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Abstract

:

Gene differential expression consists of the study of the possible association between the gene expression, evaluated using different types of data as DNA microarray or RNA-Seq technologies, and the phenotype. This can be performed marginally for each gene (differential gene expression) or using a gene set collection (gene set analysis). A previous (marginal) per-gene analysis of differential expression is usually performed in order to obtain a set of significant genes or marginal p-values used later in the study of association between phenotype and gene expression. This paper proposes the use of methods of spatial statistics for testing gene set differential expression analysis using paired samples of RNA-Seq counts. This approach is not based on a previous per-gene differential expression analysis. Instead, we compare the paired counts within each sample/control using a binomial test. Each pair per gene will produce a p-value so gene expression profile is transformed into a vector of p-values which will be considered as an event belonging to a point pattern. This would be the first component of a bivariate point pattern. The second component is generated by applying two different randomization distributions to the correspondence between samples and treatment. The self-contained null hypothesis considered in gene set analysis can be formulated in terms of the associated point pattern as a random labeling of the considered bivariate point pattern. The gene sets were defined by the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The proposed methodology was tested in four RNA-Seq datasets of colorectal cancer (CRC) patients and the results were contrasted with those obtained using the edgeR-GOseq pipeline. The proposed methodology has proved to be consistent at the biological and statistical level, in particular using Cuzick and Edwards test with one realization of the second component and between-pair distribution.
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1. Introduction


Global gene expression (transcriptome) can be quantified using DNA microarrays [1] and RNA sequencing (RNA-Seq) technologies [2]. RNA-Seq is widely used to understand and describe the biological mechanisms involved in transcription observed under different experimental conditions. The statistical comparison of the means of the gene expression is known as differential gene expression. This comparison can be performed at the gene level, i.e., a marginal analysis of each gene. There are many pipelines to perform an RNA-Seq data analysis [3]. A list of differentially expressed genes is obtained, the significant genes. Usually, it is expected to find a relationship between these significant genes and the biological mechanisms that underlie the observed phenotype. This biological mechanism is controlled by a gene set. This justifies to analyze the differential expression of gene sets by considering them from the very initial step. This is called gene (enrichment) set analysis  [4]. For gene set analysis, the choice of the statistical method, the type of null hypothesis, and the gene-association measure are the most important considerations. In addition, the set of genes can be biologically defined using, among others, GO [5] and/or the KEGG Ontology (KO) [6]. GO include three categories: the first one is the biological objective to which the gene or its product contributes and is called Biological process; the second one is the biochemical activity of a gene product, called Molecular Function; the third is called Cellular Component and it refers to the place in the cell where a gene product is active [5]. On the other hand, KO includes all molecular networks in the categories of Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, Organisms Systems, Human Diseases, Brite Hierarchies and Not Included in Pathway or Brite [6].



The methods for gene set analysis can be classified, according to the null hypothesis tested, into self-contained or competitive tests [7]. The basic question can be formulated as: Is there any association between a set of genes and the phenotype? This is a very vague question. A more precise formulation is required. Different interpretations of the question are possible. In [8], they formulate the following two null hypotheses that specify the previous question in two different ways. We reproduce the corresponding null hypotheses. The competitive hypothesis is formulated as “The genes in a gene set show the same pattern of associations with the phenotype compared with the rest of the genes”. The self-contained hypothesis is formulated as “The gene set does not contain any genes whose expression levels are associated with the phenotype of interest.” We are concerned in this paper with the testing of the self-contained null hypothesis using RNA-Seq data observed under two conditions (case-control) using a paired design. A huge literature of gene set analysis exists. A large part of it was developed and implemented for microarray data and later adapted to RNA-Seq data. Good reviews can be found in [9,10]. Gene set over-representation analysis (ORA) consists of evaluating if a previously defined gene set, such as GO terms, is more represented than the others in the list of genes previously selected as differentially expressed, and if this over-representation is unlikely to be due to chance. This is used for instance by GOseq [11]. This approach assumes independent gene expressions, i.e., it starts from a marginal analysis of the gene. Nonetheless, it is well known that, when an alteration occurs, it is not an individual gene, but a gene set that is affected. To take this into account, gene set enrichment analysis (GSEA) [12,13] offers a modification over the previous methods. The GSEA method does not start from a previously selected list of genes differentially expressed, but, instead, it uses the gene set as the initial unit; an example is the SeqGSEA method [14]. However, these tools apply first a gene-level test on the original data.



An alternative is performing the analysis considering first the gene relationships and to focus directly on the gene set differential expression. This idea has been exploited by some methods previously proposed on microarray data [15]. Nevertheless, the gene set differential expression for RNA-Seq data are less studied. Some interesting examples are [16,17]. The method proposed in this paper is designed to test the self-contained hypothesis by using statistical analysis of spatial point patterns.



The study of spatial aggregation or clustering has a long history in the spatial statistics literature [18]. Nonetheless, it is, up to our knowledge, the first time in which spatial statistical methods, i.e., the Cuzick and Edwards test, the Diggle, Morris, and Morton–Jones test and the Diggle test, are applied as an effective approach for gene set analysis. The methodology is implemented in the R package OMICfpp2 available at http://www.uv.es/ayala/software/OMICfpp2_1.0.tar.gz (accessed on 25 February 2021) and https://github.com/JdMDE/OMICfpp2 (accessed on 25 February 2021).




2. Methodology


2.1. General Notation


Let us introduce the basic notation needed later. This paper is concerned with paired design and the notation is given accordingly.



Let N be the number of genes and n the number of pairs of samples. The value of N is much larger than n,   N ≫ n  . Let   x  i j k    denote the count corresponding to the i-th gene (  i = 1 , … , N  ), j-th pair (  j = 1 , … , n  ) and k the element within the pair (  k = 1 , 2  ). The total number of counts for the sample   ( j , k )  , its library size, will be denoted by    m  j k   =  ∑  i = 1  N   x  i j k    . We assume the values   x  i j k    for a given i are in the i-th row of the expression matrix in such a way that each column would be associated with a   ( j , k )   sample, so we have an   N × 2 n   matrix. If we consider the random expression matrix instead of the observed one, then their rows would be dependent random vectors (the expressions of the genes are dependent), and the columns would be independent random vectors (corresponding to different individuals).



We are interested in a gene set collection    S 1  , … ,  S T   , where    S t  ⊂ G   for   t = 1 , … , T   and   G = { 1 , … , N }   is the universe of genes. These gene sets do not need to be necessarily disjoint. Given the observed expression matrix  x  and a gene set   S t  , we can extract the matrix corresponding to the rows in   S t  , i.e.,   x  S t   . Let   ϕ (  S t  )   be the set composed by the columns of   x  S t   ,   ϕ  (  S t  )  ⊂   R    |   S t   |     . This set   ϕ (  S t  )   can be considered as a point pattern (it will be called sample  point  pattern) where the corresponding point process could be denoted as   Φ (  S t  )  . A formal presentation of point process theory can be found in [19].



For the   ( j , k )   sample, we have a phenotypic covariable,   y  j k    (  ∈ R  ), for instance an experimental factor indicating case or control. The previous point pattern,   ϕ (  S t  )  , and this covariable can be put together in a so-called marked point pattern.



This simple idea is used later to connect two different topics: statistical analysis of marked point patterns and gene set analysis.




2.2. Paired RNA-Seq Samples


The most common setup consists of two groups of samples to be compared. Our data are pairs of RNA-Seq counts quantifying the gene expression, i.e., the samples are grouped in pairs corresponding to two conditions observed on the same individual. We will have a binary phenotypic covariable   y  j k    where    y  j k   = 0   (respectively 1) corresponds to a control (respectively case).



A simple procedure was proposed in [20] to test the null hypothesis of no association between condition and expression. This procedure assumes that, under the null hypothesis, the random count   X  i j 1    has a binomial distribution    X  i j 1   ∼ B i   x  i j 1   +  x  i j 2   ,   m  j 1     m  j 1   +  m  j 2       , where    x  i j 1   +  x  i j 2     is the count for the i-the gene and the j-th pair. This count and the sum of library sizes,    m  j 1   +  m  j 2    , are considered given. The p-value will be calculated as the sum of the probabilities lesser or equal than the observed   x  i j 1    value and will be denoted as   p  i j   . If we have n pairs of samples, then a p-value will be observed per pair and gene so we will have    p i  =  (  p  i 1   , … ,  p  i n   )    for the i-th gene. Our original   N × 2 n   gene expression matrix is transformed in a   N × n  p-value matrix where the   ( i , j )   entry will correspond to the p-value of the j-th pair of the i-th gene. Let the observed matrix of p-values be    p ˜  0  . The corresponding random p-value matrix will be denoted    P ˜  0  . Note that the columns of the random matrix    P ˜  0   are independent but not their rows. Under the null hypotheses of no expression-phenotype association for all genes, the random p-value      P ˜   0   ( i , j )    follows approximately a uniform distribution.




2.3. Gene Set Point Pattern


We are interested in the study of the differential expression between conditions for a given (previously defined) gene set and   G = { 1 , … , N }   is the universe of genes. The i-th gene will have its expression profile in the i-th row of the expression matrix. Let   S = {  i 1  , … ,  i  | S |   }   a given gene set with   S ⊂ G  . Our approach will test the self-contained null hypothesis of no differential expression for the gene set. The most common approach consists of two steps. Firstly, the null hypotheses of no differential expression per each gene are tested. Secondly, the statistics (or p-values) of these (marginal) tests are aggregated ignoring later the dependencies between them. This point has to be incorporated in the analysis and we deal with it by using point processes.



Our important gene set is   S = {  i 1  , … ,  i  | S |   }  . The vector    v j  =   (  p   i 1  , j   , … ,  p   i  | S |   , j   )  ′  ∈   [ 0 , 1 ]   | S |     contains all the observed p-values for the genes in S corresponding to the j-th pair. We can consider all samples jointly in    ϕ S  =  {  v 1  , … ,  v n  }   . It is a finite set of n points contained in the unit hyper-cube    [ 0 , 1 ]   | S |   , a point pattern. Each event corresponds to a sample and each dimension of the point corresponds with a gene. As we are working with a paired design and p-values, this point pattern is a natural description of the differential expression of the gene set in both conditions. No independence between genes is assumed. Let    V 1  , … ,  V n    be a random sample of n random vectors, distributed as  V , whose corresponding observed values are    v 1  , … ,  v n   . Analogously,    ϕ S  =  {  v 1  , … ,  v n  }    is the point pattern and    Φ S  =  {  V 1  , … ,  V n  }    is the point process. In our approach, each event of the point pattern   ϕ ( S )   corresponds to a pair of samples, more precisely to the p-values of these pair of samples.




2.4. Testing Differential Expression


We are going to test the gene set differential expression by using a bivariate point process. Each realization will have two components with n points each. The first component is the point process corresponding to the p-values obtained using the original sample classification. This first component will be called cases. The second component is generated by applying a randomization to the original sample classification. The second component will be called controls.



This bivariate point process, under the null hypothesis, would be just a random labeling (with n point per component) of the union of both processes.



This random labeling hypothesis will be tested using different statistical procedures taken from the literature of spatial point processes, and they were designed in order to look for some characteristic of the joint distribution. We provide next a short description of the tests.



We consider a given gene set S. The outline of our procedure is as follows:




	
Using the original pairs, we obtain the first point pattern corresponding to the original pairs or cases,   ϕ 0  .



	
We choose a randomization distribution, between-pair or complete distribution, and a number of randomizations B to be performed.



	
Using the chosen distribution in the previous step, we generate new pairs and a new sample point pattern associated with these pairs    ϕ 1  , … ,  ϕ B   .



	
For the i-th bivariate point pattern   (  ϕ 0  ,  ϕ i  )  , it is tested if it can be considered a random labeling of the point pattern    ϕ 0  ∪  ϕ i   , and the corresponding p-value is obtained.








2.4.1. Generation of Controls


These are the randomization distributions used to generate the random points.



Between-pair (BP) distribution. The first element of each pair is maintained as the original one. The second element of each pair is obtained randomly permuting the second components of all pairs between them. We have   (  y  i , 1   ,  y  γ ( i ) , 2   )   for   i = 1 , … , n  , where  γ  is now a permutation of   ( 1 , … , n )  . The number of possible permutations is   n !  .



Complete (C) distribution. Let us choose   I = {  i 1  , … ,  i n  }   as a random subset of   { 1 , … , 2 n }  . The indices of   { 1 , … , 2 n }   not in   {  i 1  , … ,  i n  }   can be denoted   J = {  j 1  , … ,  j n  }  . A random correspondence between I and J will produce the pairs. The number of possible values is    ( 2 n ) !   n !   .




2.4.2. Statistical Tests


Cuzick and Edwards test (CET) was proposed in [21]. We have a bivariate point pattern corresponding with cases and controls. The objective is to detect spatial clustering of cases. It is assumed that their spatial distribution is not homogeneous like in our problem. It is based on distances between nearest neighbor (NN) pairs of points. Let    {  z j  }   j = 1 , … , 2 n    be the locations of the combined sample where the indices have been randomly permuted. We define for   i = 1 , . . , n  


   δ i  =     1   if     z i   is  a  case      0   if     z i   is  a  control       








and


   d i  =     1    if  the  NN  to   z i   is  a  case      0    if  the  NN  to   z i   is  a  control       











The statistic is   T =  ∑  i = 1  n   δ i   d i   , i.e., we are counting the number of cases with a case as the nearest neighbor. It is clear that large values of the statistic are associated with clusters of cases corresponding with the alternative hypothesis of a phenotype-expression  association.



Diggle, Morris, and the Morton–Jones test (DMMT). Ref. [22] was proposed within the research of a high risk around a specified point. Consider again the variables    {  δ i  }   i = 1 , … , 2 n    previously defined. Let    γ i  = P  (  δ i  = 1 )    and   γ  ( i )   , the corresponding values ordered according to the distance to the origin. Under the null hypothesis of no differential expression, the maximum likelihood estimators of the   γ  ( i )    are easily obtained by the pool-adjacent violators algorithm:     γ ^   ( i )   =  min  s ≤ i    max  t ≥ i      ∑  r = s  t   δ  ( r )     t − s + 1   .   The maximum likelihood ratio test statistic is given by    T D  = 2  ∑  i = 1   2 n    {  δ  ( i )   log    γ ^   ( i )    1 / 2   +  ( 1 −  δ  ( i )   )  log   1 −   γ ^   ( i )     1 / 2   }   .



Diggle test (DT) [23] studies the possible raised incidence of certain types of cancer near nuclear installations. The test is based on fitting a particular class of a non-homogeneous Poisson point process model to data. Let   λ ( x )   be the intensity function of    Φ 1   ( S )    under the alternative hypothesis   H 1  . We can assume that   λ ( x )   has a multiplicative decomposition as   λ  ( x ; γ )  = ρ  λ 0   ( x )  f  (   x  t  x ; θ )   , where    x  t   is the transpose of  x  and    λ 0   ( x )    would represent the spatial variation in intensity under the self-contained null hypothesis. This null intensity function could be estimated using a kernel estimator from the control sample point process    Φ 2   ( S )    of p-values. For a given realization of    Φ 2   ( S )   , i.e.,    ϕ 2   ( S )  =   {  v j  }   j = 1  n   , the kernel estimator using a Gaussian kernel is given by     λ ^  0   ( x )  =    ∑  j = 1  n  exp  {   − 1   2 h     ( x −  v j  )  t   ( x −  v j  )  }    2 π  h 2    .   The function f can be quite general. However, the following function permits an easy computation of the maximum likelihood estimator of the parameters   θ =   ( α , β )  t   :   f  ( x ; α , β )  = 1 + α exp  ( − β   x  t  x )   . Using the Gaussian kernel estimate for the function   λ 0   and the proposed f, it is easy to obtain the formulas needed to obtain the maximum pseudo likelihood estimator of   θ =   ( α , β )  t   . Note that the null hypothesis of no clustering around the origin corresponds with   α = β = 0  . In order to test this null hypothesis, we compare   D = 2 ( L  (  α ^  ,  β ^  )  − L  ( 0 , 0 )  )   with critical values of   χ 2 2  . Details can be found in [23]. We have implemented it in the n-dimensional case in our R package OMICfpp2.




2.4.3. Testing the Self-Contained Hypothesis


Under this hypothesis, the original point process,    Φ 0   ( S )   , would be a non-homogeneous Poisson point process in the hyper cube    [ 0 , 1 ]   | S |   . Note that, under the alternative hypothesis, the point process will tend to produce clustering around the origin. Many other statistical tests could be used and this could be a good line of future research. The three previous tests have been taken from an epidemiological context.



The points correspond to the p-values for the different genes in our important gene set S. If there is no gene set differential expression, then the   2 n   points are independent and identically distributed following a common unknown distribution. We preserve the original label of the point if it corresponds to an original pair or to a randomly generated pair. No differential expression means that the cases are just a random selection of n points from the total   2 n   points, i.e., the bivariate point pattern is just a random labeling of the original point set. We reformulate the testing of no gene set differential expression in that labeling has been tested in a bivariate point process.



This random labeling has been tested using a Monte Carlo test. Let us give a short description. Let   (  ϕ 0  ,  ϕ i  )   be a bivariate point pattern where its first component,   ϕ 0  , is the original point pattern and its second component,   ϕ i  , is a control. Let   t 0   be any of the three previous statistics evaluated for this bivariate point pattern. The set    ϕ 0  ∪  ϕ i    is randomly partitioned into two new sets of n points. The same statistic is evaluated for this new bivariate point pattern. We repeat the selection process B times independently obtaining the statistics    t 1  , … ,  t B   . Under the null hypothesis, any order of the vector   (  t 0  ,  t 1  , … ,  t B  )   has the same probability. The Monte Carlo p-value [24] is given by   p =   | { b : |  t b  | > |  t 0  | , b = 1 , … , B } |   B + 1    . In the experimental study,   B = 100   will be used. This Monte Carlo p-value will be used to test the self-contained null hypothesis.



The sample point pattern for cases is unique, but many sample point patterns corresponding to controls can be generated. For each bivariate point pattern generated, a Monte Carlo p-value is obtained. It is clear that the computational time is greater when more than one control sample point pattern is generated. More than one realization produces different p-values that will be aggregated using meta-analysis techniques for p-values as the Fisher’s method. It is interesting to evaluate if just one realization of controls is enough or if more than realization produces better results. This could be evaluated in Section 3.





2.5. Data


A total of four RNA-Seq data sets with paired (tumor/adjacent normal tissue) samples from CRC patients have been analyzed. The first three data sets correspond to the Bioprojects PRJNA411984 [25], PRJNA413956 [26] and PRJNA218851 [27] with 2, 7, and 18 raw data pairs, respectively. The fourth data set include 50 pairs of preprocessed data (count files) from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/ (accessed on 26 January 2021)).



We are going to evaluate if just one or multiple realizations are needed to generate the second component of the bivariate point process using the TCGA dataset. The gene sets were defined using GO terms and KEGG ontology. The GO gene set collection uses only the biological process category and gene sets with ten or more genes in the set, resulting in a total of 2815. The KEGG gene set collections have been entirely used and there are a total of 340.



The TCGA dataset has been analyzed using the three tests proposed: CET, DMMT, and DT. One realization (OR) of the between-pair (BP) randomization distribution has been used to generate the second component of bivariate point process. The random labeling hypothesis has been tested using 100 simulations.



The four datasets were analyzed using edgeR-GOseq pipeline. The method edgeR can be found in [28,29]. The GOseq R package [11] allows us to analyze gene sets from GO using RNA-Seq data and also KEGG pathways analysis.



The whole code needed to reproduce our paper can be found in the supplementary file SupplementaryMaterialMethods_pointgene.pdf.





3. Results


3.1. One or Multiple Realizations?


Out of all GO gene sets, 8% reported as significant (p-value < 0.05) using OR were reported too using MR with all tests (Figure 1A). For KEGG, 143 unique gene sets have been reported in OR, and 52 unique gene sets have been reported in MR, which corresponds to a decreasing of 64% (Figure 1B).




3.2. Analyzing the Tests


A total of 80, 0, 1 GO terms and 63, 5, 6 KEGG pathways were reported (p-value < 0.05) by CET, DMMT, and DT, respectively. The DMMT and DT were more conservative than CET at reporting differentially expressed gene sets. No common gene sets were reported between the spatial tests.



The first five gene sets with the lowest p-values, top genes, obtained by each test are compared in order to identify the most appropriate approach according to the biological relevance. However, the number of papers dealing with CRC, associated with the gene sets reported as significant by the test, could not be sufficient criteria to evaluate them because this number is closely related with the method of detection used and its age.



Thus, as a complement to these results, we include a list of biological pathways that have been shown to be associated with CRC (see [30,31,32,33,34]) including EGFR, MAPK, Notch, PI3K, P53, Ras, TGF- β , Wnt/ β -catenin, JAK-STAT, VEGF, or NF-kappaB signaling pathway, and, therefore, could be (but not necessarily) a gold standard. In this sense, 14 KEGG biological pathways and 156 GO terms that represent the signaling pathway were selected to evaluate which tests reported these gene sets more frequently in their results. Of the 156 GO terms, many were made up of a single gene, being subsets of the signaling pathways, so a short list of 15 GO gene sets was used, which includes only the general signaling pathways (see tables in Supplementary Material).



The top GO and KEGG gene sets reported by CET were highly related to CRC and other cancer types, as reported by Comparative Toxicogenomics Database and bibliographic databases (Table 1). Additionally, canonical pathways involved in CRC as PI3K-Akt, JAK-STAT, and Ras signaling pathways were reported in the first places by CET. The DMMT did not report gene sets differentially expressed in GO terms. For KEGG results, the gene sets reported were less associated with CRC than the CET as for the number of articles, but also includes canonical pathways such as EGFR tyrosine kinase inhibitor resistance. In general, the KEGG results obtained by the DT method were less associated (but also related) with CRC than those obtained by CET and DMMT. This was in concordance with the p-value reported in the gene sets by each test.




3.3. Choosing the Randomization Distribution


The between-pair randomization distribution is the most natural one for paired designs, but the complete randomization distribution (forgetting the paired design) could be applied too. Thus, the more appropriate randomization distribution to generate the second component of the point process has been evaluated. A total of 9, 27, and 216 GO terms and 63, 5, and 6 KEGG pathways were reported (p-value < 0.05) by CET, DMMT, and DT, respectively, using complete distribution.



No common gene sets were reported between the spatial tests using either complete distribution or between-pair distribution. The results obtained using complete and between-pair distributions for each test were compared: a total of 9, 0, and 1 GO terms and 11, 1, and 1 KEGG pathways were reported (p-value < 0.05) in common using CET, DMMT, and DT, respectively. These data are not shown and can be found in Supplementary Material. Thus, most of the gene sets reported using CET in complete distribution were also included using the between-pair distribution. The number of GO gene sets reported decreased at least eight times for CET and increases by one hundred percent DMMT and DT. Regarding the biological assertiveness of the results, fewer articles associated with CRC were included in the groups reported using complete distribution, although canonical pathways were included in the results in all spatial tests (Table 2).




3.4. Effect of Sample Size


The methodology has been evaluated for different sample sizes: an extreme case of two pairs (PRJNA411984); two intermediate cases of 7 (PRJNA413956) and 18 pairs of samples (PRJNA218851) and the TCGA dataset with 50 pairs.



The number of gene sets reported in all methods increases with the number of samples (Figure 1C).



All spatial tests using between-pair or complete distribution reported results from 50 pairs of samples (TCGA dataset), with the exception of DMMT using BP distribution. The DMMT and DT report less gene set that are significant when using between-pair distribution, while, in CET, the opposite occurs in all sample sizes.



In the PRJNA411984 dataset (2 pairs), only DMMT and DT using complete distribution reported 18 and 7 significant KEGG gene sets, respectively. Genes grouping using KEGG ontology seems to be more appropriate for using spatial tests than GO categories.



Regarding the consistency in the results reported by each test across datasets, the BP CET reported more results in common between the datasets than the other tests, for both GO (Figure 1D) and KEGG (Figure 1E).




3.5. Comparison with the GOseq Method


The four datasets were analyzed using edgeR-GOseq pipeline. A total number of 1000 permutations has been used, and we have restricted the analysis to Biological process category in GO. The KEGG pathways analysis was done using the default values for the arguments in the package GOseq. Note that the package GOseq uses its own GO and KEGG gene set collections.



A total of 1318, 2834, 2605, and 1613 GO terms are differentially regulated in PRJNA411984 (2 pairs), PRJNA413956 (7 pairs), PRJNA218851 (18 pairs) and TCGA (50 pairs) datasets, respectively, and 415 were reported for all datasets (Figure 2A).



If we use the KEGG pathways: 27, 79, 77, and 62 gene sets are reported in PRJNA411984 (2 pairs), PRJNA413956 (7 pairs), PRJNA218851 (18 pairs), and TCGA (50 pairs) datasets, respectively. Of these, 11 gene sets are shared for all datasets (Figure 2B).



When comparing our results with those obtained by GOseq, we observe that, using the CET method with BP distribution, a large number of gene sets in common for GO terms (Figure 2C). In KEGG ontology, we also include the results obtained DMMT and DT with complete distribution in the comparison because these tests were appropriate for small sample datasets. The results indicate that there is high agreement between the implemented methodologies (Figure 2D).





4. Discussion


One realization proved to be enough to generate the second component of the bivariate point process because, in the case of GO groups, only 8% of the results differ when using one or multiple realizations (Figure 1A). For KEGG, by increasing the number of realizations, the number of gene sets declared as significant decreased; even so, most of the gene sets reported in MR were reported by OR. Furthermore, the biological results were consistent using only one realization. At the computational level, the use of one realization reduces the computing time. Regarding the randomization distribution, between-pair and complete were tested, and the results indicate that, when applying between-pair or complete distribution, the gene sets reported as significant changes depending on the spatial test used and also on the criteria to group genes (Table 1 and Table 2).



If Cuzick and Edwards tests (CET) are used, then a greater agreement has been observed because all GO terms and most of the KEGG gene sets reported by complete distribution were also reported by between-pair distribution. Furthermore, the number of gene sets reported as significant decreases when using complete distribution (Figure 1C). It could be expected because we forget the original design, and the complete distribution produces a greater variability of the realizations. The same signal has been evaluated with a distribution with a higher variability. The biological results were consistent, reporting gene sets highly associated with CRC (Table 1 and Table 2). The same results were observed when reducing the sample size to 18 and 7 pairs (Figure 1D,E), showing a high coincidence between the results obtained in each datasets. However, no significant gene sets were reported when using a 2-pair dataset. The power of our test is really small with such a small sample size.



For small samples (as just with two pairs), the DMMT and DT seem appropriate, since the biological results were consistent, particularly if genes are grouped using KEGG ontology (Figure 1C). For instance, significant KEGG pathways as Rap1 signaling pathway (hsa04015), Hepatocellular carcinoma (hsa05225), Thyroid cancer (hsa05216), Bladder cancer (hsa05219), or Acute myeloid leukemia (hsa05221) were reported by DMMT and DT using complete distribution on the PRJNA411984 dataset (see Supplementary Material). Thus, the results obtained through the proposed methodology were consistent at biological level, even though there are only two pairs of samples.



When comparing the results obtained in all datasets using BP-CET for GO terms and including C-DT and C-DMMT for KEGG pathways, with the results obtained by GOseq (Figure 2), we observed that there was a great coincidence between both methods. This indicates that, in biological terms, they are comparable. However, our approach is completely different and has many possible generalizations. This kind of coincidence is not clear for us. It could be a future line of research.



The spatial statistic is a well developed field of research. In this paper, we have tried to show how simple procedures taken from spatial statistics can be used with good results to test null hypotheses of the omics data field. A lot of different possibilities can be explored. No independence between genes needs to be assumed. We think that, except for such a small sample size like two pairs, the results are good for seven pairs. Obviously, they are better for fifty pairs. It seems that the method performs well with small sample sizes.



More complex experimental designs with more than one covariable (categorical or continuous) could be considered and the methodology adapted without great difficulty.



In our opinion, the complexity of the original data makes a valid simulation study difficult. However, a simulation study is included in the Supplementary Material. It shows the good performance of our methods. Additional comments can be found in the file.




5. Conclusions


Our method performs a gene set analysis without a previous marginal (per gene) differential expression analysis by taking into account the dependencies between genes.



The three tests (CET, DMMT and DT) were applied for the first time into the omics data context in order to evaluate the gene set differential expression analysis. The proposed methodology is able to efficiently report the biological processes associated with the pathology studied.



It is important to note that each statistical test shows complementary biological results, i.e., it is convenient to use all of them and to evaluate all results. An important contribution of this paper is to show how these spatial tests can deal with the well known problem of the low sample sizes assuming the interdependence between genes in the context of gene set analysis.
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Figure 1. Overlapping between significant gene sets across the methods. (A) Venn diagram of significant GO gene sets obtained using TCGA dataset and OR or MR with all tests. (B) Venn diagram of significant KEGG gene sets obtained using a TCGA dataset and OR or MR with all tests. (C) Number of significant GO and KEGG gene sets (using one realization) for the three tests (CET, DMMT, DT) and the between-pair and complete randomization distributions. (D) Venn diagram of significant GO gene sets for all datasets using BP and CET. (E) Venn diagram of significant KEGG gene sets for all datasets using BP CET. 
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Figure 2. GO terms and KEGG pathways reported in common between datasets using GOseq and spatial tests. (A) GO terms reported by GOseq; (B) KEGG pathways reported by GOseq; (C) GO terms reported in common by GOseq and between-pair CET; (D) KEGG pathways reported in common by GOseq and between-pair CET, Complete DT, and Complete DMMT. 
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Table 1. Five gene sets with lowest p-values reported by each test using the between-pair distribution: CET, DMMT, and DT tests. The column headed “n” refers to the number of genes in the gene set. The number of papers “n rep” reporting the gene set association with Colorectal or Colonic Neoplasms have been obtained from the Comparative Toxicogenomics Database (GO terms) and MEDLINE bibliographic database (KEGG ID AND “colorectal cancer”). The asterisk * indicates that the gene set has been described as related to other cancer types.
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	ID Gene Set
	Name
	n
	Test
	p-Value
	n rep





	GO:0035195
	Gene silencing by miRNA
	577
	CET
	<0.00001
	4



	GO:0007186
	G protein-coupled receptor signaling pathway
	868
	CET
	<0.00001
	18



	GO:0045944
	Positive regulation of transcription by RNA polymerase II
	975
	CET
	<0.00001
	111



	GO:0006357
	Regulation of transcription by RNA polymerase II
	917
	CET
	<0.00001
	76



	GO:0050911
	Detection of chemical stimulus involved in sensory
	427
	CET
	<0.00001
	0 *



	
	perception of smell
	
	
	
	



	GO:0045190
	Isotype switching
	17
	DT
	0.0450
	7



	hsa05200
	Pathways in cancer
	530
	CET
	<0.001
	170



	hsa04014
	Ras signaling pathway
	232
	CET
	<0.001
	12



	hsa04020
	Calcium signaling pathway
	193
	CET
	<0.001
	46



	hsa04151
	PI3K-Akt signaling pathway
	354
	CET
	<0.001
	59



	hsa04630
	JAK-STAT signaling pathway
	162
	CET
	<0.001
	35



	hsa05340
	Primary immunodeficiency
	38
	DMMT
	0.01
	12



	hsa01212
	Fatty acid metabolism
	57
	DMMT
	0.02
	7



	hsa00071
	Fatty acid degradation
	44
	DMMT
	0.03
	13



	hsa05167
	Kaposi sarcoma-associated herpesvirus infection
	186
	DMMT
	0.03
	8



	hsa01521
	EGFR tyrosine kinase inhibitor resistance
	79
	DMMT
	0.04
	7



	hsa04512
	ECM-receptor interaction
	88
	DT
	<0.001
	91



	hsa04071
	Sphingolipid signaling pathway
	119
	DT
	<0.001
	5



	hsa03410
	Base excision repair
	33
	DT
	0.02
	9



	hsa05033
	Nicotine addiction
	40
	DT
	0.03
	8



	hsa04659
	Th17 cell differentiation
	107
	DT
	0.04
	7
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Table 2. List of the top five gene sets reported by each statistic test using the complete distribution: CET, DMMT, and DT. The “n” column refers to genes in the set. The number of papers (n rep) reporting the gene set association with Colorectal Neoplasms obtained from the Comparative Toxicogenomics Database (GO terms) and MEDLINE bibliographic database (KEGG ID AND “colorectal cancer”). The * indicates that the gene set was related to other cancer types.
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	ID Gene Set
	Name
	n
	Test
	p-Value
	n rep





	GO:0050911
	Detection of chemical stimulus involved
	427
	CET
	0.0001
	0*



	
	in sensory perception of smell
	
	
	
	



	GO:0035195
	Gene silencing by miRNA
	577
	CET
	0.0005
	4



	GO:0006396
	RNA processing
	544
	CET
	0.0036
	4



	GO:0018149
	Peptide cross-linking
	26
	CET
	0.0159
	0 *



	GO:0070268
	Cornification
	112
	CET
	0.0294
	0*



	GO:0071320
	Cellular response to cAMP
	52
	DMMT
	0.0309
	6



	GO:1990403
	Embryonic brain development
	13
	DMMT
	0.0323
	14



	GO:0071392
	Cellular response to estradiol stimulus
	34
	DMMT
	0.0338
	13



	GO:0051965
	Positive regulation of synapse assembly
	61
	DMMT
	0.0364
	3



	GO:0031145
	Anaphase-promoting complex-dependent catabolic process
	81
	DMMT
	0.0368
	2



	GO:0071363
	Cellular response to growth factor stimulus
	45
	DT
	0.0019
	14



	GO:0050808
	Synapse organization
	38
	DT
	0.0019
	15



	GO:0045190
	Isotype switching
	17
	DT
	0.0029
	7



	GO:0015721
	Bile acid and bile salt transport
	19
	DT
	0.0030
	2



	GO:0002931
	Response to ischemia
	50
	DT
	0.0033
	33



	hsa04630
	JAK-STAT signaling pathway
	162
	CET
	<0.001
	35



	hsa04740
	Olfactory transduction
	448
	CET
	<0.001
	10



	hsa05206
	MicroRNAs in cancer
	310
	CET
	<0.001
	31



	hsa05218
	Melanoma
	72
	CET
	<0.001
	39



	hsa05224
	Breast cancer
	147
	CET
	<0.001
	5



	hsa04215
	Apoptosis multiple species
	32
	DMMT
	<0.001
	5



	hsa04660
	T cell receptor signaling pathway
	104
	DMMT
	<0.001
	37



	hsa04150
	mTOR signaling pathway
	153
	DMMT
	<0.001
	32



	hsa04934
	Cushing syndrome
	155
	DMMT
	<0.001
	0



	hsa04928
	Parathyroid hormone synthesis, secretion and action
	106
	DMMT
	<0.001
	0



	hsa01521
	EGFR tyrosine kinase inhibitor resistance
	79
	DT
	<0.001
	7



	hsa05120
	Epithelial cell signaling in Helicobacter pylori infection
	70
	DT
	<0.001
	15



	hsa03030
	DNA replication
	36
	DT
	<0.001
	25



	hsa04724
	Glutamatergic synapse
	114
	DT
	<0.001
	14



	hsa04012
	ErbB signaling pathway
	85
	DT
	<0.001
	59
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