On the Multistage Differential Transformation Method for Analyzing Damping Duffing Oscillator and Its Applications to Plasma Physics
Abstract
:1. Introduction
2. Methodology
2.1. Differential Transformation Method (DTM)
2.2. Modified Differential Transformation Method (MDTM)
2.3. Multistage Differential Transformation Method (MSDTM)
2.4. Example
2.4.1. MDTM
2.4.2. MSDTM
3. Application in Plasma Physics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aljahdaly, N.H.; Alqudah, M.A. Analytical solutions of a modified predator-prey model through a new ecological interaction. Comp. Math. Meth. Med. 2019, 2019, 4849393. [Google Scholar] [CrossRef]
- Salas, A.H.; El-Tantawy, S.A.; Aljahdaly, N.H. An Exact Solution to the Quadratic Damping Strong Nonlinearity Duffing Oscillator. Math. Probl. Eng. 2021, 2021, 8875589. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; Seadawy, A.R.; Albarakati, W.A. Applications of dispersive analytical wave solutions of nonlinear seventh order Lax and Kaup-Kupershmidt dynamical wave equations. Results Phys. 2019, 14, 102372. [Google Scholar] [CrossRef]
- Hammad, M.A.; Salas, A.H.; El-Tantawy, S.A. New method for solving strong conservative odd parity nonlinear oscillators: Applications to plasma physics and rigid rotator. AIP Adv. 2020, 10, 085001. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Partial Differential Equations and Solitary Waves Theory; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Alqudah, M.A.; Aljahdaly, N.H. Global stability and numerical simulation of a mathematical model of stem cells therapy of HIV-1 infection. J. Comp. Sci. 2020, 45, 101176. [Google Scholar] [CrossRef]
- Aljahdaly, N.H. Some applications of the modified (G′/G2)-expansion method in mathematical physics. Res. Phys. 2019, 13, 102272. [Google Scholar] [CrossRef]
- Do, Y.; Jang, B. Enhanced Multistage Differential Transform Method: Application to the Population Models. Abstr. Appl. Anal. 2012, 2012, 253890. [Google Scholar] [CrossRef] [Green Version]
- Ashi, H.A.; Aljahdaly, N.H. Breather and solitons waves in optical fibers via exponential time differencing method. Commun. Nonlinear Sci. Numer. Simul. 2020, 85, 105237. [Google Scholar] [CrossRef]
- Aljahdaly, N.H. New application through multistage differential transform method. AIP Conf Proc. 2020, 2293, 420025. [Google Scholar]
- Nourazar, S.; Mirzabeigy, A. Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method. Sci. Iran. B 2013, 20, 364–368. [Google Scholar]
- Gókdoğan, A.; Merdan, M.; Yildirim, A. A multistage differential transformation method for approximate solution of Hantavirus infection model. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1–8. [Google Scholar] [CrossRef]
- Hosen, M.A.; Chowdhury MS, H. Analytical Approximate Solutions for the Helmholtz-Duffing Oscillator. ARPN J. Eng. App. Sci. 2015, 10, 17363–17369. [Google Scholar]
- Geng, Y. Exact solutions for the quadratic mixed-parity Helmholtz—Duffing oscillator by bifurcation theory of dynamical systems. Chaos Solitons Fractals 2015, 81, 68–77. [Google Scholar] [CrossRef]
- Metter, E. Dynamic buckling. In Handbook of Engineering Mechanics; Flügge, W., Ed.; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Bikdash, M.; Balachandran, B.; Nayfeh, A. Melnikov analysis for a ship with a general roll-damping model. Nonlinear Dyn. 1994, 6, 101–124. [Google Scholar]
- Ajjarapu, V.; Lee, B. Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. Trans. Power Syst. 1992, 7, 424–431. [Google Scholar] [CrossRef]
- Kang, I.S.; Leal, L.G. Bubble dynamics in time-periodic straining flows. J. Fluid Mech. 1990, 218, 41–69. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Luo, X.; Zeng, S. Noise-triggered escapes in Helmholtz Oscillator. Mod. Phys. Lett. B 2014, 28, 1450047. [Google Scholar] [CrossRef]
- Almendral, J.A.; Seoane, J.M.; Sanjúan, M.A.F. Nonlinear dynamics of the Helmholtz oscillator. Recent Res. Dev. Sound Vib. 2004, 2, 115–150. [Google Scholar]
- Nayfeth, N.; Mook, D.T. Non-Linear Oscillations; John Wiley: New York, NY, USA, 1973. [Google Scholar]
- Almendral, J.A.; Sanjúan, M.A.F. Integrability and Symmetries for the Helmholtz Oscillator with Friction. J. Phys. A Math. Gen. 2003, 36, 695–710. [Google Scholar] [CrossRef]
- Morfa, S.; Comte, J.C. A nonlinear oscillators network devoted to image processing. Int. J. Bifurc. Chaos 2009, 14, 1385–1394. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, J.; Li, L. Exact explicit traveling wave solutions for two nonlinear Schrodinger type equatios. Appl. Math. Comput. 2010, 217, 1509–1521. [Google Scholar]
- Younesian, D.; Askari, H.; Saadatnia, Z.; Yazdi, M.K. Free vibration analysis of strongly nonlinear generalized Duffing oscillators using He’s variational approach & homotopy perturbation method. Nonlinear Sci. Lett. A 2011, 2, 11–16. [Google Scholar]
- Mickens, R.E. Mathematical and numerical study of the Duffing-harmonic oscillator. J. Sound Vib. 2001, 244, 563–567. [Google Scholar] [CrossRef]
- Ganji, D.D.; Gorji, M.; Soleimani, S.; Esmaeilpour, M. Solution of nonlinear cubic-quintic Duffing oscillators using He’s energy balance method. J. Zhejiang Univ. Sci. A 2009, 10, 1263–1268. [Google Scholar] [CrossRef]
- Yazdi, M.K.; Mirzabeigy, A.; Abdollahi, H. Nonlinear oscillators with non-polynomial and discontinuous elastic restoring forces. Nonlinear Sci. Lett. A 2012, 3, 48–53. [Google Scholar]
- Khan, Y.; Akbarzade, M.; Kargar, A. Coupling of homotopy and the variational approach for a conservative oscillator with strong oddnonlinearity. Sci. Iran. 2012, 19, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.S.; Sun, W.P. Construction of approximate analytical solutions to strongly nonlinear damped oscillators. Arch. Appl. Mech. 2011, 81, 1017–1030. [Google Scholar] [CrossRef]
- Elias-Zungia, A. Analytical solution of the damped Helmholtz–Duffing equation. Appl. Math. Lett. 2012, 25, 2349–2353. [Google Scholar] [CrossRef] [Green Version]
- Elías-Zú niga, A. Exact solution of the quadratic mixed-parity Helmholtz–Duffing oscillator. Appl. Math. Comput. 2012, 218, 7590–7594. [Google Scholar]
- Johannesen, K. The Duffing oscillator with damping. Eur. J. Phys. 2015, 36, 065020. [Google Scholar] [CrossRef]
- Johannesen, K. The Duffing Oscillator with Damping for a Softening Potential. Int. J. Appl. Comput. Math. 2017, 3, 3805. [Google Scholar] [CrossRef]
- Salas, A.H.; El-Tantawy, S.A. On the approximate solutions to a damped harmonic oscillator with higher-order nonlinearities and its application to plasma physics: Semi-analytical solution and moving boundary method. Eur. Phys. J. Plus 2020, 135, 1–17. [Google Scholar] [CrossRef]
- Alama, M.S.; Masudb, M.M.; Mamun, A.A. Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas. Chin. Phys. B 2013, 22, 115202. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Wazwaz, A.M. Anatomy of modified Korteweg–de Vries equation for studying the modulated envelope structures in non-Maxwellian dusty plasmas: Freak waves and dark soliton collisions. Phys. Plasmas 2018, 25, 092105. [Google Scholar] [CrossRef]
- El-Tantawy, S.A. Nonlinear dynamics of soliton collisions in electronegative plasmas: The phase shifts of the planar KdV-and mkdV-soliton collisions. Chaos Solitons Fractals 2016, 93, 162–168. [Google Scholar] [CrossRef]
Original Function | Transformed Function |
---|---|
(c is constant) | |
Time Range | (MDTM3) | (MDTM4) | (MSDTM) | |
---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljahdaly, N.H.; El-Tantawy, S.A. On the Multistage Differential Transformation Method for Analyzing Damping Duffing Oscillator and Its Applications to Plasma Physics. Mathematics 2021, 9, 432. https://doi.org/10.3390/math9040432
Aljahdaly NH, El-Tantawy SA. On the Multistage Differential Transformation Method for Analyzing Damping Duffing Oscillator and Its Applications to Plasma Physics. Mathematics. 2021; 9(4):432. https://doi.org/10.3390/math9040432
Chicago/Turabian StyleAljahdaly, Noufe H., and S. A. El-Tantawy. 2021. "On the Multistage Differential Transformation Method for Analyzing Damping Duffing Oscillator and Its Applications to Plasma Physics" Mathematics 9, no. 4: 432. https://doi.org/10.3390/math9040432
APA StyleAljahdaly, N. H., & El-Tantawy, S. A. (2021). On the Multistage Differential Transformation Method for Analyzing Damping Duffing Oscillator and Its Applications to Plasma Physics. Mathematics, 9(4), 432. https://doi.org/10.3390/math9040432