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Abstract: In this research, we used Spanish wealth distribution microdata for the period 2015–2020
to provide a general framework for comparing different models and explaining different empirical
datasets related to wealth distribution. We present a methodology to output the current value of assets
and participations held by the population in order to calculate their real and current distribution. We
propose a new methodology for mixture analysis, whereby we identify and analyze subpopulations
and then go on to study their influence on wealth distribution. We use concepts of symmetry to
identify two internal processes that are characteristic of the wealth accumulation process for the
subpopulations of entrepreneurs and non-entrepreneurs. Finally, we propose a method to adjust
these results to other empirical data in other countries and periods, providing a methodology for
comparing results output with differing data granularity.

Keywords: wealth; distribution; Pareto; Gibrat; econophysics; Benford; assets

1. Introduction

The discipline of econophysics originated during the 1970s and has evolved signifi-
cantly over a period of just 50 years [1–4]. From the very first, it was effectively applied
to economic problems, such as the puzzle of excess volatility, where other consolidated
theories such as dynamic stochastic general equilibrium had proved insufficient ([5], p. 2),
and strange regularities as observed in the distribution of the number of workers of com-
panies [6,7] or the study of wealth and income.

Economists’ traditional interest in wealth distribution resurged in the 1970s. Some
studied the question from the normative point of view [8,9], and many other pragmatists
considered its effects on growth [10]. With the turn of the century, the interest in inequal-
ity [11,12] extended the focus beyond the academic sphere, renewing econophysicists’
interest in the problem [13,14].

As is well-known, Pareto observed that the distribution of the number of individuals
with income above a specified level of wealth presented a strange regularity. In 1953,
Champernowe [15] proposed a model according to which a taxpayer’s annual income
was a function of the preceding year’s income and a stochastic factor. Gibrat [16] used
data on company size as a variable to study the proportional effects leading to lognor-
mal distributions. This was the first attempt to explain this specific skewed pattern of
distribution in stochastic terms. He showed that the cumulative effect of a succession of
independent random shocks would generate a variable whose log would be uniformly
distributed regardless of the distribution that governed the shocks. The idea is sometimes
explained by saying that company growth is independent of company size.

These ideas inspired countless empirical studies [17–20]. Some tried to confirm
Pareto’s law with a better fit [21–24], and others attempted disproof by counterexample [25].
It has been consistently found in ln − ln plots that, when drawing the survival curve,
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the complement to the cumulative curve, 90–95% of incomes (above a threshold) can be
fitted to a lognormal distribution, whereas the 5–10% of the richest fit a Pareto distribution.

The cause of the duality is an enigma. According to [26], the upper tail of the income
distribution has long been regarded as a source of fascination for economists (for a recent
review, see [27]).

Scholars have focused on three aspects:

1. Distributions. Many researchers have tried to achieve a comprehensive unique and
universal fit of the observed density or distribution functions with: biparametric
(lognormal, gamma, Weibull) distributions, triparametric (generalized gamma, Singh-
Maddala or Dagum) distributions [28], and pentaparametric (generalized beta) dis-
tributions [29]. Economists have preferred lognormal distributions [30], while statis-
ticians [31] and econophysicists [32] have shown the utility of gamma distributions.
Gibbs’ distributions have been used to fit cumulative data.

2. Models. They have been investigated by scholars who believe that it is plausible for a
unique simple physical law or a stochastic model to explain the observed regularity.
For a complete review of the models, see [18].

3. Subpopulations. Some studies, interested in the design of effective policies, have
attempted to adjust the density function as a mixture of component subpopulations
of wage earners, pensioners, etc. [33].

Many questions remain open today:

1. What are the underlying causes of the distribution?
2. How is it possible that such skewed distributions are observed in competitive capital-

ist markets that should be efficient?
3. How many different groups are there within the society? [34,35].
4. What are the processes governing the constitution of existing subgroups, and their

influence on wealth and income distributions?

In this research we have had the opportunity to process microdata, which provide a
very detailed picture of wealth in Spain over the period 2015–2020. The aim was to:

1. Determine which of the income and wealth variables best determines the form of a
universal law of wealth distribution provided there is access to microdata.

2. Identify the subgroups existing in a society whose mix determines the wealth distri-
bution and find the distribution of each subgroup in the case of Spain.

3. Model the wealth generation processes of the subgroups.
4. Quantify the deviations and errors that occur in estimating income and wealth caused

by the involuntary use of variables with partial or biased information.
5. Explain the emergence of the shape of the upper tail of the wealth distribution.

This paper has four sections. In Section 2, we describe the methodology with special
attention to the method used to obtain the indirect wealth using microdata of tax declaration.
In Section 3, we apply the methodology to the data of the wealth distribution in Spain
during the period 2015–2020. We present the results of the method used to identify the
mixture of subpopulations, to explain their effects in the observable distribution using the
concept of symmetry. In Section 4, we resume the results obtained.

2. Methodology

The study of wealth and inequality has traditionally come up against a systematic
scarcity of detailed data, because: (i) statistical data collection is designed according to
the objectives of each survey, and it is not easy to adapt the collected data items for other
purposes; (ii) tax data are subject to special protection and are not easily accessible for
academia; (iii) wealth is hidden; (iv) the value of wealth components is volatile; (v) some
wealth is associated with legal persons, like companies, and the task of associating such
assets with their holders is complex, and, last but not least, (vi) considerable computational
power is required to process all the data on all forms of wealth.
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The methodology used in this research is divided into four phases: (1) data collection;
(2) variable selection; (3) decision on data binarization; and (4) analysis.

1. Data collection. We used detailed data from the declarations presented to the Span-
ish State Tax Agency (AEAT): taxpayer census, information submitted by public
bodies (e.g., cadastre), tax (personal income tax, corporate tax, inheritance tax) self-
assessments, as well as informative declarations submitted by insurance companies
and financial institutions (the authors are solely responsible for their conclusions,
which have not been reviewed by AEAT).
While some authors [26] have already used income tax microdata, this study increases
the level of detail. We selected the variables of interest from many tax declarations,
including, for example, the gross tax base from Income Tax Form 100; data on partners
and % participation in other companies from Corporate Tax Form 200, and data on
assets and liabilities from other forms, such as F 720, F 174, F 196, F 714 and F 189. All
the forms and variables used are described on the AEAT web page (AEAT, 2020).
The number of taxpayer declarations in an average year (2018) include 19.98 million
for income tax, 1.59 million for corporate tax and 207,225 for inheritance tax. A total
of 94.7 million current accounts, and loans worth around 139.5 million euros are
processed annually, using several hundreds of millions of data items sourced from
the Spanish cadastre and from the informative declarations provided by financial
institutions. These data are included in the AEAT annual reports [36].
We have studied three variables:

(a) Income. Gross tax base, declared on Form 100.
(b) Assets. This is the sum of direct assets (value of property, financial products,

deposits, insurance policies, shares in listed companies, etc.) and indirect
(or corporate) assets, that is, the value of the % participation in the assets of
non-listed companies.

(c) Net worth (NW). Assets minus passives liabilities (loans and accounts payable)
is the sum of two components DNW (direct net worth) and INW (indirect net
worth).
For each inhabitant, indexed by i, i ∈ {1, · · · , N}, (N ≈ 59,73 M),

NWi = ∑
j∈DAi

DNWij + ∑
k∈Ci

INWik, (1)

where DAi is the set of direct assets belong to inhabitant i and Ci is the set of
companies in which inhabitant i has a share.

The calculation of the components of indirect wealth is complex because taxpayers
may or may not to have participations in non-listed companies, which may or may not
hold shares in other companies and so on. It is calculated according to two different
processes explained using the toy example in Figure 1 with three natural persons and
six companies {N, A, B, C, D, E}.
Following the example of Natural Person 1, we calculate the direct wealth of tax-
payers from the declarations presented by the taxpayer and by others (e.g., financial
institutions). Indirect wealth is calculated by accumulating the market value of par-
ticipations in non-listed companies {A, B, C, D} that are downstream in the flow of
relations between participations. In this example, Natural Person 2 is a shareholder of
A only. The relationship between company A, Natural Person 1 and Natural Person
2 is declared by A on page 2 of Form 200. The relationship between A and {B, C} is
declared by A on page 24 of Form 200 and includes the % participation and its value.
This information can be crossed with the information provided by B and C.
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Figure 1. Example of calculation of indirect wealth.

The process is divided into two phases:

(a) Calculate the % participation of each taxpayer in each company. This is a network-
based calculation using the information provided by companies on page 2 and
24 of Form 200. For example, the % participation of Natural Person 1 in D is
output by adding two components along paths A-B-D and A-C-D with a total
of 0.25, as illustrated in Figure 1d.

(b) Calculate the target variable (assets or net worth). We used balance-sheet data
declared on Form 200 to output, for each network node, two set of values:
(a) linked assets and liabilities; (b) non-linked assets and liabilities (that is,
the balance-sheet items that appear due to company participation in other
companies) as illustrated in Figure 1 for the example.
Now,

INWi = ∑
c∈Ci

∑
p∈Pic

∏
l∈p

%PARl NLNWl , (2)

where Ci is the set of companies in which inhabitant i has a share, Pic is the set
of all the paths from i to c and l is a company along the path p.
The indirect net worth of a taxpayer’s participation in a company is the sum,
for the companies, indexed by c, in which it has a share, and for all the paths,
indexed by p, that connect the taxpayer with a company, of the product of %
participations PAR multiplied by the non-linked net worth (NLNW) of these
participations in the L companies along a path. The non-linked assets (referred
to in Spanish as “no vinculados”) are calculated using data from Forms 200
and 220, including the balance sheet items. A close approximation to the
linked value can be calculated from the balance sheet by deducting the value
declared under items 00118, 00153, 00160 referring to assets and items 00223,
00238, 00243 referring to group and partner companies from the company
assets. It was decided that the value of a taxpayer’s urban property is, in each
case, the maximum of three available values: (a) the value declared on Form
714 (Boxes A, A1, C, D and M), the cadastral value of the property plus the
value declared on Form 720 [37].

2. Variable selection. We collected and studied the descriptive statistics of candidate
variables: income, assets, net worth, net worth of the net holders of wealth, etc.
We then examined the limitations derived from technical taxation issues, such as
exemptions from declaration at specified wealth intervals or special regulations,
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and decided that the best theoretical option for gaining a clear understanding of
reality would be total value of assets.

3. Decision on the optimal binarization of the data. We decided the optimal binarization
strategy. The wealth range is [100; 1010] with a mean, µ, of the order of 5 × 105 within
which both high and low incomes have to be closely scrutinized.

4. Analysis. Although different distributions have been studied (see Section 1 above),
biparametric distributions have been most often used in meta-analysis. Normal,
lognormal, Pareto and, occasionally, gamma distributions have been used to compare
the quality of the fits against distributions with more parameters.
As a reminder, Kleiber and Kotz [38] studied at length the types of this family of distri-
butions in which Mandelbrot [39] singled out a strong form, expressed in Equation (3),
where m0 is a scale factor, and the value of α is not determined.

(a) Pareto I distribution

π(m) =

{
( m

m0
)−α when m > m0

1 when m ≤ m0
=
∫ ∞

m
P(m)dm (3)

or alternatively, using the survival function, which is the complement of the
distribution function:

S(x) = 1−
(m0

x

)α
. (4)

Pareto’s law [40] considers the variable in the positive range (even in the
knowledge that there are people who are net debtors, he studied wealth above
the survival threshold), where the higher the Pareto index, the smaller the
proportion of very rich. The value output by modern empirical studies is close
to 2, bigger than in older studies [19,41].

(b) Lognormal distribution
This type of distribution is intuitively applicable and is endorsed by Gibrat’s
research, because the distribution of any manifestation of wealth is universally
asymmetrical [42].
From another point of view, note that Koch [17,25,43–48] observed that asym-
metry is a possible exponential trace. The exponential increase in the wealth of
the richest could be studied by analogy with biological phenomena [42].

5. Analysis of the population mix. Pareto [49] observed that “society is not homogeneous”.
This ledthem to think that inequality would be understood by studying the shape
of the distribution of the total population. We now know that this intuition was
true and that the Pareto index is an indicator of this form. While in a conventional
exploratory study, we have to infer the number of subpopulations in the mix, knowl-
edge of multiple covariates for each taxpayer, like age, activity, and income details,
as well as expert knowledge, greatly facilitates the identification and choice of the
“natural” subpopulations.
In a mixture experiment, the experimenter selects a number of different mixtures and
varies the proportions of two or more of their components. If we call the number of
components q, and xi is the proportion of the i-th component, then the value of each
component is between 0 and 1, and its sum is 1. Due to the constraints, the geometric
description the factor space that contains the q components consists of all the points
within the bounds of a (q− 1) simplex. The points inside the rectangle have possitive
components, and its centroid describes the mixture with an equal proportion of
their components.
Having identified the factor space, we could ascertain which mixture of populations
best explains the empirically observed distribution. If society is made up of K sub-



Mathematics 2021, 9, 377 6 of 24

populations and the density function of each subpopulation is fk(γ; θk), where θk is a
parameter vector, then the density function of the population is

fk(γ; θ) =
K

∑
k=1

πk fk(γ; θk), (5)

where πk is the proportion of each population, with (0 ≤ πk ≤ 1), and its sum is 1.
The population density of the model is approximated by estimating the parameter
vector, without knowing to which of the groups each member belongs. If the number
of subpopulations is known, the parameters can be output by maximum likelihood,
where the most common options are the EM algorithm [50] or Bayesian methods.

3. Wealth Distribution in Spain
3.1. Data Collection

Data from the National Institute of Statistics (2020) indicate that Spain has a population
of 46.94 million. The Spanish Tax Agency’s taxpayer census contains data on 72.87 million
taxpayers, of which 64.25 million are natural persons. The difference between the above
figures is due to the fact that the taxpayer census includes legal persons belonging to one
of the 24 existing categories, non-residents, and deceased whose taxes have not prescribed.
The baseline of the research was the year 2015, when there were 59.733 million natural per-
sons, including non-residents far outnumbering the number of households (18.47 million)
in the Household Financial Survey used in other studies [51].

Table 1 shows some descriptive statistics divided into three blocks. The first block
shows income (gross tax base, as defined in art. 47 of the Income Tax Law) of declarants
with a positive tax base. The remainder, up to a total of 38.261 million taxpayers, had
a negative or zero base or were not obliged to declare. The second block, taxpayer net
worth (NW) (assets less liabilities of all kinds), is divided into two groups, taxpayers with
a NW greater than zero and taxpayers with a NW less than zero (net debtors). The last
three columns are the values of the assets deciles for all taxpayers holding assets, grouped
according to total, direct, and indirect assets (that is, assets owned due to participation in
non-listed companies).

Table 1. Descriptive statistics of wealth distribution in Spain (2015).

INCOME NET WORTH ASSETS > 0

>0 >0 <0 Total Direct Indirect

∑ (Me) 442,810 4,228,499 −123,893 5,504,770 4,372,866 1,131,697
µ 20,593 114,205 −27,335 145,959 115,974 21,936
# 21,472,065 37,025,366 4,532,469 37,714,346 37,714,346 1,458,186
σ 59,448 5,142,106 202.669 5,423,997 4,216,853 3,321,528

D1 2806 165 −65,663 143 128 0
D2 5267 1258 −41,439 1202 1123 0
D3 9326 5417 −27,605 5996 5490 0
D4 13,632 18,652 −18,286 27,783 26,145 0
Me 16,655 39,897 −11,892 54,621 53,137 0
D6 20,088 64,136 −7558 81,058 79,063 0
D7 24,336 95,216 −4393 114,745 111,579 0
D8 30,210 142,423 −1820 165,736 159,887 0
D9 38,428 240,632 −480 273,795 270,312 0

The rows show the following variables: total sum, mean, standard deviation, number
of elements and distribution deciles in euros. For example, the value of variable income
observed for the taxpayer ranked in the position 2,147,207, first decile, is 2,806 e. The first
positive values for the last variable, indirect assets, are in percentile 93. Note that only
3.86% of asset owners hold assets in non-listed companies and the proportion of taxpayers
who do not hold assets is 59.7 M − 37.7 M = 22.01 M (36.85%).
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There are major changes in variability (σ) in the evolution of the value of assets over
time, see Table 2, which could be due to macro errors in taxpayer declarations that have
to be accounted for. In this research, we have used data as declared and do not process
possible errors.

Table 2. Evolution of assets over time.

Var. 2015 2016 2017 2018 2016/2015 2017/2015 2018/2015

∑ 5,504,811 6,522,811 5,925,214 6,297,723 118.49 107.64 114.40
µ 149,959 168,858 156,417 1190,390 115.69 107.17 130.44
σ 4,916,808 126,005 127,548 3,972,678 2.56 2.59 80.80
# 37,714,346 38,806,625 37,880,766 38,072,958 102.90 100.44 100.95

3.2. Variable Selection

The term income is used to mean different things in studies taking a statistical ap-
proach, where it generally refers to a variable of interest in an interval, Y = [y, y], constitut-
ing any manifestation of wealth. We have studied three variables:

1. Income. Some problems are inevitable:

(a) Low incomes (<e22,000) are exempt from declaration.
(b) The comparability of different studies is limited because these variables are de-

fined legally, and there are special income attribution schemes in each country.
(c) The tax base may be negative.
(d) Tax fraud related to salaried income is easier to detect than for income of

professionals or the extremely wealthy.
(e) The data distribution may be contaminated due to the tendency to defraud [52].
(f) The distribution mode for low incomes is sensitive to binning. For example,

with a e100 grouping, the mode is situated in the interval (e) [13,800–13,900]
(# 73,822 taxpayers). For a e1000 grouping, the mode is in the interval [10,000–
11,000] (# 537,999). For a e10,000 grouping, the peak is between [50,000 and
60,000].

(g) The use of income introduces a bias because workers may have mortgages,
or assets, placing them in a completely different situation to others, with a
similar salary, that are or are not homeowners.

(h) Income tax declarations are sometimes filed individually and sometimes by
household unit. Atkinson [20] and Atkinson, Piketty and Saez [53] have
discussed the limitations of income tax data.

2. Net worth. Its associated difficulties are:

(a) Values may be negative if there are net debtors.
(b) Although possible, it is very difficult to calculate. The problems are:

i. All the tax data on declared incomes and debts are required for its cal-
culation.

ii. Details contained in the corporate tax declaration that are not available
in all countries are required to calculate indirect equity, that is, shares
owned in unlisted investee companies.

iii. All the assets of the companies owned by taxpayers have to be trans-
ferred to the current price value.

iv. The declared corporate tax values have to be adjusted for each company
due to different amortization rates that are acceptable under accounting
rules, and the process is very complex [37].

v. Access to all the direct and indirect liabilities (loans and debts) of each
taxpayer, even if assumed by the company in which the taxpayer has a
share, is required.
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3. Total assets. This variable is more detailed than income, is always positive and does
not have so many technical issues (from the viewpoint of accounting and data accessi-
bility) as net worth.

Therefore, we decided to use total assets in most cases, with a detailed analysis of net
worth on some specific occasions.

We use data for a period covering the last four years.

3.3. Decision on Binarization of Data

The decision on whether the “bins” should be of the same length, their position and,
generally, their width is not straightforward. Silverman’s rule [54] is:

ĥOPT = min
{

σ̂,
q̂3 − q̂1

1.349

}
n−1/5.

Its logic is that the variance is more sensitive to extreme values than the interquartile
range. We find that, in this case, σ is much greater, which is logical in a curve whose right
tail describes the distribution of the assets of big fortunes:

0.9 ∗min{4, 123, 829, (136, 972− 2658)/1.349}37, 714, 346−1/5 = 3039.

The range of assets in e is [0, 1010]. The ĥOPT is e 3039. This binning can be used for
the low ranges. However, it implies 1010/3039 ≈ 107 intervals. As we will see, this level of
granularity is unnecessary.

3.4. Analysis of Wealth

First, we updated previous studies providing a global metric of the effect of microdata.
In the case of Spain, García Docampo [55] used different data sources (the National Statistics
Institute (INE) Household Financial Surveys and the INE Household Panel) and output
Pareto indicators between 0.8 and 0.9. We repeated the method and output an index of 1.85
in line with the current tendency to find values closer to 2.

3.4.1. Variable Distribution

Figure 2 shows the ln− ln plots of survival functions for income, net worth and assets.

Figure 2. Distributions: ln− ln of income, wealth and assets
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The origin of the ordinate is always 0, because the value of 100% of the elements of
each variable is greater than 0 (we have only plotted the positive part of the net worth
variable whose magnitude is shown on the abscissa).

For example, only 10% of individuals will have a variable value greater than decile
9. Using the value ln(1− 0.9) = −2.30 on the ordinate, we get the value of the variable
considered on each curve, for example, 12.52 for assets, which is equivalent to e273,795
(Table 1).

We find that income has a singular behavior, especially in the lower region, because,
given the declaration threshold, it is not universally declared, its range of variability is
smaller than for wealth, and it is sometimes submitted for household units. The distribution
for the other group of variables is similar. If we were to consider net worth, a transformation
would be necessary because it has an interval with negative values. There are 4.53 million
taxpayers with “negative assets”, most of whom are paying back a mortgage on their
home. Many of these taxpayers have income and are not accounted for only when the
analyzed variable is “net assets > 0”. Therefore, we concluded that the best option is to
study total assets.

3.4.2. Definition of Subpopulations

We agree with Pareto that the population is composed of subpopulations with different
characteristics. The use of microdata has the advantage that it is possible to ascertain how
many subpopulations there are, as well as their characteristics. We hypothesize that the
characteristics of a subpopulation will impose a specific pattern on the wealth interval in
which it accounts for the numerical majority.

Figure 3 shows the number of taxpayers with assets. Figure 3a illustrates intervals
from e10j to 10j+1 with j = {0, 1, 2, 3, · · · , 9}. The first interval is [100, 101). The abscissa
represents the values of interval bounds j : j + 1 . Figure 3b shows the details of the interval
[e104, e105) with a binning of 10,000. Figure 3a clearly shows that there is a subpopulation,
probably minors, in the range e[0, 10) without assets, and a population on the abscissa
that is, on this scale, not normal, but could, however, be fitted to a lognormal distribution.
The pattern shown in Figure 3b is similar, albeit on a natural and bimodal scale.

Figure 3. Assets by intervals.

There is a tendency to consider a total population but we should not forget that the
observed data illustrate the emergence of a phenomenon originated by the coexistence of
different wealth generation processes in different populations.

We tackle the problem by hypothesizing that there are five different sub-populations:
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1. Taxpayers without assets (C0). Minors, net debtors, non-resident workers who receive
income or subsidies, but do not have assets to their name. Taxpayers with assets (Ca)
contains the following subgroups.

2. Passive taxpayers (Cp). With assets received by donation or inheritance (minors) and
attributed to them by third parties (their parents or financial institutions).

3. Non-entrepreneurs (Cn). Salary earners and professionals whose main income is a
salary. They do not hold shares in non-listed companies. The wealth generation
process is governed by the accumulation of savings.

4. Entrepreneurs (Ce). Owners or shareholders in unlisted companies. They are charac-
terized by owning assets, shares in listed companies or participations in companies
through other companies. The wealth generation process is a combination of the
accumulation characteristic of savings (direct assets) and multiplicative effects (in-
direct assets), mediated in this case by random a variable (success of the non-listed
companies) in a process that can be modelled based on Gibrat’s ideas.

5. Large fortunes (C f ) are, in some cases, exceptionally successful entrepreneurs but
more often holders of large family fortunes. The wealth accumulation process is
governed by other rules and is affected by inheritances and marriages.

3.4.3. Distribution of the Subpopulations

There is a population of 37,714,346 (Ca) that own assets and a group (C0) of 22,019,068
not have assets to their name.

Figure 4 shows: (a) the distribution of the taxpayer census by birth year. The mode
is 1977, and it illustrates the impact of sociological events, such as the mortality of the
Civil War in Spain in 1936; (b) the distribution by birth year of the value of assets owned at
three different wealth levels. The peak of the distribution of large fortunes (birth year 1962)
corresponds with youngest people than lower fortunes (birth year 1947) and (c) distribution
of wealth between minors and adults.

Figure 4. Net worth by year.

The low values of the distribution of assets could be considered to follow a normal
distribution, assuming hypothetically that they are random donations or small gains
without a regular pattern. Table 3 shows that, on the contrary, the asymmetry of the
monotonically decreasing curves in all ranges (from e1 to e10, from e10 to e102, and up
to e104–105) is similar.

In summary, donations to minors reflect the wealth of their parents.
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Table 3. Frequency of assets in the range 1–100,000 e.

Interval e # Interval # Interval # Interval #

1 to 10 1,845,563 <100 3,522,730 <1 K 7,512,309 <10 K 13,411,653
10 to 20 419,723 100 to 200 858,755 1 K to 2 K 1,791,396 10 K to 20 K 1,520,055
20 to 30 264,339 200 to 300 606,925 2 K to 3 K 1,035,198 20 K to 30 K 1,447,770
30 to 40 205,114 300 to 400 508,197 3 K to 4 K 744,920 30 K to 40 K 1,520,055
40 to 50 161,698 400 to 500 430,310 4 K to 5 K 564,586 40 K to 50 K 1,614,721
50 to 60 186,280 500 to 600 390,268 5 K to 6 K 465,260 50 K to 60 K 1,639,613
60 to 70 133,745 600 to 700 347,597 6 K to 7 K 397,574 60 K to 70 K 1,591,818
70 to 80 113,784 700 to 800 309,361 7 K to 8 K 336,237 70 K to 80 K 1,483,085
80 to 90 104,315 800 to 900 281,055 8 K to 9 K 300,479 80 K to 90 K 1,353,336
90 to100 88,169 900 to 1K 257,111 9 K to 10 K 263,694 90 K to 100 K 1,231,181

∑ 3,522,730 7,512,309 13,411,653 27,146,544

According to Pareto, we should find the value m0 (mode), which serves to normalize
the Pareto curve. A major issue in measuring the Pareto coefficient is the choice of threshold
above which the distribution is assumed to adopt the Pareto shape. This is an arbitrary,
but critical, decision because the value of α depends on the choice of the threshold. There
are two approaches: (i) make a pragmatic decision, or (ii) use a statistical criterion to find a
value, with the undesired collateral effect of yearly change. It is usual practice [20] to opt
for a pragmatic approach, where an income threshold of £55,000 in the UK corresponded
to the upper 5%.

We used different binnings for our analysis. With e1,000, the mode is e1,500,
with 1,668,736 asset owners, with e10,000, the mode is in the interval [50,000–60,000)
with 1,853,312 asset owners. If the binning is e100,000, the mode it is near the endpoint of
the interval [0, 100,000). Applying Atkinson’s criterion, we decided to take a pragmatic
approach to facilitate comparison between years and countries, and we used e100,000,
rounding to the value e101,000 for total assets used in previous studies [37]. From the
pragmatic point of view, this suffices; it is placed between the 6th and 7th deciles.

The distribution of the group under the mode could be explained by a mixture of
three populations: C0, without assets (minors or adults), (36.86%), Cp minors with assets,
(5.25%), with a characteristic distribution similar in shape to that of their parents, and the
least rich of the populations (57.89%), see Equation (5).

Our first hypothesis is that adults can be divided in two big subpopulations, en-
trepreneurs, including all individuals that have a holding in non-listed companies, and non-
entrepreneurs (including farmers, professionals, civil servants, self-employed, etc.) We
assume that there are rich and poor people in both groups, but we believe that their
distribution, and, more importantly, their processes of wealth generation are different.

Figure 5a–c show the wealth distribution for non-entrepreneurs and entrepreneurs
in three wealth intervals. Clearly, the curve of the total population is shaped by the
combination of both subpopulations in the first interval, but the non-entrepreneur pattern
is dominant only in the middle wealth interval.
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Figure 5. Assets distribution.

Figure 6a shows that the two curves cross at the value 15.52 on the abscissa (approxi-
mately e5.5 million), and the entrepreneur distribution begins to reveal a different wealth
accumulation process to non-entrepreneurs receiving a salary.

Figure 6. Assets with a value greater than mode.

This is studied in greater detail in Figure 6b with one continuous and one dotted
curves (a ratio between entrepreneurs and non-entrepreneurs). The abscissa represents
the ln of wealth. The primary ordinate, on the left, shows the values of the µ/Max
variable. The left end of the curves indicates that the value of the ratio between the average
and maximum (e100,000) values of the assets owned is 0.274 for non-entrepreneurs and
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0.44 for entrepreneurs (whose average value is e50,000 and ln(50,000) = 10.82). Figure 6
shows transitions near to the abscissa values 13, 15 and 20, which are in the range of
e500,000, e5,000,000, e500,000,000. In the proximity of these abscissa points, the slope
of the accumulated curve changes quickly. The curve that fits the values observed in the
range [10,13] does not fit the range [15,20], and the curve that fits this range does not fit the
range of big fortunes. The observed curve could be considered as the “envelope” of the
curves of different subpopulations.

This is compatible with the idea that the value of assets that workers can save is
“limited” to e0.5 million or that is a natural limit to the process of accumulation of wealth,
savings, of non-entrepeneurs.

The interval between e0.5 million and e5 million is characterized by a population that
is a mixture of professionals and entrepreneurs, the interval [5 M, 500 M) by a population
of successful entrepreneurs governed by a multiplicative process, and the interval [500 M,
10,000 M) is the range in which the accumulation process applicable to large fortunes holds.

The columns in Figure 6b shows the ratio between the number of entrepreneurs and
non-entrepreneurs in each interval. On the far left, there are 270,266 entrepreneurs and
24,733,827 non-entrepreneurs, with a ratio of 0.01. The maximum ratio value of 15.94 (right
secondary axis) is reached in the interval [10 M, 100 M) with 19,802 entrepreneurs and
1830 non-entrepreneurs. Looking at the two curves, we find that the shape of the curve is
characterized by the parameters of the subpopulation of successful entrepreneurs above
the threshold of e500 million.

Figure 7 shows the behavior of the different subgroups of the population. En-
trepreneurs own more assets than non-entrepreneurs, and this is clearly illustrated by
the shapes of their distributions which are very unalike, especially in the lower wealth
intervals. Hence, the accumulation process must be different.

Figure 7. Behavior of subpopulations and large fortunes.

Figure 7b shows that the distribution of the richest (C f ), which can be fitted to a
potential curve. It represents the 776 cases with assets between e100 million and e300
million. Using a power law, the fit is near perfect (R2 = 0.99), also accounting for the
141 people with assets between e300 million and e10,000 million (whose data are not
represented in the graph for privacy reasons).

Figure 8 illustrates the evolution of the distribution of large fortunes over the period
2015–2018, with, in all cases, very good fits and a Zipf coefficient of the order of −1.3.
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Figure 8. Evolution of the top wealth interval of over time.

3.5. Analysis of the Components of Wealth

Table 4 shows the components of the net worth of taxpayers by intervals of net worth
(2015). Each row # contains the number of taxpayers in this range. There are fewer natural
persons with positive net worth (37,006,939) than natural persons with positive assets
(37,714,346) because some are indebted. The right-hand columns, as of liabilities, express
the ratio of each variable to total assets, including in its last column financial assets.

Table 4. Distribution of net worth and its components by intervals.

% WITH RESPECT TO TOTAL ASSETS

Interval # Liabilities Indirect
Assets

Real
Estate

Current
Accounts FF.AA

Less 100 K 29,965,372 63.59 9.25 73.15 14.03 3.57
100 K to 1

M 9,629,289 11.01 8.24 70.35 15.27 6.14

1 M to 10
M 364,357 17.63 40.23 37.59 7.19 14.99

10 M to100
M 14,326 23.05 69.62 9.09 3.11 18.18

100 M to
1000 M 471 25.45 79.47 2.03 1.74 16.76

>1000 M 19 26.43 79.44 0.23 0.50 19.83

Taxpayers at the bottom of the scale (whose wealth is below the mode of e100,000)
owe 63.59% of the value of their assets, 73.15% of which are accounted for by real estate
(urban property), 9.25%, by indirect assets held in non-listed companies, another 14.03%
are held in current accounts and deposits, and 3.57% are financial assets.

We highlight three facts:

1. The growing importance of indirect assets (shares in non-listed companies) as we
move up from the bottom interval (9.25%) to large fortunes (79.44%), where it far
outweighs total financial assets (19.83%) (including shareholdings in IBEX-listed
companies).
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2. The importance of the value of immovable property in the analysis. The share of real
estate assets (first and second residences) that decreases with wealth. It represents
73.15% of the wealth of the poorest and accounts for an almost negligible fraction
(0.50%) of large fortunes.

3. Liabilities and indirect assets play an extremely important role in conducting a correct
analysis. If the variable used does not take liabilities into account, the poor appear
to be richer (inequality is attenuated). If indirect assets are not counted, the richest
appear to be poorer than they really are.

It is of the greatest importance to highlight that, when models are fitted to income or
direct assets, the presence of residuals is not a direct manifestation of model insufficiencies.
These models are not fitting the real wealth.

Analyzing its components in Figure 9 (plotting ln values), we observe that the distri-
bution of real estate assets almost perfectly fits the Pareto curve in the interval from e10,000
to e20,000,000, but differs from total assets and total wealth. It is also very clear that the
distribution of total assets, which fits a Pareto distribution nicely, is not fully explained by
real estate and financial assets, that is, these assets do not suffice to explain wealth.

Figure 9. Distribution of the components of wealth.

Figure 10 shows that, globally, a gamma distribution provides a correct fit. However,
it is not a matter of fitting empirical data to a curve: this problem has been solved.
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Figure 10. Cullen and Frey graph.

3.6. Characterization of the Nature of the Underlying Processes

In the light of this analysis, we describe some characteristics of the underlying eco-
nomic processes. Table 5 shows the number of individuals, range, mean and standard
deviation of the population subgroups. Entrepreneurs contains the population with in-
direct assets, including minors. For reasons of privacy regarding the biggest fortunes in
Spain, we use the notation a ∗ 10,000 M with 10 > a > 1.

Table 5. Parameters of the subpopulation distributions.

# Range µ σ

Total Population 59,733,414 [0, 10,000 M]
WITHOUT

ASSETS C0 22,019,068 [0, 0] 0 0

Minors without assets 3,128,625 [0, 0]
Adults without assets 18,890,443 [0, 10,000 M]

ASSET OWNERS <
0 4,532,569

ASSET OWNERS Ca = Cn + C f 37,714,346 [0, a ∗ 10,000 M]
Minors with assets Cp 4,072,002 [0;130 M] 5 165
Adults with assets 34,585,721 [[0, a ∗ 10,000 M] 159 4,318,838

Non-entrepreneurs Cn 35,256,160 [0, 10,000 M] 98,974 217
Entrepreneurs Ce 1,458,186 [0;100 M] 890 3,031,214

Big fortunes (>100 M) C f 917 [100 M, a ∗ 10,000
M] 318,213,094 787,168,132

Entrepreneurs 863 [100 M, a ∗ 10,000
M] 314,059,377 785,624,254

Other cases 44 [100 M, a ∗ 10,000
M] 512,925,903 857,383,064

Generation of Additive and Multiplicative Effects

We explored the idea put forward by Limpert et al. [42], studying the mechanisms that
induce lognormal distributions and the principles of additive and multiplicative effects.
They used the example of an experiment with two ordinary dice. The addition of the two
numbers leads to values from 2 to 12 with a mean of 7. Total range can be expressed as
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7± 5. The multiplication of the two numbers produces a skewed distribution with a range
from 1 to 36. The range in this case can be expressed as (x/c, x ∗ c). In this specific case we
obtain c = 6 and x = 6. In this case, symmetry has shifted to the multiplicative level, in a
distribution with mean µ = 12.25. They illustrated this point using natural models based
on Galton’s quincunx. In the first case, they used rows of equilateral triangles whose edges
lay at x + c and x − c from the central vertex to get normal distributions with additive
symmetry and a variant of quincunx with scalene triangles with edges at distances x ∗ c
and x/c to get lognormal distributions [56].

We took up this idea to investigate the uniformity of the wealth creation process in each
interval of wealth. Each interval, i, except the first [0, 10], has endpoints [10j, 10j+1] with j ∈
{1, 2, · · · , 9}. If, following Gibrat’s ideas, the distribution happens to be correctly described
by a lognormal, we could affirm that it reflects an underlying multiplicative process.

We know that:

1. In each interval [10j, 10j+1], by construction,
xj+1∗cj+1
xj+1/cj+1

= 10j+1

10j = 10. For all the

intervals, cj+1 = (10)1/2 = 3.16, ∀j, that is, ln(3.16) = 1.15.
2. If the underlying process is multiplicative, with the proposed intervals [10j, 10j+1], it

holds that there is a point xj+1, in the interval

xj+1 ∗ cj+1 = 10j+1

xj+1

cj+1
= 10j

and, therefore,
xj+1 = 10(2j+1)/2, ∀j. (6)

If we compare the real value for both subpopulations, we would observe any differ-
ence with respect to the situation where the accumulative effect holds. We use for this
observed value the notation y:

ye =
10(2j+1)/2

µentrepreneurs
, (7)

and

yn =
10(2j+1)/2

µnon−entrepreneurs
. (8)

In Table 6, the columns containing the values of the group of entrepreneurs and non-
entrepreneurs show the values of µ, σ and their ratio in the intervals [10j, 10j+1) from j = 0
to j = 9. For these groups, the ln of c = µ/σ in each case and the excess with respect to the
ideal behavior (1.15) of the multiplicative symmetry are shown in the right-hand column.

Figure 11 contains three graphics. In all of them we represent in abscissa the ln of assets.
In the upper left corner, we show the distribution of the ratio (µ/σ) for entrepreneurs,
non-entrepreneurs and total population. In the lower part the graphic shows the ratio
ln(µ)/ln(σ).

In the right side we express the difference with respect to the theoretical value of 1.15,
that in our construction of the intervals of wealth, is the expression of a multiplicative
process, that appears as a log normal distribution. We observe a symmetry that is expressed
with the double arrow in the graphic, among the lines with the values of entrepreneurs
and non-entrepreneurs.
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Table 6. Distribution by wealth intervals and subpopulations.

ENTREPRENEURS NON-ENTREPRENURS E N.E E N.E

µ σ µ
σ µ σ µ

σ
Ln() Ln() Exc. Exc.

0–1 3.34 3.01 1.11 0.02 0.10 0.20 1.09 1.70 0.06 −0.55
1–2 52 25 2.08 42 26 1.62 1.23 1.15 −0.08 0.00
2–3 569 261 2.18 450 263 1.71 1.14 1.10 0.01 0.05
3–4 4840 2543 1.90 3830 2471 1.55 1.08 1.06 0.07 0.09
4–5 54,091 27,005 2.00 53,382 25,653 2.08 1.07 1.07 0.08 0.08
5–6 364,262 225,982 1.61 199,751 156,081 1.28 1.04 1.02 0.11 0.13
6–7 2,510,687 1,780,143 1.41 1,686,501 1,100,573 1.53 1.02 1.03 0.13 0.12
7–8 22,482,106 15,811,009 1.42 16,394,325 10,320,486 1.59 1.02 1.03 0.13 0.12
8–9 206,604,515 143,069,745 1.44 158,398,773 86,480,258 1.83 1.02 1.03 0.13 0.12
9–10 3,233,259,800 2,871,975,594 1.13 2,286,954,185 732,488,355 3.12 1.01 1.06 0.14 0.09

Figure 11. Analysis of the subpopulations in ranges of order 10,000.

In this graphic we can see that, over the intervals, there is an excess for total population
with respect to the expected behavior of a multiplicative process.

We find that, throughout the region covered by Pareto’s law (on the right-hand side
of the mode) and even up to e10,000 on the left-hand side in the region of the 3rd to 4th
deciles, it holds that the value ln( µ

σ ) is similar to the theoretical value of multiplicative
accumulation (1.15). The excess with respect to the 1.15 value has an asymptotical behavior
toward an excess of 0.1. We can see that this effect is generated by the mixture of two
subpopulations with a symmetrical behavior with respect to the asymptotic and ideal value
of 1.15.

There is a zone, defined by the process of accumulation of entrepreneurs that can
be fitted with precision to a lognormal, but the upper wealth interval, big fortunes, is
characterized by a different process of wealth accumulation, inheritances and marriages.

In Figure 12, we develop the idea expressed in Equations (6)–(8). We interpret that the
observed values of µ, greater that the values that should be expected in a multiplicative
process, are the expression of the coexistence of one multiplicative process of accumulation
of wealth with another that should be observed in absence of non-entrepreneurs, more
similar to a Pareto’s distribution.
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Figure 12. Interpretation of Equation (6)–(8).

Table 7 includes the distribution of the number of these groups and their evolution
over the time.

Table 7. Distributions of entrepreneurs by wealth interval over the time.

100 K < Actives < 1 M 1 M < Actives < 100 M 100 M < Actives < 500 M 1500 M < Actives < 15 KM

Year Entrep. N-Entrep. Entrep. N-Entrep. Entrep. N-Entrep. Entrep. N-Entrep.

2015 1,143,143 11,151,678 324,620 193,889 763 15 82 3
2016 1,183,178 11,330,440 333,804 206,028 796 19 92 1
2017 1,176,698 11,970,874 363,025 276,286 822 22 102 2
2018 1,192,844 11,225,120 375,442 281,007 877 20 99 10

It is clear that the regularity observed for the total population emerges from the
mixture of two subpopulations but it is the sum of two regularities.

Table 8 shows the values obtained with (7) and (8) obtained to investigate if it is the
case that there is a subjacent multiplicative process, using in this case the position of the
mean in each interval of wealth.

Table 8. Deviations with respect to multiplicative process of the mean.

Interval F = (2j + 1)/2 10F µ (Entrepreneurs) ye µ (Non-Ent.) yn

0–1 0.5 3.16 3 1.05 4 1.26
1–2 1.5 31.62 52 0.61 42 1.33
2–3 2.5 316 569 0.56 450 1.42
3–4 3.5 3162 4840 0.65 3830 1.21
4–5 4.5 31.623 54,091 0.58 53,382 1.69
5–6 5.5 316,228 364,262 0.87 199,751 0.63
6–7 6.5 3,162,278 22,482,106 1.26 1,686,501 0.53
7–8 7.5 31,622,777 22,482,106 1.41 16,394,325 0.52
8–9 8.5 316,227,766 206,604,515 1.53 158,398,773 0.50
9–10 9.5 3,162,277,660 3,233,249,800 0.98 2,286,954,185 0.72

Figure 13 shows the ratio between the theorical µ and ŷ observed for each interval
and subpopulation. For example, the value 1.69 in the interval [104, 105] expresses that the
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value of µ (e53,382) for the subpopulation of non-entrepreneurs is 1.69 times the value of
10(2∗4+1)/2, that is, e31,623.

Figure 13. Analysis by subpopulations.

The total population is composed of two subpopulations (entrepreneurs and non-
entrepreneurs) whose behavior in the graph is almost symmetric with respect to y = 1)
and almost symmetric with respect to the threshold of Pareto, but the combined effect of
the mixture of subpopulations is symmetric with respect to two axis, the ideal value of
y = 1 and the Pareto threshold chosen. The lines of tendency of both subpopulations cross
with a strange precision in O

Non-entrepreneurs save and invest in their homes or in the stock market. Until the
limit of e0.5 million in the case of Spain they outnumber the entrepreneurs. Some of them
have large fortunes, but the process of accumulation by saving and with investments in
urban property has a decreasing rate of return, and presence of non-entrepreneurs in the
right zone of the distribution is sparse.

In the interval between e0.5 M and e1000 M the dominant process is the activity of
entrepreneurs with a different process of accumulation of wealth, multiplicative. There is a
new change in the wealth interval of big fortunes that increase their wealth by investment,
inheritance and marriage that reflects in a Pareto distribution.

Looking at the global trendlines, without the use of microdata, the observable total
distribution of wealth can be fitted, by intervals, to two or three distributions one of them,
when a threshold is reached, a Pareto distribution.

Figure 14 concludes the process initiated in Figure 2. There are three curves: total assets
in the middle and indirect assets on the right and liabilities in the left. The methodology
explained in Section 2 has found that indirect wealth, the value of the non-listed companies
owned by entrepreneurs, accounts a 11.08% of the total wealth in Spain.

Studies that do not include indirect wealth, the wealth accumulated in non-listed
companies or use the income declared in tax form clearly does not reflect the reality.
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Figure 14. Analysis by subpopulations.

We have proved that there are two wealth accumulation processes—one for non-
entrepreneurs (savings) and another for entrepreneurs (investments), the second is multi-
plicative.

There are five subpopulations, and the shares can be calculated from public statistics.
There are two wealth accumulation processes (saving and investment). The evolution of
the accumulation process can be studied using Equation (8). We suggest that this strategy
could be used to fit data from sources with different granularity.

4. Conclusions

We have shown that:

1. The best option for analyzing wealth distribution regularities and studying inequality
is total assets, including direct and indirect assets, because it uses more relevant data
for accurately studying entrepreneur activity. The choice between the two available
options of studying positive values or positive and negative values has to be made
considering the objectives of the study and the availability of microdata on mortgages.

2. Analyzing the Spanish population with a wealth distribution in the range [0, 1010],
we have found that the best threshold for Pareto analysis is at the point 105 and the
best binning is 104.

3. We have identified five subpopulations with the following population shares: C0
(without assets) accounts for 36.86%. Owner of assets is a mixture of four subpopula-
tions, minors, non-entrepreneurs and entrepreneurs and big fortunes.

4. We have identified two types of accumulative processes (savings) and (investments),
where the region of transition between the processes is 5.5× 107. The process of
generation of big fortunes is a mixture of both.

5. The distribution of the subpopulations with assets in the Pareto zone can be fitted to
lognormal curves, but the process of accumulation proposed by Gibrat is clearer for
entrepreneurs. Within the population that work for a salary, wealth accumulation
is attenuated by the payment of mortgages. Table 4 shows that, on average, 73.15%
of the value of assets owned by people that work for a salary takes the form of real
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estate, that is, their homes, where liabilities (mostly mortgages) account for 63.59% of
total assets. Their wealth accumulation is limited by interest payments and is, in some
cases, driven by the increase of the property values. There is a huge difference with
the average “private” liabilities of entrepreneurs (with total assets ranging from e100
K to e1 M), which are less affected by interest rates.

6. The wealth accumulation process is different for large fortunes, where it is relevant
the wealth accumulated as shareholdings in non-listed companies.

7. Wealth models should consider that: (a) the subpopulation of minors and donees of
wealth is distributed so as to reflect the wealth of the donors (and has a lognormal
distribution), (b) the population of entrepreneurs (with corporate assets) should be dif-
ferentiated from the population of employees and professionals (non entrepreneurs),
which behave differently, and aggregate behavior with a level of multiplicative sym-
metry emerges only as a result of the mixture of these two populations.

8. We have explained the difference observed in empirical studies with respect to the
law of Pareto by the effect in the wealth distribution of two processes of accumulation
of wealth, one of them stationary and other characteristics of entrepreneurs that
changes within each society with different uses of technology and with the growing
importance of financial activities.
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