
mathematics

Article

Emergence of Self-Organized Dynamical Domains in a Ring of
Coupled Population Oscillators

Alexey V. Rusakov 1 , Dmitry A. Tikhonov 1,2 , Nailya I. Nurieva 1 and Alexander B. Medvinsky 1,*

����������
�������

Citation: Rusakov, A.V.; Tikhonov,

D.A.; Nurieva, N.I.; Medvinsky, A.B.

Emergence of Self-Organized

Dynamical Domains in a Ring of

Coupled Population Oscillators.

Mathematics 2021, 9, 601. https://

doi.org/10.3390/math9060601

Academic Editor: Giancarlo Consolo

Received: 18 January 2021

Accepted: 8 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Theoretical and Experimental Biophysics, Institutskaja St., 3,
142290 Pushchino, Moscow Region, Russia; rusakov_a@rambler.ru (A.V.R.);
dmitry.tikhonov@gmail.com (D.A.T.); nailya.nurieva@mail.ru (N.I.N.)

2 Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Professor Vitkevich
St., 1, 142290 Pushchino, Moscow Region, Russia

* Correspondence: alexander_medvinsky@yahoo.com

Abstract: We show that interactions of inherently chaotic oscillators can lead to coexistence of regular
oscillatory regimes and chaotic oscillations in the rings of coupled oscillators provided that the level
of interaction between the oscillators exceeds a threshold value. The transformation of the initially
chaotic dynamics into the regular dynamics in a number of the coupled oscillators is shown to result
from suppression of chaos by separation of certain oscillation periods from the continuous spectra,
which are characteristic of chaotic oscillations.
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1. Introduction

Populations often demonstrate oscillatory dynamics [1]. These oscillations arise as a
result of interactions between populations [2] and/or impacts of environmental factors,
such as temperature, nutrient variations, and some others [3]. The role of a specific driving
force in the emergence of oscillatory dynamics can be understood with the use of suitable
mathematical models. For example, mathematical models have been widely used to study
the mechanisms underlying chaotic variations in population size [4]. In particular, the mod-
els have been proved to be useful in assessing the impact of environmental heterogeneity
on the horizon of predictability of chaotic plankton dynamics [5].

The results of mathematical modeling can be naturally supplemented and verified
with the data obtained in the course of ecological monitoring. For example, the data
obtained in the course of long-term monitoring of the ecosystem of the Naroch Lakes
(Belarus) were used in order to analyze characteristics of hydrobiont population dynamics.
As a result, it was shown that chaotic regimes, which often occur in mathematical models of
aquatic ecosystems [3], are indeed characteristic of fluctuations in the plankton abundance
in the Naroch Lakes [6]. Note that each of the relatively shallow lakes that constitute
the Naroch lake ecosystem (oligo-mesotrophic Lake Naroch, mesotrophic Lake Myastro,
and eutrophic Lake Batorino) is characterized by intensive mixing of water resulting in
equalization the living conditions within each of these lakes [7]. Therefore, one could expect
that the chaotic nature of the plankton abundance fluctuations detected by measurements
at several points (lake monitoring stations) reflects the nature of plankton dynamics in the
entire water body. Nevertheless, the question of whether this expectation is justified has so
far remained unanswered.

In a more general form, this question can be reformulated as follows (regardless of any
ecosystem): How stable is the dynamics of interconnected chaotic oscillators under a small
local perturbation? We show here that interactions between inherently chaotic oscillators
can lead to emergence of coexisting chaotic and regular oscillations.
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2. Models

We analyze the dynamical modes, which arise in the chains of N coupled oscillators.
The corresponding model is as follows:

xi(t + 1) = C(x′k(t + 1) + x′m(t + 1)− 2x′i(t + 1)) + x′i(t + 1), i = 1, · · · , N, (1)

k =

{
i + 1, if i < N
1, if i = N

m =

{
i− 1, if i > 1
N, if i = 1

x′i(t + 1) = F(xi(t)), i = 1, · · · , N, (2)

where i is the number of the oscillator in the chain, t is time, and C is a constant. The first
term on the right-hand side of Equation (1) represents the exchange processes between
neighboring oscillators with periodic boundary conditions. The structure of the model of
the coupled oscillators is shown in Figure 1. The periodicity of boundary conditions in
this mathematical model reproduces the ring-like nature of real ecosystems (for example,
coastal zones of closed reservoirs: ponds and lakes). The function F(xi(t)) in (2) represents
the local dynamics, which is described either by the logistic map that was popularized by
May [8], or as the Gompertz map [9].

Figure 1. Structure of the ring of oscillators.

For the logistic map
F(x(t)) = rx(t)(1− x(t)), (3)

r is a constant. The logistic maps have been widely used in mathematical models of
population dynamics [2].

The Gompertz function

F(x(t)) = x(t)− rx(t) ln (x(t)), (4)

where r is a constant, was originally put forward to describe human mortality in the
assumption that a person’s resistance to death decreases exponentially as his/her years
increase. Besides, the Gompertz function appears in fisheries ecology [10]. Under C = 0
(i.e., for isolated oscillators), both the logistic map and Gompertz map have been shown to
give rise to regular as well as to chaotic dynamics [2].

The ring of oscillators, which is described by (1) and (2), is assumed to consist of
initially (at t = 0) chaotic oscillators. Segments of the corresponding chaotic time series
are shown in Figure 2a,c. The power spectra of these time series are shown in Figure 2b
(the logistic map) and Figure 2d (the Gompertz map). One can see that the power spectra
consist of peaks that are closely adjacent to each other. Such a structure of these spectra is a
sign of chaos and makes it possible to distinguish the spectra of chaotic time series from
those of periodic time series; the latter are composed from distinct separate peaks [11].

The exchange processes arise when a small instantaneous perturbation (δx) is intro-
duced into the dynamics of one of the oscillators. In our case, x′8(t + 1) = F(x8(t)) +
δx, δx = −0.1, t = 1001.
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Figure 2. Segments (250 time steps) of the chaotic time series (a,c), and the corresponding power spectra (b,d); the logistic
map (a,b), r = 3.88; the Gompertz map (c,d), r = 2.65. The values of the dominant Lyapunov exponent (Λ) are equal to
+0.45 (a), and +0.43 (b). The positive Lyapunov exponents are a hallmark of chaotic dynamics [12].

3. Results
3.1. Coexisting Chaotic and Regular Dynamical Patterns in the Rings of Oscillators

Figure 3 demonstrates the dynamics of coupled logistic oscillators after the perturba-
tion δx is applied. A result of the perturbation in the ring of coupled Gompertz oscillators
is shown in Figure 4.

As it is seen from Figures 3 and 4, the perturbation δx results in a violation of the
initial identity of the oscillators. It is also seen that the oscillations for i = 1 are identical
to those for i = 15, the oscillations for i = 2 are identical to those for i = 14, etc. This
symmetry results from the choice of the perturbed oscillator location and the periodic
boundary conditions. All the time series in Figures 3 and 4 are chaotic (just as they were
for δx = 0, see Figure 2); the corresponding numerical values of the dominant Lyapunov
exponent Λ of the oscillations, which are shown in Figures 3 and 4, range from +0.07 to
+0.45 (the logistic map) and from +0.10 to +0.40 (the Gompertz map).
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Figure 3. Segments (80 time steps) of the logistic time series (N = 15) that are the result of the perturbation δx = −0.1
after the completion of transients. This perturbation was applied to the 8-th oscillator (i = 8) at t = 1001. Here, C = 0.05.
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Figure 4. Segments (80 time steps) of the Gompertz time series (N = 15), that are the result of the perturbation δx = −0.1,
after the completion of transients. This perturbation was applied to the 8-th oscillator (i = 8) at t = 1001. Here, C = 0.02.

An increase in the intensity of the exchange processes between the oscillators causes a
dramatic change in the character of their dynamics. In this case, despite the fact that some
of the oscillators remain chaotic, others begin to oscillate in a regular manner. The domains
of chaos coexisting with domains of regular dynamics occur both in the ring of logistic
oscillators (Figure 5) and in the ring of oscillators whose activity is given by the Gompertz
function (Figure 6). In Figures 5 and 6, like in Figures 3 and 4, the time series for i = 1 are
identical to those for i = 15, the time series for i = 2 are identical to those for i = 14, etc.
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Figure 5. Segments (80 time steps) of the logistic time series (N = 15) that are the result of the perturbation δx = −0.1
after the completion of transients. This perturbation was applied to the 8-th oscillator (i = 8) at t = 1001. Here, C = 0.075.
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Figure 6. Segments (80 time steps) of the Gompertz time series (N = 15) that are the result of the perturbation δx = −0.1
after the completion of transients. This perturbation was applied to the 8-th oscillator (i = 8) at t = 1001. Here, C = 0.05.

For the chaotic time series shown in Figures 5 and 6, both maximum and minimum
numerical values of the dominant Lyapunov exponent Λ are lower than the maximum
and minimum values of Λ characteristic of the chaotic time series under lower intensities
of the exchange processes (Figures 3 and 4). Namely, in contrast to the values of Λ
(Λ ∈ [0.07, 0.4) characteristic of the time series for C = 0.05 (Figure 3) for the ring of
logistic oscillators and the values of Λ (Λ ∈ [0.10, 0.40), which are characteristic of the
time series for C = 0.02 (Figure 4) for the Gompertz oscillators, the Λ values of the chaotic
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time series in Figures 5 and 6 are Λ = 0.2 for i = 1, 15, Λ = 0.07 for i = 2, 14, Λ = 0.02
for i = 3, 13 (logistic oscillators), and Λ = 0.10 for i = 1, 15, Λ = 0.01 for i = 2, 14
(Gompertz oscillators).

In more detail, the dynamical regimes that emerge in the ring of oscillators under
variations in numerical values of the parameters r and C are shown in Figure 7.

Figure 7. The dynamical modes in the model parameter space (r, C): (a) logistic oscillators, (b) Gom-
pertz oscillators. Here, dots (·) denote the coexisting dynamical modes: chaos + regular oscillations,
(�) corresponds to regular oscillations (chaotic modes do not occur in the ring), white color corre-
sponds to chaotic modes of each of the oscillators of the ring.

One can see (Figure 7) that a slight increase in the parameter C values can lead to
transition from chaotic dynamical regimes to coexistence of chaos and regular oscillations,
or to regular oscillations, when chaos does not occur in the ring. Variations in the parameter
r values can also lead to transitions from one dynamical regime to another.

In this paper, we explore the nature of the processes that lead to the coexistence of
regular and chaotic oscillations (Figures 5 and 6).
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3.2. Resonance as the Cause of Transformation of Chaos into Regular Dynamics

The phenomenon of coexistence of different dynamical regimes resulting from the
transformation of the initial chaos into regular dynamics in a number of oscillators, while
other oscillators in the same ring remain chaotic, turned out to depend on the intensity
of the exchange processes between neighboring oscillators. However, the effect of the
exchange processes on the dynamics of coupled neighboring oscillators is reduced to zero
when these oscillators remain synchronized. This is the case for oscillations for i = 1 and
i = 15 (N = 15).

Figure 8 demonstrates the power spectra of the logistic time series for i = 1, 2, 3, and
4, and the corresponding power spectra resulting from the exchange processes (C = 0.075).
Oscillations for i = 1, 2, 3 are chaotic, while regular behavior takes place for i = 4 (Figure 5).

Note the difference between the spectra of chaotic oscillations for i = 1, 2, 3 in Figure 8a
and the power spectra of the solitary chaotic oscillator (Figure 2a). One can see (Figure 8a)
that the additional peak, which corresponds to the period T = 6, appears. Note that this
peak also appears in the spectra of exchange processes (Figure 8b). The peak at T = 4
is seen for i = 3. The value T = 4 is also the period of both regular oscillations and
the corresponding exchange processes (Figure 8a,b; i = 4). Periodicity of other regular
oscillators in the ring (Figure 5) is characterized by the same value T = 4.

Figure 8. (a) Power spectra of the logistic time series for i = 1, 2, 3, and 4, and (b) the power spectra of the corresponding
exchange processes (C = 0.075). The power spectra were obtained for the time series on the interval [37953, 40000], when
transients were completed.

The power spectra of both the Gompertz oscillators and the corresponding exchange
processes (C = 0.05) are shown in Figure 9. Here, in contrast to the logistic oscillators,
the period T = 4 appears even for i = 1 (cf. Figure 8). Like in Figure 8 (for i = 4), the value
T = 4 is the period of regular Gompertz oscillator (for i = 3) and of the corresponding
exchange processes (Figure 9a,b). Periodicity of other regular Gompertz oscillators is
characterized by the same value T = 4.
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Figure 9. (a) Power spectra of the Gompertz oscillators for i = 1, 2, 3, and 4, and (b) the power spectra
of the corresponding oscillatory exchange processes (C = 0.05). The power spectra were obtained for
the time series on the interval [37953, 40000], when transients were completed.

Figures 8 and 9 demonstrate a similarity of the spectra of the time series of the
logistic (3) and Gompertz (4) maps with the spectra of the corresponding exchange pro-
cesses. Such a similarity implies that the dynamics of each of the coupled oscillators is
essentially dependent on the exchange processes, and vice versa. At a sufficiently high
intensity of the exchange processes, the resonance, i.e., the coincidence of one of the com-
ponents of the spectrum of the exchange processes with a component of initially chaotic
oscillations, causes the selection of the corresponding period of oscillations from the con-
tinuous spectrum characteristic of chaos. As a result, the chaotic dynamics is transformed
into a regular one.

4. Concluding Remarks

Since the pioneering experiments by Galileo Galilei [13] (see also in [14]) and Chris-
tiaan Huygens [15] (see also in [16]), mechanisms of oscillatory processes and the effects
associated with interactions between oscillatory processes have attracted the attention of
researchers in various fields of physics, chemistry, biology, and ecology [3,17–22]. The in-
teractions between individual oscillators, which result in a transformation of hardly pre-
dictable chaotic dynamics into regular dynamics, were of particular interest. In this context,
it was shown, for example, that even a small feedback action can turn chaotic dynamics
into periodic one, and vice versa [23]. Stable periodicity was demonstrated to arise when
a chaotic system is driven by another chaotic system. This effect occurs to be a result
of closeness of the chaotic dynamics of the response system to a periodic window [24].
As applied to ecological systems, it has been shown theoretically that coupling between
two habitats can cause chaotic populations to behave non-chaotically [25–27].

We show here (Figures 5 and 6) that coexistence of regular and chaotic oscillators can
emerge in a ring of coupled oscillators. Self-organization of the domains, one of which
includes regular oscillators, while the other consists of chaotic oscillators, occurs as a result
of a small perturbation, which was applied to one of initially identical chaotic oscillators,
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followed by the selection of a component from the continuous spectrum typical of chaos
(Figures 8 and 9).

The ring of coupled oscillators can be considered as a complete dynamical system.
This dynamical system can serve as a model of real ring-shaped ecosystems (for example,
a near-shore area of a lake).

We use the Shannon entropy

S(t) = −∑
m

pm(t) ln pm(t) (5)

as a numerical characteristic of the behavior of such a dynamical system. Here, t is time,
and pm(t) is the probability of the occurrence of the xi values (see Equation (1)) within the
m-th interval of width ∆x:

pm(t) =
km(~x(t))

K
, ~x(t)) = {x1(t), · · · , xN(t)}. (6)

Here, km(~x(t)) is a histogram, which displays the number of occurrences of the xi
values within the m-th interval, and K is equal to the product of the number (N) of oscil-
lators in the ring and the number of the random initial conditions set for calculating S(t).
The graphs S(t) for the rings of the oscillators, which are described by Equations (1)–(4),
are shown in Figure 10.

Figure 10. The graphs S(t) obtained for 102 random initial conditions: (a) the logistic map; (b) the Gompertz map. Here
K = 1500; ∆x = 1.2× 10−2 for the logistic map, and ∆x = 1.5× 10−2 for the Gompertz map.

One can see that if the dynamics of all the oscillators in the ring remains chaotic
over time (as for C = 0.02 for the Gompertz map and for C = 0.05 for the logistic map),
then S(t) depends on time only weakly. A much more noticeable drop in the entropy
(Figure 10; C = 0.05 for the Gompertz map and for C = 0.075 for the logistic map) occurs
if, over time, the chaotic dynamics of most of the oscillators is transformed into regular
dynamics (Figures 5 and 6; see also the power spectra in Figures 8 and 9). Thus, a shift
in the value of the Shannon entropy over time may reflect the occurrence of qualitative
changes in the dynamics of the system of coupled oscillators as a whole.

Note that the Gompertz map and the logistic map, as well as many other models that
are employed in mathematical ecology [2], are essentially the product of a reduction-based
approach. This means that any model is a simplification of reality, which is aimed at formal-
izing and analyzing the hypothesis concerning the mechanism of the phenomenon under
study. Certainly, mathematical models are based on the data obtained from experiments
and/or observations. However, even the planning of these experiments and observations
presupposes selectivity and, consequently, a reduction of reality.
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As an alternative to mathematical modeling, it was proposed to use reconstruction of
population dynamics based on time series obtained from field observations in order to study
the nature of population dynamics and predict the dynamics of population abundance [28].
On the other hand, in order to overcome the curse of reductionism [29], an approach called
“hybrid modeling of population dynamics” has been proposed [30]. This approach involves
direct incorporation of time series obtained by monitoring of natural ecosystems into the
mathematical models. As a result, we get a chance to assess numerically the parameters of
population dynamics that are difficult or even impossible to measure directly during field
observations or experiments.

Both reconstruction of population dynamics and direct incorporation of the time
series into mathematical models imply extensive and long-term field monitoring. Careful
monitoring of natural ecosystems is equally necessary to assess whether chaotic and
regular oscillations in population abundance can coexist even in a relatively homogeneous
environment (for example, in shallow lakes, which are highly susceptible to wind mixing).
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