.091 0.001 0.195 0.004 0.008 0.003 0.005 0.001
3.0 0.0 0.01 −1.0 0.152 0.094 0.193 0.069 0.077 0.073 0.107 0.080
3.0 5.0 0.01 −1.0 0.078 0.001 0.196 0.001 0.001 0.001 0.001 0.001
0.0 5.0 0.01 −1.5 0.123 0.001 0.270 0.001 0.002 0.001 0.007 0.001
3.0 0.0 0.01 −1.5 0.206 0.145 0.270 0.100 0.101 0.095 0.144 0.114
3.0 5.0 0.01 −1.5 0.110 0.001 0.265 0.001 0.001 0.001 0.001 0.001
0.0 5.0 1.0 −0.1 0.078 0.001 0.157 0.002 0.004 0.001 0.001 0.002
3.0 0.0 1.0 −0.1 0.094 0.064 0.161 0.057 0.069 0.055 0.064 0.066
3.0 5.0 1.0 −0.1 0.077 0.001 0.160 0.001 0.001 0.001 0.001 0.001
0.0 5.0 1.0 −1.0 0.993 0.012 1.000 0.001 0.001 0.001 0.194 0.001
3.0 0.0 1.0 −1.0 0.998 0.930 1.000 0.999 0.995 0.998 0.947 0.963
3.0 5.0 1.0 −1.0 0.986 0.001 1.000 0.001 0.001 0.001 0.002 0.001
0.0 5.0 1.0 −1.5 1.000 0.167 1.000 0.004 0.037 0.006 0.730 0.004
3.0 0.0 1.0 −1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.0 5.0 1.0 −1.5 1.000 0.010 1.000 0.003 0.075 0.009 0.130 0.001

Note: tFKSS
µ , sαNL, tFADF

µ , sα, tsα , Fα, tNL,τ and ττ indicate the FKSS test with intercept only, the Omay and Yıldırım [10] test for Model A,
the FADF test with intercept only, the Leybourne et al. [6] test for Model A, the Sollis [15] t and F tests for Model A, the Kapetanios et al.
[11] test with intercept and trend, and the Dickey–Fuller [16] tests with intercept and trend, respectively.

LNV state that the natural competitor of Model 1 (including the structural break in
the intercept only) is the ADF test which includes both intercept and trend. Since the
original KSS and ADF tests do not allow for a structural break, we include both terms in
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our power analysis. As readily seen from Table 2, the power of the EL test dominates all
other tests. This result is rather unexpected, because the power of the FKSS test is expected
to dominate mostly under the current DGP, except for the parameter region where the
transition parameter θ is sufficiently high. A general finding by KSS and OY suggests
that non-linear unit root tests are relatively more powerful when the slope parameter is
relatively small regardless of the values of γ. But, their power falls as the slope parameter
rises. If the slope parameter is equal or greater, the power of the Dickey–Fuller test
dominates other tests. Notice that as θ grows large, the model becomes approximately
linear, though θ is not a scale-free parameter. KSS [11] argue that the nonlinear tests would
be more powerful than the linear tests in the region local to the null, where the series tends
to be more persistent. They state that most economic time series are likely to be highly
persistent or stay near unit root. Thus, we argue that the power results tabulated in Table 2
are not in line with the findings by KSS and OY.

Enders and Lee [1] claim that the LNV and KSS tests deal with smooth structural
breaks in their unit root testing procedures, via LSTR and ESTR breaks, respectively. Notice
however that the KSS test is a non-linear unit root test that imposes the ESTR non-linearity
to the stochastic component of the series, but it does not deal with structural breaks directly.
As argued by Becker et al. [12], the presence of high-frequency components would reflect
various forms of stochastic parameter instability. In this regard, we argue that the non-
linearity embedded within the KSS test would be regarded as dealing with the stochastic
parameter instability instead of smooth deterministic structural breaks.

Originally, the EL test was proposed for smooth structural break. EL argue that the
low-frequency component of the Fourier function only captures the smooth structural
break. However, the power analysis employed here with this hybrid data sheds light on
the issue that the low-frequency component also captures non-linearity in the stochastic
component which can be classified as stochastic parameter instability. As previously stated,
the presence of high-frequency components would reflect various forms of stochastic
parameter instability such as non-linearity in the slope parameter of the ESTAR type
of unit root test. Therefore, using low-frequency component k = 1 it is not feasible to
capture such a parameter’s instability. Notice that we consider the low-frequency (k = 1)
component only, in the power analyses reported in Table 1. However, the EL test has the
best-performing test in this DGP setting. Enders and Lee [1,2] probably recognise that
the low frequency Fourier approximation (k = 1) filters out structural breaks as well as
other forms of non-linearity, as discussed in the Introduction. Due to this observation,
they classify the KSS test as the alternative to their unit root test. In the current setting,
two sources of non-linearity are imposed (smooth structural break and state-dependent
non-linearity) and the EL test captures both of them. This result seems to be in contradiction
with Becker et al. [12] and Enders and Lee [1]. Therefore, aggregating the results of power
analysis tabulated in Table 3 with the findings in the related literature, we can conclude
that the low-frequency component of the Fourier function over-filters the hybrid DGPs or
it can capture both smooth break and non-linearity in stochastic parts.

Table 3. The over filtration of the Fourier transforms under the FKSS-DGP.

k ϕ1 ϕ2 θ γ T=100

1.0 0.0 5.0 0.01 −0.1 0.090
1.0 3.0 0.0 0.01 −0.1 0.098
1.0 3.0 5.0 0.01 −0.1 0.088
1.0 0.0 5.0 0.01 −1.0 0.158
1.0 3.0 0.0 0.01 −1.0 0.175
1.0 3.0 5.0 0.01 −1.0 0.148
1.0 0.0 5.0 0.1 −0.1 0.078
1.0 3.0 0.0 0.1 −0.1 0.086
1.0 3.0 5.0 0.1 −0.1 0.071

Note: In this simulation study, 2000 draws are used.
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It may be useful to further prove the over-filtration problem of Fourier transforms in
hybrid DGP by employing a newly designed simulation study. Figure 1 is generated under
the two sets of DGP. The first is the linear AR(1) process with the AR parameter, 0.8 (light
series), and the other is the KSS DGP with θ = 0.01 and γ = 1.5 (dark series). We can explic-
itly see the difference between linear and non-linear series in Panel (a) of Figure 1. In Panel
(b), the two DGPs augmented with the same Fourier series (ϕ1 = 3.0 and ϕ2 = 5.0) are
displayed; they are the F(k = 1)− AR(1) process (Fourier trend with k = 1 plus an AR(1)),
and the F(k = 1) − ESTAR(1) process, respectively. In Panel (c) the non-linear trends
estimated using the Enders and Lee [1,2] methodology. Therefore, we expect to obtain the
same Fourier trends from both series ŷFT

t = α0 + 3.0sin
(

2πkt
T

)
+ 5.0cos

(
2πkt

T

)
. We obtained

the same Fourier trend ŷFT
t from F(k = 1)− AR(1) DGP, however, the estimated Fourier

trend from F(k = 1)− ESTAR(1) is not equal to ŷFT
t . When we have obtained the residuals

from de-trended series from F(k = 1)− AR(1) and F(k = 1)− ESTAR(1) in Panel (d) of
Figure 1, we see that estimated Fourier trend from F(k = 1)− ESTAR(1) is equal to the
summation of two effects:

ŷFT
t
∼= α0 + 3.0sin

(
2πkt

T

)
+ 5.0cos

(
2πkt

T

)
+ γεt−1

[
1− exp

(
−θε2

t−1

)]
Mathematics 2021, 9, 371  10  of  25 
 

 

   
(a)  (c) 

   
(b)  (d) 

Figure 1. Non–linearity around smooth break and the behaviour of low frequency Fourier transforms. 

In Figure 1, Panel (a), the blue series is an AR(1) stationary process while the black 

series is the stationary ESTAR (1) process. In Panel (b), the same Fourier function has been 

added to these two processes with the same colours. In Panel (c), trend functions were 

found using the grid search method described in Enders and Lee [1] in these two series. 

The Red Fourier trend is obtained for AR (1)+Fourier and Black Fourier trend is obtained 

for ESTAR (1)+Fourier. Finally, we can see  the nonlinear detrended ESTAR  (1) process 

and AR(1) processes  in Figure 1, Panel  (d). As can be  seen  from here,  the Fourier de‐

trended stationary AR(1) process given in blue is the same as the Fourier de‐trended ES‐

TAR(1) process given in black, which has almost transformed into the same structure. 

We now provide more explanations about the behaviour of the Fourier series. (The 

convergence of the Fourier transforms to a stochastic process is studied by Gallant [5]. He 

argued  that  the norm measure shall be global and  the Sobolov norm satisfies  these re‐

quirements. See Technical Annex for more details, which is available upon request.) We 

first have the Dirichlet (1829) condition, stating that the Fourier series converge to a real‐

valued periodic function at every jump discontinuity from its midpoint [17]. Furthermore, 

it is well‐established that as the frequency component increases, the low frequencies cap‐

ture  the structural break or deterministic components of  the series whilst  the high‐fre‐

quency components capture the other stochastic component (e.g., [5,12,18–20]). These can 

be combined to explain unexpected findings in the power analysis observed in Table 2. 

When estimating a stochastic process with Fourier series, the low‐frequency estimates the 

mid‐point of the highest  jump discontinuity, which we call a structural break (see also 

[1,2]). This  issue can also be  traced  from Figures 1 and 3  in [13]. Therefore,  the second 

series generated under the (𝐹ሺ𝑘 ൌ 1ሻ െ 𝐸𝑆𝑇𝐴𝑅ሺ1ሻ) leads to a bigger jump discontinuity in 

Panel (b). Thus, in the estimation phase in Panel (c) the Fourier function passes through 

the mid‐point of  this  jump discontinuity, however  this  jump discontinuity  is now ob‐

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
-4

-2

0

2

4

6

8

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
-4

-3

-2

-1

0

1

2

3

4

Figure 1. Non–linearity around smooth break and the behaviour of low frequency Fourier transforms.

Therefore, when we de-trend F(k = 1)− ESTAR(1) by using the Fourier k = 1 we
are left an AR(1) process with approximately the AR parameter, 0.8. (More specific,
∆εt = ψεt−1 + γεt−1

[
1− exp

(
−θε2

t−1
)]

+ ηt, KSS 2nd DGP with ψ = 0.8).
In Figure 1, Panel (a), the blue series is an AR(1) stationary process while the black

series is the stationary ESTAR (1) process. In Panel (b), the same Fourier function has been
added to these two processes with the same colours. In Panel (c), trend functions were
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found using the grid search method described in Enders and Lee [1] in these two series.
The Red Fourier trend is obtained for AR (1)+Fourier and Black Fourier trend is obtained
for ESTAR (1)+Fourier. Finally, we can see the nonlinear detrended ESTAR (1) process and
AR(1) processes in Figure 1, Panel (d). As can be seen from here, the Fourier de-trended
stationary AR(1) process given in blue is the same as the Fourier de-trended ESTAR(1)
process given in black, which has almost transformed into the same structure.

We now provide more explanations about the behaviour of the Fourier series. (The
convergence of the Fourier transforms to a stochastic process is studied by Gallant [5].
He argued that the norm measure shall be global and the Sobolov norm satisfies these
requirements. See Technical Annex for more details, which is available upon request.) We
first have the Dirichlet (1829) condition, stating that the Fourier series converge to a real-
valued periodic function at every jump discontinuity from its midpoint [17]. Furthermore,
it is well-established that as the frequency component increases, the low frequencies
capture the structural break or deterministic components of the series whilst the high-
frequency components capture the other stochastic component (e.g., [5,12,18–20]). These
can be combined to explain unexpected findings in the power analysis observed in Table 2.
When estimating a stochastic process with Fourier series, the low-frequency estimates the
mid-point of the highest jump discontinuity, which we call a structural break (see also [1,2]).
This issue can also be traced from Figures 1 and 3 in [13]. Therefore, the second series
generated under the (F(k = 1)− ESTAR(1)) leads to a bigger jump discontinuity in Panel
(b). Thus, in the estimation phase in Panel (c) the Fourier function passes through the mid-
point of this jump discontinuity, however this jump discontinuity is now obtained by two
different sources (smooth structural break and state-dependent non-linearity). Therefore,
in Panels (c) and (d), we see that the Fourier trend overreact to (F(k = 1)− ESTAR(1))
DGP due to the Dirichlet condition where this result contradicts with [1,2,5,12,18–20].

To further support our claim of the over-filtration of the Fourier transforms, we con-
duct the following simulation experiment. First, we construct the FKSS-DGP similarly to
the power analysis conducted in Table 2. Next, we estimate structural break by the Fourier
function and then test the ESTAR non-linearity with the de-trended series. This simulation
study can be used as the validation of the results in Figure 1. Here we employ the linearity
test proposed by [14]. Notice that the KSS test is the linearized version of the first order
Taylor approximation of the ESTAR non-linearity.

From the first row of Table 3, we find that 180 out of 2000 (9%) simulated series
exhibit non-linearity by the LM test. The simulated series are (F(k = 1) − ESTAR(1))
series, therefore after removing the Fourier trend ŷFT

t , we expect to obtain ESTAR-type
non-linearity from de-trended series. The LM test is employed to the de-trended series;
however, the non-linearity obtained in these de-trended series does not exceed 17.5% which
means that state-dependent non-linearity has disappeared.

This simulation experiments further confirm the power analysis in Table 3 and expla-
nation obtained from Figure 1. Therefore, the estimated Fourier trends are as follows:

ŷFT
t
∼= α0 + ϕ1sin

(
2πkt

T

)
+ ϕ2cos

(
2πkt

T

)
+ γεt−1

[
1− exp

(
−θε2

t−1
)]

ŷFT
t
∼= α̃0 + ϕ1sin

(
2πkt

T

)
+ ϕ2cos

(
2πkt

T

)
ϕ1 and ϕ2 includes the features of γεt−1

[
1− exp

(
−θε2

t−1
)]

and the de-trended series are
AR(1) process. Thus, we obtain very rare rejection of null hypothesis of linearity.

3.2. The Behaviour of the Fourier Function under the Exponential Smooth Transition DGP

As mentioned in the Introduction, the KSS test is one of the potential rivals of the EL
test and our previous results (in Tables 2 and 3, and Figure 1) also support the claim of [1,2].
Therefore, it is interesting to see the power performance of the EL test under the KSS-DGP
setting as that may increase our understanding of the behaviour of the Fourier function
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for state-dependent non-linearity in isolation. We now consider the following ESTAR(1)
process as a DGP:

∆yt = γyt−1

[
1− exp

(
−θy2

t−1

)]
+ ηt (18)

where we use γ = {−0.1, −1.0, −1.5} and θ = {0.01, 1.0}. The power experiments
obtained under this DGP with T = 100 are summarized in Table 4.

Table 4. The simulated powers of alternative tests under the KSS 1st DGP.

ϕ1 ϕ2 θ γ tFKSS
µ sαNL tFADF

µ sα tsα Fα tNL,τ ττ

0.0 0.0 0.01 −0.1 0.083 0.044 0.080 0.041 0.047 0.040 0.066 0.070
0.0 0.0 0.01 −0.5 0.216 0.084 0.133 0.068 0.068 0.065 0.136 0.135
0.0 0.0 0.01 −1.0 0.393 0.138 0.193 0.104 0.101 0.098 0.266 0.201
0.0 0.0 0.01 −1.5 0.566 0.227 0.265 0.165 0.150 0.158 0.435 0.334
0.0 0.0 0.05 −0.1 0.121 0.064 0.099 0.051 0.041 0.046 0.103 0.098
0.0 0.0 0.05 −0.5 0.634 0.279 0.344 0.185 0.163 0.179 0.541 0.447
0.0 0.0 0.05 −1.0 0.944 0.743 0.765 0.526 0.473 0.511 0.900 0.911
0.0 0.0 0.05 −1.5 0.994 0.915 0.966 0.860 0.751 0.850 0.983 0.993
0.0 0.0 0.1 −0.1 0.140 0.059 0.118 0.055 0.055 0.051 0.111 0.116
0.0 0.0 0.1 −0.5 0.830 0.503 0.617 0.370 0.326 0.363 0.765 0.803
0.0 0.0 0.1 −1.0 0.995 0.940 0.988 0.932 0.847 0.925 0.991 0.995
0.0 0.0 0.1 −1.5 1.000 0.998 1.000 1.000 0.989 0.999 1.000 1.000
0.0 0.0 0.5 −0.1 0.134 0.081 0.153 0.075 0.065 0.067 0.132 0.175
0.0 0.0 0.5 −0.5 0.951 0.873 0.996 0.967 0.895 0.958 0.963 1.000
0.0 0.0 0.5 −1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.0 0.5 −1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.0 1.0 −0.1 0.127 0.070 0.158 0.071 0.063 0.066 0.136 0.188
0.0 0.0 1.0 −0.5 0.944 0.894 0.999 0.992 0.969 0.987 0.969 1.000
0.0 0.0 1.0 −1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.0 1.0 −1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: See Table 2 note.

We find from Table 4 that the most powerful test appears to be the CL Test, tFKSS
µ .

This is rather an interesting result, considering the claim by Enders and Lee [1] that “If
a non-linear trend is absent from the DGP, a standard unit root test without a non-linear
trend will be more powerful than our test.” Even in the region where the KSS test should be
mostly powerful, we find that the CL test performs better than the KSS test. The KSS test is
constructed after deriving the Taylor approximation to the original ESTAR process; hence
some information inherent in the data may be lost. Thus, the Fourier function incorporated
in the KSS test would make some adjustments for the remainder of the terms (Rt), thereby
increasing the power of the CL test and showing why a non-linear unit root test including
Fourier transforms displays better power even under the DGP without containing any
structural breaks. On the other hand, the EL test has similar power to the KSS test as a
second-best test. This result again supports the findings that we have found in the previous
section and the claim of [1,2]. This result is also an indication of the over-filtration problem
of the Fourier function, showing that the Fourier function can imitate any type of series
behaviour even if it has a low-frequency component k = 1 while de-trending the series.

By using the KSS DGP, we have reached the conclusions given above, but the KSS
DGP has its own limitation to show more information about the behaviour of the Fourier
function. The transition speed θ is taken to be 0.1 and 1.0; these are of relatively smooth
transition speed, hence for further investigation we have to increase the transition speed
in order to see the behaviour of Fourier function. However, when we increase the θ
greater than 1, the power results of all tests rapidly converge to 1.0. Therefore, there is
no opportunity to compare the unit root test with each other and the behaviour of the
Fourier function. Thus, for a moderate and sharp transition, it is better to select the DGP
setting where we can provide these kinds of features. As mentioned earlier, the second
potential rival test for the EL test is the LNV test. The LNV test is simply the logistic smooth
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transition counterpart of the EL test which is also proposed for detecting smooth structural
breaks. Therefore, we proceed with the LNV-DGP in the next section in order to see the
behaviour of the Fourier function in sharp transitions and/or sharp breaks.

3.3. The Behaviour of the Fourier Function under the Logistic Smooth Transition DGP

We proceed to conduct the power experiment under the DGP set-up by the LNV
test, which is an important alternative to the EL test. This contains the logistic smooth
transition function (LST), which has desirable features in determining the location of the
structural break and speed of transition. The speed of transition parameter, λ determines
the structure of breaks such that smooth and sharp breaks are dictated by low and high
values, respectively.

We construct the following STR− AR(1) DGP, in which there is a stationary nonlinear
adjustment around a smooth transition from one constant to another:

yt = α1 + α2St(λ, τ) + εt

St(λ, τ) = [1 + exp{−λ(t− τT)}]−1, λ > 0 ∆εt = δεt−1 + ηt, ηt ∼ iid(0, 1)

Here, St(·) is a logistic smooth transition function, and we consider of the following param-
eter values: for the speed of transition parameter, λ = {0.1, 0.2, 0.5, 0.7, 1.0, 2.5, 5.0, 10.0},
for the threshold parameter, τ = {0.2, 0.5} and for the structural break parameter,
α2 = {2.0, 5.0, 10.0} (small, medium and large breaks), and for the autoregressive pa-
rameter, δ = 0.8. These results with T = 100 are provided in Table 5.

Table 5. The simulated powers of alternative tests under the Leybourne, Newbold and Vougas (LNV)-DGP.

α2 λ τ tFKSS
µ sαNL tFADF

µ sα tsα Fα tNL,τ ττ

2.0 0.01 0.2 0.349 0.291 0.634 0.405 0.349 0.392 0.471 0.749
2.0 0.1 0.2 0.339 0.244 0.547 0.373 0.297 0.358 0.406 0.682
2.0 0.2 0.2 0.333 0.249 0.492 0.330 0.263 0.315 0.388 0.640
2.0 0.5 0.2 0.310 0.245 0.433 0.313 0.275 0.301 0.360 0.603
2.0 0.7 0.2 0.310 0.229 0.428 0.294 0.251 0.279 0.365 0.605
2.0 1.0 0.2 0.303 0.223 0.422 0.293 0.243 0.284 0.385 0.588
2.0 2.5 0.2 0.294 0.239 0.411 0.307 0.243 0.292 0.353 0.587
2.0 5.0 0.2 0.299 0.201 0.420 0.281 0.237 0.268 0.354 0.577
2.0 10.0 0.2 0.297 0.234 0.417 0.289 0.250 0.283 0.357 0.598
2.0 0.01 0.5 0.331 0.286 0.615 0.401 0.344 0.380 0.450 0.735
2.0 0.1 0.5 0.269 0.248 0.520 0.368 0.302 0.358 0.389 0.663
2.0 0.2 0.5 0.265 0.253 0.530 0.363 0.293 0.350 0.371 0.617
2.0 0.5 0.5 0.259 0.238 0.515 0.376 0.305 0.362 0.364 0.619
2.0 0.7 0.5 0.249 0.249 0.509 0.345 0.266 0.321 0.344 0.592
2.0 1.0 0.5 0.250 0.245 0.508 0.355 0.273 0.339 0.331 0.577
2.0 2.5 0.5 0.247 0.233 0.506 0.347 0.267 0.332 0.327 0.580
2.0 5.0 0.5 0.246 0.244 0.499 0.345 0.273 0.329 0.336 0.589
2.0 10.0 0.5 0.247 0.243 0.499 0.366 0.278 0.343 0.326 0.608
5.0 0.01 0.2 0.516 0.586 0.793 0.606 0.633 0.614 0.680 0.867
5.0 0.1 0.2 0.385 0.350 0.407 0.436 0.393 0.429 0.414 0.600
5.0 0.2 0.2 0.170 0.223 0.349 0.316 0.263 0.300 0.282 0.371
5.0 0.5 0.2 0.295 0.165 0.098 0.240 0.196 0.226 0.201 0.210
5.0 0.7 0.2 0.283 0.178 0.085 0.252 0.213 0.239 0.201 0.186
5.0 1.0 0.2 0.276 0.175 0.075 0.250 0.208 0.241 0.184 0.174
5.0 2.5 0.2 0.260 0.193 0.070 0.242 0.188 0.237 0.197 0.163
5.0 5.0 0.2 0.258 0.204 0.073 0.253 0.201 0.239 0.195 0.177
5.0 10.0 0.2 0.258 0.198 0.075 0.254 0.212 0.242 0.200 0.183
5.0 0.01 0.5 0.479 0.493 0.755 0.549 0.529 0.555 0.623 0.839
5.0 0.1 0.5 0.171 0.298 0.330 0.440 0.367 0.424 0.341 0.596
5.0 0.2 0.5 0.171 0.270 0.350 0.426 0.340 0.407 0.262 0.389
5.0 0.5 0.5 0.174 0.267 0.288 0.398 0.312 0.379 0.175 0.241
5.0 0.7 0.5 0.168 0.252 0.264 0.375 0.283 0.354 0.171 0.218



Mathematics 2021, 9, 371 13 of 24

Table 5. Cont.

α2 λ τ tFKSS
µ sαNL tFADF

µ sα tsα Fα tNL,τ ττ

5.0 1.0 0.5 0.160 0.229 0.245 0.349 0.267 0.330 0.143 0.191
5.0 2.5 0.5 0.153 0.258 0.236 0.332 0.258 0.312 0.150 0.189
5.0 5.0 0.5 0.158 0.271 0.244 0.350 0.276 0.335 0.170 0.211
5.0 10.0 0.5 0.156 0.267 0.243 0.360 0.272 0.343 0.176 0.193
10.0 0.01 0.2 0.676 0.967 0.958 0.914 0.960 0.930 0.962 0.981
10.0 0.1 0.2 0.344 0.478 0.173 0.548 0.549 0.540 0.489 0.365
10.0 0.2 0.2 0.237 0.269 0.012 0.369 0.305 0.357 0.134 0.041
10.0 0.5 0.2 0.167 0.220 0.000 0.312 0.240 0.295 0.032 0.002
10.0 0.7 0.2 0.153 0.205 0.000 0.315 0.253 0.307 0.029 0.003
10.0 1.0 0.2 0.140 0.220 0.000 0.289 0.230 0.273 0.021 0.001
10.0 2.5 0.2 0.099 0.230 0.000 0.299 0.239 0.282 0.039 0.001
10.0 5.0 0.2 0.089 0.250 0.000 0.298 0.242 0.293 0.056 0.001
10.0 10.0 0.2 0.087 0.270 0.000 0.309 0.256 0.295 0.076 0.002
10.0 0.01 0.5 0.629 0.907 0.915 0.844 0.901 0.868 0.913 0.958
10.0 0.1 0.5 0.051 0.330 0.064 0.461 0.367 0.449 0.224 0.328
10.0 0.2 0.5 0.093 0.298 0.081 0.430 0.345 0.415 0.082 0.054
10.0 0.5 0.5 0.144 0.259 0.034 0.392 0.311 0.382 0.019 0.003
10.0 0.7 0.5 0.155 0.235 0.024 0.367 0.287 0.353 0.013 0.002
10.0 1.0 0.5 0.157 0.253 0.016 0.345 0.273 0.327 0.005 0.002
10.0 2.5 0.5 0.135 0.249 0.015 0.326 0.256 0.304 0.016 0.002
10.0 5.0 0.5 0.132 0.282 0.018 0.353 0.276 0.337 0.053 0.002
10.0 10.0 0.5 0.129 0.277 0.018 0.338 0.269 0.326 0.062 0.002

Note: See Table 2 note.

In Table 5, we consider three different cases depending on the magnitudes of the
structural break parameter α2. For the small break with α2 = 2.0, the ADF test performs
better than all the other tests, see also similar results documented in LNV, Sollis [15] and OY.
Surprisingly, however, the second-best test in this parameter region is the EL test, not the
LNV. This may simply reflect that the Fourier form performs better in approximating the
very smooth breaks. (The CL test is as good as the other test and better than the STR
type analogous test LNVKSS (OY test). The FKSS test is better than the OY test, with the
reason similar to the comparison of LNV and the EL test.) The power of all the tests is
negatively associated with the λ parameter. Furthermore, the threshold location parameter,
τ, also affects the power of the STR-type tests negatively. In particular, when the threshold
is located at the beginning of the sample, the Fourier type tests tend to display better power,
see [12] for similar findings. They document that the power of the Fourier type structural
break test (i.e. the Trig-test) deteriorates as the break point moves to the end of the sample.

For the moderate structural break with α2 = 5.0, we obtain completely different
results. For small slope parameters with the structural break dated at the beginning of the
sample, (τ = 0.2) the ADF test outperforms all the other tests. As the slope parameter λ
rises, the CL test becomes more powerful. This result is somewhat unexpected. On the
other hand, when the structural break parameter is located in the middle of the sample
(τ = 0.5), the ADF test performs best for the low values of λ only. As expected, in the
rest of the parameter region, the LNV test becomes more powerful than the other tests.
Hence, we may conclude that the logistic smooth transition function is able to capture the
sharper breaks.

The Fourier-type structural break unit root tests are shown to display better power
performance when the structural break is located at the beginning of the sample. Thus,
a unit root test such as the EL test, that includes Fourier transforms, is expected to perform
better in this case. Surprisingly, however, we find that the CL test is the best performing
even in the smooth structural parameter region.

Finally, when the structural break parameter is substantially large, both the ADF
and KSS tests lose power, see LNV, Sollis [15] and OY. Similar simulation results are also
documented in the Technical Annex. The performance of the smooth transition type
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de-trending tests improves when the value of the structural break parameter increases.
Therefore, in this region, the LNV test should become more powerful. By contrast, the EL
test using only one frequency k = 1 fails to achieve decent power in the presence of
sharp breaks. Enders and Lee [1] notice that sharp breaks of short duration will not
be approximated well by few low-frequency components. They also suggest adding a
second frequency in estimating the non-linear trend in order to capture the sharp breaks.
However, the negative effects of including cumulative frequencies were also discussed in
the previous section as over-filtration problem using k = 1 and it is also documented in [1,2].
They have shown that there is no practical way of testing for selecting the cumulative
frequency, n. Increasing the cumulative frequency, the sum of squares of the estimates
continuously decreasing, hence any type of test continuously has achieved more significant
results by these increments in n. Therefore, the limiting case or the most significant result
can be obtained when n = T/2, which means that there is no way to select an optimal
cumulative frequency. On the other hand, increasing the cumulative frequency, the high-
frequency components of the Fourier function take place in the analysis which is detecting
the stochastic parameter instabilities. Therefore, by using cumulative frequency it is not
appropriate to detect sharp breaks.

Overall, we draw the following conclusions from these power experiments conducted
under the LNV-DGP. First, the LNV test outperforms other tests for the cases with high
structural breaks and high transition speeds. Second, the CL and EL tests become more
powerful in the presence of smooth breaks, especially when the threshold parameter is
located at the beginning of the sample. Their power increases as the structural breaks and
transition speed parameters are weakened. Moreover, when the threshold is located at the
beginning of the series, the power performance of the CL and EL tests further improved.
Hence, the EL test, which is the main competitor of the LNV test, gains significant power
boost in the case of very smooth transitions. On the other hand, such power gain disappears
for sharp breaks. Furthermore, we notice that the CL test becomes the main competitor to
the LNV test when the structural break parameter is located at the beginning of the series
where the EL test is expected to be the competitor.

3.4. The Behaviour of the Fourier Function under a Hybrid DGP with Both a Logistic Smooth
Transition Function of Structural Breaks and Regime-Dependent ESTAR Non-Linearity

Finally, we consider the DGP investigated by OY, who propose the LNVKSS (OY)
test, which is the smooth transition counterpart of the CL test. We consider the following
STR− ESTAR(1) model:

yt = α0 + α2St(λ, τ) + εt ∆εt = α + γεt−1

[
1− exp

(
−θε2

t−1

)]
+ ηt, ηt ∼ iidN(0, 1)

where St(·) is defined earlier. We consider the following parameter values: two extreme
values for γ = {−0.1,−1.0}, two extreme values of θ = {0.01, 1.0}, and small, moderate
and large structural break parameters, α2 = {2.0, 5.0, 10.0}. These simulation results with
T = 100 are presented in Table 6.

Table 6. The power comparison of alternative tests: Omay and Yıldırım data-generating processes (OY-DGP).

α2 λ τ θ γ tFKSS
µ sαNL tFADF

µ sα tsα Fα tNL,τ ττ

2.0 0.5 0.2 0.01 −0.1 0.078 0.062 0.085 0.046 0.046 0.034 0.051 0.039
2.0 0.5 0.2 1.0 −0.1 0.113 0.086 0.164 0.076 0.070 0.068 0.057 0.061
2.0 0.5 0.2 0.01 −1.0 0.167 0.164 0.196 0.130 0.148 0.116 0.229 0.210
2.0 0.5 0.2 1.0 −1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.0 0.5 0.5 0.01 −0.1 0.076 0.070 0.091 0.064 0.064 0.052 0.052 0.039
2.0 0.5 0.5 1.0 −0.1 0.110 0.100 0.180 0.092 0.084 0.086 0.055 0.057
2.0 0.5 0.5 0.01 −1.0 0.176 0.152 0.213 0.132 0.110 0.108 0.218 0.216
2.0 0.5 0.5 1.0 −1.0 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.001
2.0 5.0 0.2 0.01 −0.1 0.072 0.050 0.080 0.038 0.042 0.026 0.051 0.047
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Table 6. Cont.

α2 λ τ θ γ tFKSS
µ sαNL tFADF

µ sα tsα Fα tNL,τ ττ

2.0 5.0 0.2 1.0 −0.1 0.104 0.116 0.151 0.110 0.092 0.098 0.067 0.069
2.0 5.0 0.2 0.01 −1.0 0.159 0.160 0.191 0.130 0.126 0.124 0.240 0.211
2.0 5.0 0.2 1.0 −1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
2.0 5.0 0.5 0.01 −0.1 0.077 0.052 0.088 0.042 0.040 0.032 0.050 0.043
2.0 5.0 0.5 1.0 −0.1 0.106 0.096 0.175 0.118 0.088 0.098 0.055 0.063
2.0 5.0 0.5 0.01 −1.0 0.175 0.190 0.213 0.162 0.130 0.150 0.203 0.189
2.0 5.0 0.5 1.0 −1.0 0.997 1.000 1.000 1.000 1.000 1.000 1.001 1.001
5.0 0.5 0.2 0.01 −0.1 0.057 0.046 0.053 0.045 0.053 0.044 0.046 0.036
5.0 0.5 0.2 1.0 −0.1 0.106 0.085 0.068 0.075 0.074 0.071 0.050 0.039
5.0 0.5 0.2 0.01 −1.0 0.136 0.121 0.082 0.089 0.099 0.091 0.165 0.117
5.0 0.5 0.2 1.0 −1.0 1.000 0.996 0.876 0.998 0.996 0.997 0.949 0.980
5.0 0.5 0.5 0.01 −0.1 0.066 0.086 0.077 0.038 0.042 0.038 0.039 0.036
5.0 0.5 0.5 1.0 −0.1 0.087 0.140 0.126 0.080 0.074 0.079 0.032 0.029
5.0 0.5 0.5 0.01 −1.0 0.115 0.171 0.154 0.118 0.096 0.118 0.111 0.121
5.0 0.5 0.5 1.0 −1.0 0.957 1.000 0.999 1.000 1.000 1.000 0.949 0.997
5.0 5.0 0.2 0.01 −0.1 0.047 0.042 0.042 0.029 0.039 0.026 0.040 0.034
5.0 5.0 0.2 1.0 −0.1 0.082 0.077 0.053 0.055 0.059 0.057 0.051 0.037
5.0 5.0 0.2 0.01 −1.0 0.116 0.103 0.068 0.065 0.073 0.060 0.160 0.106
5.0 5.0 0.2 1.0 −1.0 1.000 0.994 0.781 0.998 0.996 0.996 0.925 0.960
5.0 5.0 0.5 0.01 −0.1 0.059 0.089 0.069 0.031 0.037 0.030 0.025 0.023
5.0 5.0 0.5 1.0 −0.1 0.078 0.099 0.108 0.086 0.063 0.081 0.046 0.043
5.0 5.0 0.5 0.01 −1.0 0.107 0.165 0.135 0.099 0.087 0.094 0.102 0.097
5.0 5.0 0.5 1.0 −1.0 0.950 1.000 0.997 1.000 1.000 1.000 0.894 0.987

10.0 0.5 0.2 0.01 −0.1 0.050 0.056 0.007 0.012 0.016 0.008 0.030 0.015
10.0 0.5 0.2 1.0 −0.1 0.070 0.076 0.003 0.068 0.052 0.054 0.028 0.008
10.0 0.5 0.2 0.01 −1.0 0.093 0.120 0.003 0.080 0.060 0.074 0.045 0.017
10.0 0.5 0.2 1.0 −1.0 0.981 1.000 0.000 1.000 1.000 1.000 0.356 0.004
10.0 0.5 0.5 0.01 −0.1 0.081 0.092 0.037 0.042 0.040 0.034 0.013 0.007
10.0 0.5 0.5 1.0 −0.1 0.093 0.114 0.036 0.088 0.068 0.072 0.010 0.007
10.0 0.5 0.5 0.01 −1.0 0.112 0.242 0.041 0.161 0.191 0.111 0.025 0.017
10.0 0.5 0.5 1.0 −1.0 0.791 1.000 0.325 1.000 1.000 1.000 0.364 0.030
10.0 5.0 0.2 0.01 −0.1 0.028 0.114 0.004 0.028 0.034 0.016 0.043 0.012
10.0 5.0 0.2 1.0 −0.1 0.035 0.144 0.002 0.074 0.068 0.068 0.036 0.007
10.0 5.0 0.2 0.01 −1.0 0.050 0.188 0.001 0.070 0.086 0.064 0.030 0.009
10.0 5.0 0.2 1.0 −1.0 0.952 1.000 0.000 1.000 1.000 1.000 0.368 0.001
10.0 5.0 0.5 0.01 −0.1 0.060 0.160 0.021 0.060 0.096 0.062 0.021 0.006
10.0 5.0 0.5 1.0 −0.1 0.075 0.274 0.021 0.148 0.180 0.144 0.019 0.003
10.0 5.0 0.5 0.01 −1.0 0.094 0.398 0.024 0.190 0.198 0.182 0.036 0.017
10.0 5.0 0.5 1.0 −1.0 0.777 1.000 0.163 1.000 1.000 1.000 0.289 0.007

Note: See Table 2 note.

The power experiment results tabulated in Table 6 are qualitatively similar to those
obtained in Table 5.

Overall, we can draw the stylized findings from all the simulations results as follows:

(1) While the tests using the Fourier form display better power performance in the
presence of very smooth structural breaks, the tests with the logistic smooth transition
will be more powerful in the presence of moderate and sharp breaks.

(2) While the tests using the Fourier approximation show better power performance
when the threshold is located at the beginning of the sample, the tests with the logistic
smooth transition achieves better power when the threshold is located in the middle
of the sample.

(3) Testing procedures using Fourier approximation over-filters the data in the presence
of both structural breaks and stochastic non-linearities. On the other hand, the logistic
smooth transition function does not suffer from such a problem.

(4) Testing procedures that use more than one approximation (namely the Fourier and
Taylor approximations) have better power performances than the other procedures.
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(5) The KSS test employs the Taylor approximation to the original ESTAR process which
renders some valuable information lost in the auxiliary testing equation. Thus, em-
bedding the Fourier transforms within a test such as the CL test will make some
adjustment for the remainder of the Taylor approximation, which helps to boost the
power of the CL test over the KSS test.

(6) The EL test appears to be the third and fourth best performing test under the KSS-
and LNV-DGPs. Their power performance worsens when the power analyses are
conducted for the models with both intercept and trend. (We have conducted such
analysis for the model with intercept and trend. These results are qualitatively similar
to the simulation results reported for the models with the intercept only. These
results are available upon request.) Therefore, we do not support the claim of Enders
and Lee [1] that the EL test is a potential rival for the KSS and LNV tests. Rather,
we find that the CL test appears to be a potential rival of the LNV and KSS tests when
considering all the simulation results (Under the LNV-DGP, the CL test becomes more
powerful when the threshold is located at the beginning of the sample. Furthermore,
the CL test is also the best-performing test under the KSS-DGP).

Theoretical articles that have recently focused on the problems we have obtained from
power analysis can be found in [21–28]. In these studies, the authors propose theoretical
approaches that try to solve the problems we mentioned in the power study of the Fourier
and logistic smooth transition function. However, none of these studies explore a holistic
comparison and they touch only on some of the problems that we obtained from power
analysis. In terms of empirical research, studies which utilize the tests discussed to make
the correct unit root test in line with the results of the power study, as well as try to identify
which one of the tests is the best, are [29–33]. These studies perform identification tests to
determine whether the Fourier trend or the logistic trend fits the data better. Beyond that,
they also explore which of the state-dependent, time-varying and hybrid tests is superior
in these exercises. Although their findings are in line with the results of the simulation
studies we have discussed, none of them theoretically produce data and achieve general
results. More specifically, their decisions only come from within the characteristics of the
available datasets. In this sense, our present study will shed light on the theoretical and
empirical areas to be dealt with in the future.

In this paper, we discuss the integer form of the Fourier function. It may be beneficial
to expand our research by taking into account the fractional frequency studies that have
just started to become popular. Among others, we see the studies of Omay [34] and
Omay et al. [26] on this subject in the literature. Their findings indicate that fractional
frequency fits the data better than the integer frequency. However, since the results
obtained here are valid within the fractional frequency, only how much the problem can be
reduced will be explored. Accordingly, our investigation in this paper has general results
that can give an insight into the issues of fractional frequency.

4. Empirical Applications

We provide two empirical applications to examine whether the tests could detect
smooth or sharp breaks. We first apply all the aforementioned tests to the term structure
data over the period 1990:1–2003:11, analysed by Enders and Lee [1]. We download these
datasets from the website of Enders: http://www.time-series.net/time-series_papers,
accessed on 1 January 2021. As readily seen from Table 7, all the test results suggest that the
spread data exhibits structural break. The non-linear tests KSS and Enders and Granger [35]
(henceforth, the EG test) do not reject the null hypothesis of the unit root, although the
tests include structural break and non-linearity jointly. Both EL and LNV tests can detect
the structural breaks and they can reject the null of the unit root.

http://www.time-series.net/time-series_papers
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Table 7. Empirical application to the term structure data over 1990:1–2003:11.

tFADF
µ τCL

DF_C tFKSS
µ FtEL

NL
−3.720 *** −3.707 *** −3.209 −2.730

sα tsα Fα sαNL
−4.789 ** −2.099 7.733 −3.286

ττ tNL,τ EG
−2.517 −2.609 3.499

Note 1: We use the same lag order, 12 for all the tests with both intercept and trend. **, and *** indicate 5%
and 10% significance level, respectively. Note 2: tFADF

µ is the FADF test with intercept only, τCL
DF_C is the critical

values for FADF test generated by Christopoulos and Leon-Ledesma [9] methodology. tFKSS
µ is the FKSS test

with intercept only, FtEL
NL FKSS test generated by Enders and Lee [1] methodology. sα Leybourne et al. [6] test for

Model A (LNV), tsα and Fα Sollis [15] t and F tests for Model A (S), sαNL Omay and Yıldırım [10] test for Model A
(OY), ττ Dickey and Fuller [16] test with intercept and trend (ADF), tNL,τ Kapetanios et al. [11] test with intercept
and trend (KSS) and EG is the F test of Enders and Granger [21].

We observe from Figures 2 and 3 that both methods exhibit similar de-trending
patterns. We also find that the break parameter is located in the middle of the series and
the pattern of structural break is very smooth. From the power simulation studies in
the previous section, we know that the power of the LNV test improves if the location
parameter is located in the middle of the sample. Furthermore, the smoothness of the
transition enhances the power of the EL test. Therefore, EL and LNV tests are able to reject
the unit root null convincingly.
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Figure 2. The R1–T–bill spread, the Fourier intercept and the smooth transition (ST) trend.
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Figure 3. Residual from de–trending with Fourier intercept and the ST trend.
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Next, we apply the tests to the real exchange rate data. Christopoulos and Leon-
Ledesma [9] attempt to model the structural breaks by means of the Fourier function
because it allows for infrequent smooth temporary changes in the mean of the real exchange
rate (RER) series and thereby is compatible with the long-run purchasing power parity
(PPP). They have also claimed that they solve the PPP puzzle when there is a temporary
structural break in the mean of the real RER series. The RER series obtained from Turkish
data cover the period 1990:1–2003:11, see also Çorakcı et.al. [36] for more details.

We plot the Turkey/US RER series in Figure 4, which provides a clear contradiction to
the argument made by [9]. This is mainly due to the presence of sharp permanent breaks in
the middle of the sample. As highlighted in the above power simulation studies, we find
that the Fourier transform with low frequency fails to capture sharp breaks.

The OY test, which includes a STR de-trending, is the only test which can reject the
null hypothesis of a unit root in the Turkish RER series. From the LNV, KSS and OY
test results in Table 8, we may conclude that the Turkish RER series have two sources of
non-linearity, namely structural break and state-dependent non-linearity. LNV and KSS
tests do not reject the null hypothesis of unit root, but the OY test embedded both of them
in its testing procedure, hence the only possibility of rejecting the null hypothesis by OY
test is to have the two sources of nonlinearities in the RER series.
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Table 8. Empirical application to the Turkey/US real exchange rate over 1990:1–2013:11.

tFADF
µ τCL

DF_C tFKSS
µ FtEL

NL
−2.625 −2.634 −2.870 −3.096

sα tsα Fα sαNL
−1.186 −1.951 5.624 −3.497 ***

τµ tNL,τ EG
−1.124 −2.728 3.565

Note 1: We use the Akaike information criterion (AIC) for selecting the lag values. *** indicates 10% significance
level. Note 2: See Table 7 Note 2.

The two empirical applications suggest that it may be misleading to rely upon the
result obtained from one particular test only. Therefore, we should perform several types
of unit root test including the ones allowing for different types of structural breaks (e.g.,
smooth or sharp), non-linearity (e.g., STR or TAR) and both, when testing the stochastic
property of a series. For instance, in the second example, we exactly determine that the RER
series of Turkey includes both sharp structural break and state-dependent non-linearity.
This result is obtained by employing several different tests. Hence, we can confidently
eliminate the alternative structures for the RER series, for example smooth structural break
with EL test, TAR type of non-linearity with EG and Sollis [15] test, and sharp break only
by LNV test.

5. Conclusions

In this study, the de-trending strategies of structural break in unit root testing are com-
pared. For comparative purposes two flexible methodologies, namely Fourier transforms
and smooth transition regression, are used. Both of these methodologies are shown to
be superior to each other in specific cases. These cases are listed at the end of Section 3.
For example, if we have a series with sharp break in the middle of the sample, we have to
use an ST type of de-trending in order to obtain power gains in determining the stochastic
properties of the series in consideration. Using a structural break unit root test that employs
the Fourier transforms for detecting structural breaks, erroneously leads to accepting the
null hypothesis due to the over-filtration problem of the Fourier function. We can conclude
that for each category of structural break that we classify in this study, the relevant de-
trending strategy should be followed. As we also point out in the empirical part, all the
relevant unit root tests must be carried out in order to identify the true structure of the DGP.
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Appendix A

This appendix provides details about FADF and FKSS tests. Specifically, the critical
values demeaned and detrended are provided for both tests. The asymptotic distribution of
the tests is not available in the original paper; hence we also provide asymptotic distribution
of both demeaned and detrended examples.

Proof of Proposition 1. Suppose that ∆xt = ut under the null hypothesis. Thus, the proofs
of (i) and (ii) are standard, see Hamilton [37] (p. 486). We can obtain the proofs of (iii) and
(iv) from the continuous mapping theorem.

T−3/2
T

∑
t=1

sin
(

2πkt
T

)
xt → σ

∫ 1

0
sin(2πkr)W(r)dr = σ f3

T−3/2
T

∑
t=1

cos
(

2πkt
T

)
xt → σ

∫ 1

0
cos(2πkr)W(r)dr = σ f4

The other proofs related to asymptotic theory others are as follows:

T−1
T

∑
t=1

sin
(

2πkt
T

)
→
∫ 1

0
sin(2πkr)dr =

1
2πk

[1− cos(2πk)] = 0

T−1
T

∑
t=1

cos
(

2πkt
T

)
→
∫ 1

0
cos(2πkr)dr =

sin(2πk)
2πk

= 0

T−2
T

∑
t=1

t sin
(

2πkt
T

)
→
∫ 1

0
r sin(2πkr)dr =

sin(2πk)

(2πk)2 −
cos(2πk)

2πk
= − 1

2πk

T−2
T

∑
t=1

t cos
(

2πkt
T

)
→
∫ 1

0
r cos(2πkr)dr =

cos(2πk)− 1

(2πk)2 +
sin(2πk)

2πk
= 0

T−1
T

∑
t=1

sin2
(

2πkt
T

)
→
∫ 1

0
sin2(2πkr)dr =

1
2

∫ 1

0
[1− cos(4πkr)]dr =

1
2

[
1− sin(4πk)

4πk

]
= 0.5
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T−1
T

∑
t=1

cos2
(

2πkt
T

)
→
∫ 1

0
cos2(2πkr)dr =

1
2

∫ 1

0
[1 + cos(4πkr)]dr =

1
2

[
1 +

sin(4πk)
4πk

]
= 0.5

T−1
T

∑
t=1

sin
(

2πkt
T

)
cos
(

2πkt
T

)
→
∫ 1

0
sin(2πkr) cos(2πkr)dr =

1
2

∫ 1

0
sin(4πkr)dr =

1
8πk

[1− cos(4πk)] = 0

Proof of Theorem 1. We first examine demeaned case with α1 = 0 in Equation (1). yµ
t de-

note the OLS residuals from Equation (1) in the text with wt = (1, sin(2πkt/T), cos(2πkt/T))′.

yµ
t = xt − w′t(θ̂− θ) (A1)

where θ = (α0, ϕ1, ϕ2)
′, θ̂ is the OLS estimator of θ and ∆xt = ut under the null hypothesis.

We let w = (w1, . . . , wT)
′, x = (x1, . . . , xT)

′ and YT = diag
(√

T,
√

T,
√

T
)

to have

YT(θ̂− θ) =
[
Y−1

T w′wY−1
T

]−1
Y−1

T w′x (A2)

From Equations (A1) and (A2), we can show that

T−1/2yµ

[Tr] = T−1/2x[Tr] − T−1/2w′[Tr](θ̂− θ)

T−1/2yµ

[Tr] = T−1/2x[Tr] − T−1/2w′[Tr]Y
−1
T

[
Y−1

T w′wY−1
T

]−1
Y−1

T w′x

T−1/2yµ

[Tr] = T−1/2x[Tr] − T−1w′[Tr]

[
Y−1

T w′wY−1
T

]−1
Y−1

T w′x

(A3)

According to functional central limit theorems, the first term in (A3) is follows:

T−1/2x[Tr] = T−1/2
[Tr]

∑
t=1

ut → σW(r) (A4)

Then, the second term in (A.3) follows:

[
Y−1

T w′wY−1
T

]−1
=


1 T−1 ∑T

t=1 sin
(

2πkt
T

)
T−1 ∑T

t=1 cos
(

2πkt
T

)
T−1 ∑T

t=1 sin2
(

2πkt
T

)
T−1 ∑T

t=1 sin
(

2πkt
T

)
cos
(

2πkt
T

)
T−1 ∑T

t=1 cos2
(

2πkt
T

)

−1

→

 1 0 0
1/2 0

1/2

−1

=

 1 0 0
2 0

2


(A5)

T−1Y−1
T w′x =


T−1/2

T
∑

t=1
xt

T−1/2
T
∑

t=1
sin
(

2πkt
T

)
xt

T−1/2
T
∑

t=1
cos
(

2πkt
T

)
xt

→
 σ f1

σ f3
σ f4

 (A6)

Then, we can write that:

T−1w′[Tr]

[
Y−1

T w′wY−1
T

]−1
Y−1

T w′x→
[

1 sin(2πkr) cos(2πkr)
] 1 0 0

0 2 0
0 0 2

 σ f1
σ f3
σ f4

 (A7)
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Therefore, we can obtain demeaned Brownian motion by combining the results in
Equations (A4) and (A7):

1
σ
√

T
yµ

[Tr] →Wµ(k, r) = W(r)− f1 − 2sin(2πkr) f3 − 2cos(2πkr) f4 (A8)

Secondly, we examine the detrended case with α1 6= 0 in Equation (1). yτ
t denote the

OLS residuals from Equation (1) in the text with wt = (1, sin(2πkt/T), cos(2πkt/T))′.

yτ
t = xt − w′t(θ̂ − θ) (A9)

where θ = (α0, α1, ϕ1, ϕ2)
′, θ̂ is the OLS estimator of θ and ∆xt = ut under the null

hypothesis. Let YT = diag
(√

T, T3/2,
√

T,
√

T
)

in (A2). Using Equations (A9) and (A2),
we can write:

T−1/2yτ
[Tr] = T−1/2x[Tr] − T−1w′[Tr]

[
Y−1

T w′wY−1
T

]−1
Y−1

T w′x (A10)

The second term in (A.10) follows:

[
Y−1

T w′wY−1
T

]−1
=


1 T−2 ∑T

t=1 t T−1 ∑T
t=1 sin

(
2πkt

T

)
T−1 ∑T

t=1 cos
(

2πkt
T

)
T−3 ∑T

t=1 t2 T−2 ∑T
t=1 tsin

(
2πkt

T

)
T−2 ∑T

t=1 tcos
(

2πkt
T

)
T−1 ∑T

t=1 sin2
(

2πkt
T

)
T−1 ∑T

t=1 sin
(

2πkt
T

)
cos
(

2πkt
T

)
T−1 ∑T

t=1 cos2
(

2πkt
T

)



−1

→


1 1/2 0 0

1/2 1/3 −1/(2πk) 0
0 −1/(2πk) 1/2 0
0 1/2 0 1/2


−1

=


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44


(A11)

where b11 =
(
4n2 − 6

)
/
(
n2 − 6

)
, b12 = b21 = −6n2/

(
n2 − 6

)
, b13 = b31 = −6n/

(
n2 − 6

)
,

b14 = b41 = 0, b22 = 12n2/
(
n2 − 6

)
, b23 = b32 = 12n/

(
n2 − 6

)
, b24 = b42 = 0, b33 =

2n2/
(
n2 − 6

)
, b34 = b43 = 0, b44 = 2 and n = πk.

T−1Y−1
T w′x =


T−1/2 ∑T

t=1 xt
T−3/2 ∑T

t=1 txt

T−1/2 ∑T
t=1 sin

(
2πkt

T

)
xt

T−1/2 ∑T
t=1 cos

(
2πkt

T

)
xt

→


σ f1
σ f2
σ f3
σ f4

 (A12)

Then, we can write that:

T−1w′[Tr]

[
Y−1

T w′wY−1
T

]−1
Y−1

T w′x =
[

1 r sin(2πkr) cos(2πkr)
]

b11 b12 b13 0
b21 b22 b23 0
b31 b32 b33 0
0 0 0 b44




σ f1
σ f2
σ f3
σ f4

 (A13)

Therefore, we can obtain detrended Brownian motion by combining the results in
Equations (A4) and (A13).

1
σ
√

T
yτ
[Tr] →Wτ(k, r)

= W(r)− (b11 f1 + b12 f2 + b13 f3)− (b21 f1 + b22 f2 + b23 f3)r
−(b31 f1 + b32 f2 + b33 f3)sin(2πkr)− b44 f4cos(2πkr)

(A14)
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Hence, using above results, under the null we can obtain that:

tFADF
i

d→
∫ 1

0 Wi(k, r)dW(r)

(
∫ 1

0 Wi(k, r)2dr)
1/2 i = µ, τ

tFKSS
i

d→
∫ 1

0 Wi(k, r)3dW(r)

(
∫ 1

0 Wi(k, r)6dr)
1/2 i = µ, τ

�
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