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Abstract: Finite mixtures normal regression (FMNR) models are widely used to investigate the
relationship between a response variable and a set of explanatory variables from several unknown
latent homogeneous groups. However, the classical EM algorithm and Gibbs sampling to deal with
this model have several weak points. In this paper, a non-iterative sampling algorithm for fitting
FMNR model is proposed from a Bayesian perspective. The procedure can generate independently
and identically distributed samples from the posterior distributions of the parameters and produce
more reliable estimations than the EM algorithm and Gibbs sampling. Simulation studies are
conducted to illustrate the performance of the algorithm with supporting results. Finally, a real data
is analyzed to show the usefulness of the methodology.

Keywords: finite mixture regression; non-iterative sampling; missing data; Gibbs sampling;
EM algorithm

1. Introduction

Finite mixtures regression (FMR) models are powerful statistical tools to explore
the relationship between a response variable and a set of explanatory variables from
several latent homogeneous groups. The aim of FMR is to discriminate the group an
observation belongs to, and reveal the dependent relationship between the response and
predictor variables in the same group after classification. Finite mixture regression model
with normal error assumption (FMNR) is the earliest and most used mixture regression
model in practice, see Quandt and Ramsey [1], De Veaux [2], Jones and McLachlan [3],
Turner [4], McLachlan [5], Frühwirth–Schnatter [6] and Faria and Soromenho [7] et al. for
early literatures. In recent years, many authors have extended the finite mixture normal
regression models to other error distribution based mixture regression models, such as
mixture Student’s t regression (Peel [8]), mixture Laplace regression (Song et al. [9,10]),
mixture regression based on scale mixture of skew-normal distribution (Zeller et al. [11]),
and mixture quantile regression model (Tian et al. [12], Yang et al. [13]). The classical
methods to deal with these mixture models are mainly based on Gibbs sampling for
Bayesian analysis and EM algorithm (Dempster [14]) for finding the maximum likelihood
estimator (MLE) from frequentist perspective, and the crucial technique in these methods
is to employ a group of latent variables to indicate the group an observation belongs
to, and formulate a missing data structure. Although EM algorithm and Markov Chain
Monte Carlo (MCMC) based algorithm are widely used in dealing with mixture models,
there are still some weak points in these algorithms, which should not be omitted. As to
EM algorithm, the standard error of estimated parameter is always calculated as the square
root of the diagonal element of the asymptotic covariance matrix motivated by the central
limit theorem, but when the size of samples is small or even medium, this approximation
may be unreasonable. In the case of Gibbs or other MCMC based sampling algorithms,
the samples used for statistical inferences are iteratively generated, thus the accuracy of
parameter estimation may decrease due to the dependency in samples. Besides, although
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there are several tests and methods to study the convergence of the generated Markov
Chain, no procedure can check convincingly whether the stage of convergence has been
reached upon termination of iteration. So it would be a beneficial attempt to develop some
algorithm with more effectiveness and computationally feasibility to deal with complex
missing data problems.

Tan et al. [15,16] proposed a kind of non-iterative sampling algorithm (named IBF
algorithm after Inverse Bayesian Formula) for missing data models, which can draw
independently and identically distributed (i.i.d.) samples from posterior distribution.
Without convergence diagnosis, the i.i.d. samples can be directly used to estimate model
parameters and their standard errors, thus avoids the shortcomings in EM algorithm and
Gibbs sampling. Recently, extensive applications of IBF algorithm have seen prosperous
development in documents, to name a few, Yuan and Yang [17] developed a IBF algorithm
for Student’s t regression with censoring, Yang and Yuan [18] applied the idea of IBF
sampling to quantile regression models, also Yang and Yuan [19] designed a IBF algorithm
for robust regression models with scale mixture of normal distribution, which includes
normal, Student’s t, Slash, and contaminated normal as special cases. Tsionas [20] applied
the idea to financial area and proposed a non-iterative method for posterior inference in
stochastic volatility models.

Inspired by Tian et al. [15,16], in this paper, we propose an effective Bayesian sta-
tistical inference for FMNR model from a non-iterative perspective. We first introduce
a group of latent multinomial distributed mixture component variables to formulate a
missing data structure, and then combine the EM algorithm, inverse Bayes Formula,
and sampling/importance resampling (SIR) ([21,22]) algorithm into a non-iterative sam-
pling algorithm. Finally, we implement the IBF sampling to generate i.i.d. samples from
posterior distributions and use these samples directly to estimate the parameters. We
conduct simulation studies to assess the performance of the procedure by comparison
with the EM algorithm and Gibbs sampling, and apply it to a classical data set with sup-
porting results. The IBF sampling procedure can be directly extended to other mixture
regression models, such as mixture regression model driven by Student’s t or Laplace
error distributions.

2. Finite Mixture Normal Regression (FMNR) Model

In this subsection, we first introduce the usual FMNR model, and then display the
complete likelihood function for observations and a set of latent variables, which are the
mixture component variables, indicating the group an observation belongs to.

Let yi represent the ith observation of a response variable and xi = (1, xi1, · · · , xi,p−1)
T

be the ith observation of a set of p− 1 explanatory variables. The FMNR model is described
as follows

yi ∼
g

∑
j=1

λjN(xT
i β j, σ2

j ), i = 1, · · · , n,

therefore, the distribution of response variables is modeled as finite mixture normal dis-
tributions with g components. Here, λj is the mixture proportion with 0 < λj < 1,
and ∑n

j=1 λj = 1, β j is the p-dimension regression coefficient vector in jth group with
the first element denoting the intercept, σ2

j represents the variance of the error distribu-

tion in group j, and N(xT
i β j, σ2

j ) represents the normal distribution with mean xT
i β j and

variance σ2
j .

Denote parameters

β = (βT
1 , · · · , βT

g)
T, σ2 = (σ2

1 , · · · , σ2
g)

T,

λ = (λ1, · · · , λg)
T, θ = (βT, σ2T

, λT)T,
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and observation vector y = (y1, y2, · · · , yn)T, the likelihood of y in the FMNR model is that

L(θ|y) =
n

∏
i=1

g

∑
j=1

λjN(yi; xT
i β j, σ2

j )

=
n

∏
i=1

g

∑
j=1

λj
1√

2πσj
exp

{
−

(yi − xT
i β j)

2

2σ2
j

}
,

(1)

where N(yi; xT
i β j, σ2

j ) denotes the density function of distribution N(xT
i β j, σ2

j ) evaluated
at yi. It is challenging to get the maximum likelihood estimations of the parameters by
directly maximizing the above likelihood function, and it is also difficult to get the full
conditional distributions used in Bayesian analysis. In documents, one effective approach
to deal with mixture models is to introduce a group of latent variables which establishes
a missing data structure, in this way, some data augmentation algorithms, such as EM
algorithm and Gibbs sampling can be easily performed, besides, by taking advantage
of the missing data structure, a new non-iterative sampling algorithm can be smoothly
carried out.

Here, we introduce a group of latent membership-indicators Gi = (Gi1, · · · , Gig)
T,

such that

Gij =

{
1, if yi belongs to group j,
0, otherwise,

with P(Gij = 1) = λj for j = 1, 2, · · · , g, and ∑
g
j=1 Gij = 1. Given the mixing probabil-

ities λ = (λ1, · · · , λg)T, the latent variables G1, · · · , Gn are independent of each other,
with multinomial densities,

f (Gi|λ) ∼ λ
Gi1
1 · · · λ

Gi,g−1
g−1 (1− λ1 − · · · λg−1)

Gig .

Note that given Gij = 1, we have yi|Gij = 1 ∼ N(xT
i β j, σ2

j ), and thus get the following
complete likelihood of observations y and latent variables G = (G1, · · · , Gn):

L(θ|y, G) =
n

∏
i=1

g

∏
j=1

(
λjN(yi; xT

i β j, σ2
j )
)Gij

=
n

∏
i=1

g

∏
j=1

(
λj

1√
2πσj

exp{−
(yi − xT

i β j)
2

2σ2
j

}
)Gij

.

The above complete likelihood is crucial to implement EM algorighm, Gibbs sampling and
IBF algorithm.

3. Bayesian Inference Using IBF Algorithm
3.1. The Prior and Conditional Distributions

In Bayesian framework, suitable prior distributions should be adopted for the param-
eters. With the purpose to emphasize the importance of data and for simplicity, a set of
independent non-informative prior distributions are used, which are

π(β j, σ2
j ) ∝

1
σ2

j
, π(λ1, · · · , λg) ∝ 1.

In fact, the prior of (λ1, · · · , λg) is Dirichlet distribution with concentration equals to 1,
also known as a uniform prior over the space λ1 + · · ·+ λg = 1. These priors are improper
and noninformative, but the posterior distributions are proper and meaningful. Then given
complete data (y, G), the posterior density of θ is shown as
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π(θ|y, G) ∝ L(θ|y, G)
g

∏
j=1

π(β j, σ2
j )π(σ2

j )π(λ)

∝ L(θ|y, G)
g

∏
j=1

1
σ2

j
.

In order to implement the IBF sampling in FMNR model, we now present several
required conditional posterior distributions, which are all proportional to the complete
posterior density π(θ|y, G).
1. Conditional distribution π(Gi|θ, y)

For i = 1, · · · , n, the conditional posterior distribution of Gi = (Gi1, · · · , Gig)
T is

π(Gi1, · · · , Gig|θ, y) ∝
g

∏
j=1

(λjN
(
yi; xT

i β j, σ2
j )
)Gij ,

the right side of (1) is the kernel of the probability density function of multimomial distri-
bution, thus we obtain that

Gi|θ, y ∼ Mult(1, ri1, · · · , rig), (2)

where

rij =
λjN(yi; xT

i β j, σ2
j )

∑
g
k=1 λkN(yi; xT

i βk, σ2
k )

, (3)

with Mult(1, ri1, · · · , rig) standing for the multinomial distribution with parameters
(ri1, · · · , rig).
2. Conditional distribution π(β j|σ2

j , y, G)

The conditional density of β j is given by

π(β j|σ2
j , y, G) ∝ exp

{
−

∑n
i=1 Gij(yi − xT

i β j)
2

2σ2
j

}
.

Let G(j) = (G1j, · · · , Gnj), Wj = diag(G(j)),

X = (x1, · · · , xp−1)
T,

and
B−1

j = XTWjX, bj = BjXTWjy,

then, we have

π(β j|σ2
j , y, G(j)) ∝ exp

{
−

(β j − bj)
TB−1

j (β j − bj)

2σ2
j

}
,

consequently,
β j|σ2

j , y, G(j) ∼ N(bj, σ2
j Bj). (4)

3. Conditional distribution π(σ2
j |y, G(j))

The conditional density of σ2
j is obtained as

π(σ2
j |y, G(j)) ∝

(
1
σ2

j

) ∑n
i=1 Gij−p

2 +1

exp
{
−

∑n
i=1 Gij(yi − xT

i bj)
2)

2σ2
j

}
, (5)
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noticing that the right side of Equation (4) is the kernel of inverse-Gamma density, we get

σ2
j |y, G(j) ∼ IG

(
∑n

i=1 Gij − p
2

,
∑n

i=1 Gij(yi − xT
i bj)

2

2

)
. (6)

4. Conditional distribution π(λ|G)
Finally, we obtain the conditional density of λ = (λ1, · · · , λg)T, that is

π(λ1, · · · , λg|G) ∝
g

∏
j=1

λ
∑n

i=1 Gij+1−1
j , (7)

the right side of (6) is the kernel of Dirichlet distribution, thus

λ|G ∼ D(
n

∑
i=1

Gi1 + 1, · · · ,
n

∑
i=1

Gig + 1). (8)

3.2. IBF Sampler

Based on the following expression

π(θ|y) = ∑
G

π(θ|y, G)π(G|y),

and

π(θ|y, G) = π(β, σ2, λ|y, G)

=
g

∏
j=1

π(β j|σ2
j , y, G(j))π(σ2

j |y, G(j))π(λ|y, G),

in order to draw i.i.d. samples from π(θ|y), we should first get i.i.d. samples from π(G|y).
According to Tan et al. [15,16], and based on the inverse Bayes formula, the posterior
distribution of G can be expressed as

π(G|y) ∝
π(G|y, θ0)

π(θ0|y, G)
,

where θ0 is the posterior mode of π(θ|y) obtained by EM algorithm. The idea of IBF
sampler in the EM framework is to use EM algorithm to obtain π(G|y, θ0), an optimal
important sampling density which can best approximate π(G|y), thus by implementing
SIR algorithm, i.i.d. samples can be generated approximately from π(G|y).

Specifically, the IBF algorithm for FMNR model includes the following four steps:
Step 1. Based on (2), draw i.i.d. samples

G(l)
i = (G(l)

i1 , · · · , G(l)
ig )T ∼ Mult(r0

i1, · · · , r0
ig), l = 1, · · · , L,

for i = 1, 2, · · · , n, where r0
ij is the same as rij in (3), with θ replaced by θ0. Denote

G(l) = (G(l)
1 , G(l)

2 , · · · , G(l)
n ).

Step 2. Calculate the weights

ωl =

1
π(θ0|y,G(l))

∑L
l=1

1
π(θ0|y,G(l))

, l = 1, 2 · · · , L,

where π(θ0|y, G(l)) is calculated as π(θ0|y, G) with G replaced by G(l).
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Step 3. Choose a subset from {G(l)}L
l=1 via resampling without replacement from

the discrete distribution on {G(l)}L
l=1 with probabilities {ωl}L

l=1 to obtain an i.i.d. sample
of size K(< L) approximately from π(G|y), denoted by {G(lk)}K

k=1.
Step 4. Based on (8), generate

λ(lk)|G(lk) ∼ D(
n

∑
i=1

G(lk)
i1 + 1, · · · ,

n

∑
i=1

G(lk)
ig + 1).

For j = 1, · · · , g, based on (6), generate

σ2
j
(lk)|y, G(lk)

(j) ∼ IG
(∑n

i=1 G(lk)
ij − p

2
,

∑n
i=1 G(lk)

ij (yi − xT
i b(lk)

j )2

2

)
,

and based on (4), generate

β
(lk)
j |σ

2
j
(lk), y, G(lk)

(j) ∼ N
(
b(lk)

j , σ2
j
(lk)B(lk)

j
)
,

where
G(lk)

(j) = (G(lk)
1j , · · · , G(lk)

nj ), W(lk)
j = diag(G(lk)

(j) ),

and
b(lk)

j = B(lk)
j XTW(lk)

j y, B(lk)
j =

(
XTW(lk)

j

−1
X
)−1.

Finally, {(β(lk), σ2(lk), λ(lk))}K
k=1 are the i.i.d. samples approximately generated from

π(β, σ2, λ|y).
In this section, we employ a non-informative prior setting for the FMNR model and

develop a IBF sampler. We will extend this procedure to the conjugate prior situation in
the supplement.

4. Results
4.1. Simulation Studies

To investigate the performance of the proposed algorithm, we conduct some simula-
tions under different situations by means of four criteria such as the mean, mean square
error, mean absolute deviance, and the coverage probability to evaluate the method by
comparison with the classical EM and Gibbs sampling.

The data {(xi, yi), i = 1, · · · , n} are generated from the following mixture model

yi =

{
5− 5xi + εi, if zi = 1;
−5 + 5xi + εi, if zi = 2,

where zi is a group indicator of yi with P(zi = 1) = 0.5. Here, xi is generated from the
uniform distribution on interval (−1, 1), and εi is the random error. We consider the
following symmetric distributions to describe error:

1. Normal distribution: ε ∼ N(0, 1);
2. Student’s t distribution: ε ∼ t(3);
3. Laplace distribution: ε ∼ L(0, 1);
4. Logistic distribution: ε ∼ Logistic(0, 1).

In these error distributions, cases 2–4 are heavy-tailed symmetric distributions and
often used in the literature to mimic the outlier situations. We use these distributions to
illustrate the robustness and effectiveness of the procedure, and implement a 2-components
mixture normal regression model with IBF sampling algorithm, EM algorithm and Gibbs
sampling to fit these simulated data. The prior setting is the same as in Section 3.1.

To evaluate the finite sample performance of the proposed methods, the experiment
is replicated for 200 times with sample size n = 100 and 300, respectively, for each error
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distribution. In the i-th replication, we set L = 6000 and K = 3000, then get 3000 i.i.d
samples from the posterior distributions using the proposed non-iterative sampling al-
gorithm. Similarly, when performing Gibbs sampling, we generate 6000 Gibbs samples
and discard the first 3000 as burn-in samples, then use the later 3000 after burn-in samples
as effective samples to estimate the parameters. We record the mean of these samples as
θ̂(i), for i = 1, 2, · · · , 200, and calculate the means (Mean), mean squared errors (MSE) and
mean absolute deviances (MAD) of {θ̂(i)}200

i=1, which are expressed as

Mean =
1

200

200

∑
i=1

θ̂(i), MSE =
1

200

200

∑
i=1

(θ̂(i) − θ)2, MAD =
1

200

200

∑
i=1
|θ̂(i) − θ|.

Besides, we calculate the coverage probability (CP) of 200 intervals with 95% con-
fidence level which cover the true values of parameters. The evaluation criteria for EM
algorithm are the same as the above four statistics, with θ(i) denoting posterior mode
instead of posterior mean in the i-th replication. These four statistics are used to assess the
performance of the three algorithms.

Simulation results are presented in Tables 1–3. From these tables, we are delighted to
see that:

1. All the three algorithms recover the true parameters successfully, since most of the
Means based on the 200 replications are very close to the corresponding true values
of parameters, and the MSEs and MADs are rather small. Besides, almost all of the
coverage probabilities are around 0.95, which is the true level of confidence interval.
We also see that as sample size increases from 100 to 300, the MSEs and MADs
decrease and fluctuate steadily in a small range;

2. In general, for fixed size of samples, the MSEs and MADs in IBF algorithm are smaller
than the ones in EM algorithm and Gibbs sampling, which show that the IBF sampling
algorithm can produce more accurate estimators.

Table 1. Monte Carlo simulation results for IBF sampler.

IBF (n = 100) IBF (n = 300)
Distribution Parameter

Mean MSE MAD CP Mean MSE MAD CP

Normal

β10 5.0105 0.0225 0.1160 0.93 4.9971 0.0069 0.0664 0.96
β11 −5.000 0.0748 0.2202 0.93 −4.9983 0.0250 0.1228 0.94
β20 −4.9940 0.0214 0.1171 0.965 −5.0061 0.0071 0.0662 0.93
β21 4.9949 0.0685 0.2053 0.940 5.0240 0.0230 0.1209 0.95
λ1 0.4937 0.0025 0.0411 0.965 0.4968 0.0008 0.0230 0.94

t (3)

β10 5.0110 0.0574 0.1884 0.96 5.0206 0.0184 0.1100 0.96
β11 −5.0290 0.2251 0.3545 0.91 −5.0501 0.0648 0.1975 0.955
β20 −4.9817 0.0549 0.1785 0.96 −5.0056 0.0165 0.1048 0.985
β21 5.0243 0.2083 0.3496 0.95 5.0348 0.0852 0.2284 0.92
λ1 0.4973 0.0032 0.0401 0.95 0.5005 0.0010 0.0262 0.93

Logistic (0,1)

β10 4.9907 0.0782 0.2215 0.945 5.0064 0.0327 0.1443 0.940
β11 −4.9812 0.2347 0.3890 0.905 −4.9892 0.1026 0.2491 0.905
β20 −5.0054 0.0752 0.2187 0.955 −5.0053 0.0314 0.1428 0.915
β21 4.9892 0.2388 0.3838 0.915 4.9810 0.0890 0.2308 0.920
λ1 0.4917 0.0035 0.0477 0.92 0.4972 0.0009 0.0248 0.955

Laplace (0,1)

β10 5.0182 0.0420 0.1631 0.95 5.0119 0.0138 0.0950 0.97
β11 −4.9800 0.1385 0.2799 0.93 −5.0029 0.0540 0.1856 0.935
β20 −5.0161 0.0475 0.1644 0.915 −5.0133 0.0160 0.0986 0.925
β21 4.9743 0.1691 0.3163 0.925 5.0014 0.0428 0.1705 0.950
λ1 0.4996 0.0021 0.0429 0.95 0.4992 0.0010 0.0231 0.94
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Table 2. Monte Carlo simulation results for Gibbs sampling.

Gibbs (n = 100) Gibbs (n = 300)
Distribution Parameter

Mean MSE MAD CP Mean MSE MAD CP

Normal

β10 5.0060 0.0228 0.1213 0.955 5.0031 0.0076 0.0707 0.96
β11 −5.0047 0.0871 0.2381 0.940 −5.0024 0.0313 0.1413 0.93
β20 −5.000 0.0268 0.1311 0.945 −4.9943 0.0073 0.0683 0.95
β21 5.0356 0.0810 0.2272 0.950 5.0079 0.0265 0.1281 0.94
λ1 0.4989 0.0024 0.0392 0.965 0.5008 0.0008 0.0238 0.955

t(3)

β10 4.9670 0.0732 0.1919 0.955 4.9724 0.0616 0.1909 0.975
β11 −5.0424 0.2138 0.3486 0.955 −5.0850 0.1967 0.3215 0.960
β20 −4.9766 0.0789 0.2105 0.965 −4.9761 0.0664 0.1928 0.95
β21 5.1234 0.2851 0.4129 0.955 5.0654 0.2010 0.3415 0.935
λ1 0.5001 0.0032 0.0449 0.92 0.5006 0.0027 0.0408 0.955

Logistic (0,1)

β10 4.9644 0.0861 0.2355 0.960 4.9937 0.0246 0.1264 0.960
β11 −5.0682 0.3350 0.4700 0.935 −5.0430 0.0872 0.2344 0.925
β20 −4.9775 0.0894 0.2444 0.96 −4.9958 0.0367 0.1483 0.915
β21 5.0036 0.2960 0.4289 0.955 4.9960 0.0979 0.2489 0.945
λ1 0.4983 0.0031 0.0437 0.93 0.50497 0.0009 0.0244 0.97

Laplace (0,1)

β10 5.0046 0.0447 0.1645 0.950 5.0094 0.0145 0.0953 0.965
β11 −5.0263 0.1370 0.2893 0.975 −5.0065 0.0598 0.1921 0.940
β20 −4.9849 0.0395 0.1561 0.975 −5.0019 0.0137 0.0940 0.975
β21 5.0549 0.1705 0.3376 0.950 4.9823 0.0489 0.1717 0.950
λ1 0.5050 0.0028 0.0438 0.96 0.4983 0.0009 0.0237 0.955

Table 3. Monte Carlo simulation results for EM algortim.

EM (n = 100) EM (n = 300)
Distribution Parameter

Mean MSE MAD CP Mean MSE MAD CP

Normal

β10 4.9921 0.0226 0.1199 0.930 5.0195 0.0278 0.1346 0.955
β11 −4.9789 0.0753 0.2203 0.935 −4.9964 0.0227 0.1214 0.960
β20 −5.0097 0.0243 0.1244 0.93 −4.9959 0.0078 0.0684 0.935
β21 4.9887 0.0690 0.2045 0.95 5.0009 0.0236 0.1246 0.960
λ1 0.5020 0.0024 0.0386 0.945 0.4984 0.0008 0.0241 0.955

t(3)

β10 4.9919 0.0569 0.1889 0.92 5.0245 0.0206 0.1184 0.945
β11 −4.9531 0.2392 0.3826 0.89 −0.5033 0.0837 0.2219 0.905
β20 −4.9900 0.0694 0.2001 0.915 −4.9987 0.0203 0.1086 0.935
β21 5.0178 0.2087 0.3505 0.920 5.0320 0.0876 0.2336 0.915
λ1 0.4970 0.0032 0.0449 0.925 0.4972 0.0010 0.0261 0.96

Logistic (0,1)

β10 5.0291 0.0786 0.2229 0.925 5.0195 0.0278 0.1346 0.955
β11 −4.9373 0.2377 0.3913 0.945 −5.0232 0.0992 0.2514 0.915
β20 −5.0034 0.0791 0.2233 0.925 −5.0061 0.0276 0.1310 0.950
β21 4.9162 0.2440 0.3903 0.940 4.9769 0.0901 0.2316 0.935
λ1 0.4962 0.0035 0.0487 0.95 0.5026 0.0009 0.0247 0.965

Laplace (0,1)

β10 4.9928 0.0425 0.1638 0.940 4.9982 0.0177 0.1076 0.935
β11 −4.9637 0.1714 0.3282 0.895 −4.9834 0.0459 0.1749 0.970
β20 −5.0185 0.0486 0.1697 0.895 −5.0125 0.0133 0.0926 0.965
β21 5.0064 0.1831 0.3334 0.925 4.9880 0.0525 0.1795 0.940
λ1 0.4987 0.0031 0.0445 0.95 0.4957 0.0009 0.0255 0.955
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Thus, from these simulation studies, we can draw the conclusion that the IBF sampling
algorithm is comparable to, and in most cases more effective than the EM algorithm and
Gibbs sampling when modelling mixture regression data. Besides that, the IBF algorithm
is much faster that the iterative Gibbs sampling, for example, when n = 100, the mean
running time is 6 s for IBF and 10.39 s for Gibbs, and when n = 300, it is 19.58 for IBF and
31.16 s for Gibbs.

4.2. Real Data Analysis

The tone perception data stem from an experiment of Cohen [23] on the perception
of musical tones by musicians. In this study, a pure fundamental tone was played to a
trained musician with electronically generated overtones added, which is determined by
a stretch ratio. The predictor variable is stretch ratio (X) and the response variable is the
tuning ratio (Y), which is defined as the ratio of the adjusted tone to the fundamental tone.
150 pairs of observations with the same musician were recorded. The data is typically
suitable for mixture regression modelling for that two separate trends clearly emerge in
the scatter plot Figure 1. The dataset “tonedata” can be found in the R package mixtools
authored by Benaglia et al. [24]. Many articles have analyzed this dataset using a mixture of
mean regressions framework, see Cohen [23], Viele and Tong [25], Hunter and Young [26],
and Young [27]. Recently, Song et al. [20], Wu and Yao [28] analyzed the data using a
2-component mixtures median regression models from parametric and semi-parametric
perspective, respectively.

1.5 2.0 2.5 3.0

1.
5

2.
0

2.
5

3.
0

3.
5

Stretch Ratio

Tu
ni

ng
 R

at
io

Figure 1. Scatter plot of tone perception data.

Now we re-analyze this data with the following 2-components FMNR model:

Y ∼ λ1N(β10 + β11X, σ2
1 ) + λ2N(β20 + β21X, σ2

2 ),

and implenment IBF algorithm by comparison with the EM and Gibbs sampling. For EM
algorithm, we let β10 = 1, β11 = −1, β20 = −1, β21 = 1, σ2

1 = 2, σ2
2 = 1, λ1 = 0.6, λ2 = 0.4

as initial values, and use the R function mixreg and covmix in R package mixreg (authored
by Turner [29]) to estimate the parameters and calculate the standard deviance. As to IBF
algorithm, we set K = 10, 000 and J = 60, 000, thus get 6000 posterior samples. Similarly,
in Gibbs sampling, we generate 10,000 Gibbs samples and discard the first 4000 as burn-in
samples, then use the later 6000 after burn-in samples as effective samples to estimate
the parameters.
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Table 4. Estimations with EM, Gibbs, and IBF in Tone data analysis.

Algorithm Estimates β10 β11 β20 β21 σ2
1 σ2

2 λ1 λ2

EM Mean 1.9163 0.0425 −0.0192 0.9922 0.0021 0.0176 0.6977 0.3022
Sd 0.0226 0.0102 0.1021 0.0441 0.0003 0.0041 0.0484 0.0484

IBF Mean 1.9162 0.0426 −0.0211 0.9930 0.0196 0.0022 0.6951 0.3048
Sd 0.0228 0.0103 0.1072 0.0462 0.0048 0.0003 0.0444 0.0444

Gibbs Mean 1.9162 0.0427 −0.0198 0.9921 0.0202 0.0022 0.6983 0.3017
Sd 0.0233 0.0105 0.1124 0.0481 0.0055 0.0003 0.0475 0.0475
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Figure 2. Scatter plot of tone perception data with estimated mixture regression lines by IBF algorithm.

Table 4 reports the estimated means and standard deviances of the parameters based
on the above three algorithms. Clearly, the IBF algorithm are comparable to the EM and
Gibbs sampling with very slight differences in means and standard deviances. We should
notice that, although EM algorithm is effective for parameter estimation in mixture models,
the standard deviances in EM algorithm are calculated as the square roots of the diagonal
elements for the observed inverse information matrix, which are based on the asymptotic
theory of MLE, however when the sample size is small or moderate, the estimated standard
deviances may be unreliable. Therefore, compared with EM algorithm, we prefer to IBF
sampling, for that the standard deviances can be directly estimated based on the i.i.d.
posterior samples without extra effort. Figure 2 is the scatter plot with fitted mixture
regression lines based on IBF, which clearly describes the linear relationship between
turning ratio and stretch ratio in two different groups. In this figure, the observations are
shown in different symbols, and classified using the mean of {G(lk)}3000

k=1 by comparison
with 0.5, when the i-element of the mean vector is greater than 0.5, the i observation is
classified to group one. In the supplement, we present the plots of ergodic means of
posterior samples for all parameters based on IBF sampler and Gibbs sampler. We can
see from theses plots that for each parameter, the ergodic means based on IBF algorithm
converge much faster than the ones based on Gibbs sampling, which is not surprising for
that the IBF samples are i.i.d generated from the posterior distributions. Considering this
point, the IBF sampling outperforms the Gibbs sampler.

For illustrating purpose, in the supplement, the histograms with kernel density estima-
tion curves based on 6000 IBF samples and 6000 Gibbs samples are plotted in Figures S5–S8,
with the red lines denoting the posterior means. In general, the posterior distributions of
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each parameter based on IBF algorithm and Gibbs sampler are very similar. These plots
vividly depict the posterior distributions of the parameters, for example, the distributions
of regression coefficients are nearly symmetric, resemble normal distributions, but the
distributions of variances σ2

1 and σ2
2 are both right skewed with a long tail at the right side

of the distributions, which cannot be spotted by the asymptotically normality theory for
MLE (or posterior mode).

Therefore, the IBF sampling algorithm provides an access to estimate the posterior
distributions of parameters with more accuracy than the EM algorithm and Gibbs sampling
by utilizing the i.i.d. posterior samples.

4.3. Algorithm Selection

There are several Bayesian model selection criteria to compare different models in
fitting the same data set, here we take advantage of the idea of model selection to help
determine which sampling algorithm is the “best”, the IBF algorithm or the Gibbs sampling.
The deviance information criterion (DIC), proposed by Spiegelhalter et al. [30], was used
as a measure of fit and complexity. The deviance is defined as

D(θ) = −2logL(y|θ) = −2l(y|θ),

where L(θ|y) is the likelihood function for FMNR model given by (2), and l(θ|y) is the
log-likelihood. The DIC statistic is defined as

DIC = 2D̄− D̂,

with D̄ = ∑K
k=1 D(θ(k))/K and D̂ = D(θ̂). Here, {θ(k)}K

k=1 are the posterior samples
obtained by IBF sampler or Gibbs sampling, and θ̂ are the estimated posterior means.

In Bayesian framework, the Akaike information criterion (AIC) proposed by Brooks [31]
and the Bayesian information criterion (BIC) proposed by Carlin and Louis [32], can be
estimated by

AIC = D̄ + 2s, BIC = D̄ + slog(n),

where s is the number of the model parameters. We choose the algorithm with smaller
DIC, AIC, and BIC as a better algorithm to fit the model.

In the tone data study, the estimated measures based on FMNR model are given in
Table 5. This table tells us that for all the three criteria, the values based on IBF are slightly
smaller than the Gibbs counterparts, which justifies the superiority of the IBF sampler over
the Gibbs sampler, although this superiority is not significant.

Table 5. Model selection criteria for FHNR model with IBF sampler and Gibbs algorithm in the tone
data analysis.

Algorithm DIC AIC BIC

IBF −268.9490 −259.5399 −235.4548
Gibbs −268.4472 −259.2297 −235.1446

5. Discussion

This paper propose an effective Bayesian inference procedures for fitting FMNR mod-
els. With the in-complete data structure introduced by a group of multinomial distributed
mixture component variables, a non-iterative sampling algorithms named IBF under a
non-informative prior settings is developed. The algorithm combines the EM algorithm,
inverse Bayesian formula and SIR algorithm to obtain i.i.d samples approximately from
the observed posterior distributions of parameters. Simulation studies show that the IBF
algorithm can estimate the parameters with more accuracy than the EM algorithm and
Gibbs sampling, and runs much faster than Gibbs sampling. Real data analysis shows
the usefulness of the methodology, also illustrates the advantages of the IBF sampler,
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for example, the ergodic means of samples from IBF sampling converge much faster than
the ones from Gibbs sampling, and density estimation based on i.i.d. IBF samples are
more reliable than the asymptotically normal distribution from EM algorithm. The IBF
sampling algorithm can be viewed as an important supplement of the classical EM, Gibbs
sampling and other missing data algorithms. The procedure can be extended to other error
distribution based finite mixture regression models, such as mixture Student’s t regression.
In this case, the Student’s t distribution should be firstly represented as a mixture of normal
distribution with the latent mixture variable following a gamma distribution, and the IBF
algorithm should be carried out twice. In this paper, the number of component is known,
when g is unknown, the Reversible-jump MCMC method (Green [33], Richardson and
Green [34]) may be used to estimate g, and this point is under consideration.e. Future
research directions may also be highlighted.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-739
0/9/6/590/s1.
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