Model-Based Design Approach to Improve Performance Characteristics of Hydrostatic Bearing Using Multivariable Optimization
Abstract
:1. Introduction
2. Mathematical Model
3. Proposed Control Strategy
3.1. Sliding Mode Control
3.2. Feedforward Control
3.3. Performance Criteria
3.4. Particle Swarm Optimization
4. Results and Discussion
4.1. Influence of Varying External Load
4.2. Influence of Viscosity
4.3. Influence of Varying Clearance Gap
4.4. Influence of Variable Spindle Speed
4.5. Load Carrying Capacity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Symbols
Length for bearing (m) | |
Diameter for Bearing (m) | |
Bearing clearance (m) | |
Oil film thickness (m) | |
Shaft mass (Kg) | |
Pressure of recess (Pa) | |
Supply Pressure (Pa) | |
Radius of shaft (m) | |
Shaft surface Velocity (m/s) | |
Density of Oil ) | |
Eccentricity ratio | |
Bulk modulus of oil (Ns/m) | |
Viscosity of oil (Pa.s) | |
Servo valve discharge efficient (m) | |
Area gradient of servo valve π (m) | |
Servo valve displacement (m) | |
Recess width (m) | |
Land width (m) | |
Recess length (m) | |
Land length (m) | |
Pressure ratio | |
Damping factor | |
Proportional constant | |
Natural frequency (Hz) | |
Spool displacement (m) | |
Rotational speed (RPM) |
References
- Savin, L.; Kornaev, A.; Polyakov, R.; Babin, A. Tribomechatronics as a field of study. In Proceedings of the BALTTRIB’2019: Proceedings of X International Scientific Conference, Vytautas Magnus University, Agriculture Academy, Kaunas, Lithuania, 14–16 November 2019; pp. 138–144. [Google Scholar]
- Kang, Y.; Peng, D.-X.; Hung, Y.-H.; Hu, S.-Y.; Lin, C.-S. Design for static stiffness of hydrostatic bearings: Double-action variable compensation of membrane-type restrictors and self-compensation. Ind. Lubr. Tribol. 2014, 66, 322–334. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, D.-W.; Hu, S.-Y.; Hung, Y.-H.; Peng, D.-X.; Chen, S.-K. Design for static stiffness of hydrostatic bearings: Double-action variable compensation of spool-type restrictors. Ind. Lubr. Tribol. 2014, 66, 83–99. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma Satish, C. Magneto-hydrostatic lubrication of thrust bearings considering different configurations of recess. Ind. Lubr. Tribol. 2019, 71, 915–923. [Google Scholar] [CrossRef]
- Liu, Z.; Pan, W.; Lu, C.; Zhang, Y. Numerical analysis on the static performance of a new piezoelectric membrane restrictor. Ind. Lubr. Tribol. 2016, 68, 521–529. [Google Scholar] [CrossRef]
- Salazar, J.G.; Santos, I.F. Active tilting-pad journal bearings supporting flexible rotors: Part I—The hybrid lubrication. Tribol. Int. 2017, 107, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Salazar, J.G.; Santos, I.F. Active tilting-pad journal bearings supporting flexible rotors: Part II–The model-based feedback-controlled lubrication. Tribol. Int. 2017, 107, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Yu, X.; Zheng, X.; Qu, H.; Yuan, T.; Li, D. Influence of recess shape on comprehensive lubrication performance of high speed and heavy load hydrostatic thrust bearing. Ind. Lubr. Tribol. 2019, 71, 301–308. [Google Scholar] [CrossRef]
- Kumar, V.; Shah, V.A.; Narwat, K.; Sharma, S.C. Dynamic Performance of an Externally Pressurized Porous Thrust Bearing Employing Different Pocket Shape. Tribol. Online 2020, 15, 380–387. [Google Scholar] [CrossRef]
- Rehman, W.U.; Jiang, G.; Wang, Y.; Iqbal, N.; Rehman, S.U.; Bibi, S.; Elahi, H. A new type of aerostatic thrust bearing controlled by high-speed pneumatic valve and a novel pressure transducer. Int. J. Automot. Mech. Eng. 2019, 16, 7430–7446. [Google Scholar]
- Babin, A.; Kornaev, A.; Rodichev, A.; Savin, L. Active thrust fluid-film bearings: Theoretical and experimental studies. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 234, 261–273. [Google Scholar] [CrossRef]
- Eberhardt, C.; Kurth, R.; Kraft, C.; Schwarze, H.; Päßler, T.; Bergmann, M.; Putz, M. Experimental Validation of an Intelligent Hybrid Plain Bearing Active Control. J. Tribol. 2020, 143. [Google Scholar] [CrossRef]
- Ur Rehman, W.; Guiyun, J.; Yuan Xin, L.; Yongqin, W.; Iqbal, N.; UrRehman, S.; Bibi, S. Linear extended state observer-based control of active lubrication for active hydrostatic journal bearing by monitoring bearing clearance. Ind. Lubr. Tribol. 2019, 71, 869–884. [Google Scholar] [CrossRef]
- Rehman, W.U.R.; Luo, Y.; Wang, Y.; Jiang, G.; Iqbal, N.; Rehman, S.U.R.; Bibi, S. Fuzzy logic–based intelligent control for hydrostatic journal bearing. Meas. Control 2019, 52, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Urreta, H.; Aguirre, G.; Kuzhir, P.; Lopez de Lacalle, L.N. Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools. J. Intell. Mater. Syst. Struct. 2019, 30, 2257–2271. [Google Scholar] [CrossRef] [Green Version]
- Sha, Y.; Lu, C.; Pan, W.; Chen, S.; Ge, P. Nonlinear Control System Design for Active Lubrication of Hydrostatic Thrust Bearing. Coatings 2020, 10, 426. [Google Scholar] [CrossRef]
- Lai, T.-H.; Lin, S.-C. A Simulation Study for the Design of Membrane Restrictor in an Opposed-Pad Hydrostatic Bearing to Achieve High Static Stiffness. Lubricants 2018, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Noshadi, A.; Zolfagharian, A. Unbalance and Harmonic disturbance attenuation of a flexible shaft with active magnetic bearings. Mech. Syst. Signal Process. 2019, 129, 614–628. [Google Scholar] [CrossRef]
- Xu, S.; Su, Z.; Wu, J. Analysis on sealing performance of VL seals based on mixed lubrication theory. Ind. Lubr. Tribol. 2019, 71. [Google Scholar] [CrossRef]
- Bompos, D.A.; Nikolakopoulos, P.G. Rotordynamic Analysis of a Shaft Using Magnetorheological and Nanomagnetorheological Fluid Journal Bearings. Tribol. Trans. 2016, 59, 108–118. [Google Scholar] [CrossRef]
- Lampaert, S.G.E.; Spronck, J.W.; van Ostayen, R.A.J. Load and stiffness of a planar ferrofluid pocket bearing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 232, 14–25. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Li, M.; Bai, H.; Meng, G.; Zhang, H. Dynamic characteristics of magnetorheological fluid lubricated journal bearing and its application to rotor vibration control. J. Vibroeng. 2015, 17, 1912–1928. [Google Scholar]
- Lampaert, S.G.E.; van Ostayen, R.A.J. Experimental results on a hydrostatic bearing lubricated with a magnetorheological fluid. Curr. Appl. Phys. 2019, 19, 1441–1448. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, S.C. Dynamic characteristics of compensated hydrostatic thrust pad bearing subjected to external transverse magnetic field. Acta Mech. 2018, 229, 1251–1274. [Google Scholar] [CrossRef]
- Morosi, S.; Santos, I.F. Active lubrication applied to radial gas journal bearings. Part 1: Modeling. Tribol. Int. 2011, 44, 1949–1958. [Google Scholar] [CrossRef]
- Pierart, F.G.; Santos, I.F. Active lubrication applied to radial gas journal bearings. Part 2: Modelling improvement and experimental validation. Tribol. Int. 2016, 96, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, H.; Arii, S.; Kami, Y.; Goto, K.; Yamamoto, T.; Kawamoto, M. Active inherent restrictor for air-bearing spindles. Precis. Eng. 1996, 19, 141–147. [Google Scholar] [CrossRef]
- Rehman, W.U.; Jiang, G.; Luo, Y.; Wang, Y.; Khan, W.; Rehman, S.U.; Iqbal, N. Control of active lubrication for hydrostatic journal bearing by monitoring bearing clearance. Adv. Mech. Eng. 2018, 10, 1687814018768142. [Google Scholar] [CrossRef] [Green Version]
- Santos, I.F.; Scalabrin, A. Control system design for active lubrication with theoretical and experimental examples. J. Eng. Gas Turbines Power 2003, 125, 75–80. [Google Scholar] [CrossRef]
- Shutin, D.V.; Babin, A.Y.; Savin, L.A. Comparison of the dynamic characteristics of active and passive hybrid bearings. Int. J. Mechan. Mechatr. Eng 2016, 10, 1399–1405. [Google Scholar]
- Yang, X.-G.; Wang, Y.-Q.; Jiang, G.-Y.; Yan, X.-C.; Luo, Y.-X. Dynamic characteristics of hydrostatic active journal bearing of four oil recesses. Tribol. Trans. 2015, 58, 7–17. [Google Scholar] [CrossRef]
- KŐVÁRI, A. Mathematical Model And Simulation of Electrohydraulic Servo Systems. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks, Xianning, China, 16–18 April 2011. [Google Scholar]
- Rehman, W.U.; Wang, S.; Wang, X.; Fan, L.; Shah, K.A. Motion synchronization in a dual redundant HA/EHA system by using a hybrid integrated intelligent control design. Chin. J. Aeronaut. 2016, 29, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Eker, İ. Second-order sliding mode control with experimental application. ISA Trans. 2010, 49, 394–405. [Google Scholar] [CrossRef]
- Brosilow, C.; Joseph, B. Techniques of Model-Based Control; Prentice Hall Professional: Kent, OH, USA, 2002. [Google Scholar]
- Liu, L.; Tian, S.; Xue, D.; Zhang, T.; Chen, Y. Industrial feedforward control technology: A review. J. Intell. Manuf. 2019, 30, 2819–2833. [Google Scholar] [CrossRef]
- Soleimani Amiri, M.; Ramli, R.; Ibrahim, M.F.; Abd Wahab, D.; Aliman, N. Adaptive Particle Swarm Optimization of PID Gain Tuning for Lower-Limb Human Exoskeleton in Virtual Environment. Mathematics 2020, 8, 2040. [Google Scholar] [CrossRef]
- Manikantan, R.; Chakraborty, S.; Uchida, T.K.; Vyasarayani, C. Parameter Identification in Nonlinear Mechanical Systems with Noisy Partial State Measurement Using PID-Controller Penalty Functions. Mathematics 2020, 8, 1084. [Google Scholar] [CrossRef]
- O’Donoghue, J.; Rowe, W. Hydrostatic journal bearing (exact procedure). Tribology 1968, 1, 230–236. [Google Scholar] [CrossRef]
- Metman, K.; Muijderman, E.; Van Heijningen, G.; Halemane, D. Load capacity of multi-recess hydrostatic journal bearings at high eccentricities. Tribol. Int. 1986, 19, 29–34. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, W.U.; Wang, X.; Cheng, Y.; Chen, Y.; Shahzad, H.; Chai, H.; Abbas, K.; Ullah, Z.; Kanwal, M. Model-Based Design Approach to Improve Performance Characteristics of Hydrostatic Bearing Using Multivariable Optimization. Mathematics 2021, 9, 388. https://doi.org/10.3390/math9040388
Rehman WU, Wang X, Cheng Y, Chen Y, Shahzad H, Chai H, Abbas K, Ullah Z, Kanwal M. Model-Based Design Approach to Improve Performance Characteristics of Hydrostatic Bearing Using Multivariable Optimization. Mathematics. 2021; 9(4):388. https://doi.org/10.3390/math9040388
Chicago/Turabian StyleRehman, Waheed Ur, Xinhua Wang, Yiqi Cheng, Yingchun Chen, Hasan Shahzad, Hui Chai, Kamil Abbas, Zia Ullah, and Marya Kanwal. 2021. "Model-Based Design Approach to Improve Performance Characteristics of Hydrostatic Bearing Using Multivariable Optimization" Mathematics 9, no. 4: 388. https://doi.org/10.3390/math9040388
APA StyleRehman, W. U., Wang, X., Cheng, Y., Chen, Y., Shahzad, H., Chai, H., Abbas, K., Ullah, Z., & Kanwal, M. (2021). Model-Based Design Approach to Improve Performance Characteristics of Hydrostatic Bearing Using Multivariable Optimization. Mathematics, 9(4), 388. https://doi.org/10.3390/math9040388