
mathematics

Article

Image Classification for the Automatic Feature Extraction in
Human Worn Fashion Data

Stefan Rohrmanstorfer 1 , Mikhail Komarov 2,* and Felix Mödritscher 1

����������
�������

Citation: Rohrmanstorfer, S.;

Komarov, M.; Mödritscher, F. Image

Classification for the Automatic

Feature Extraction in Human Worn

Fashion Data. Mathematics 2021, 9,

624. https://doi.org/10.3390/

math9060624

Academic Editor: Dmitry M. Nazarov

Received: 8 February 2021

Accepted: 1 March 2021

Published: 16 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department Computer Science, University of Applied Science Technikum Wien, 1200 Vienna, Austria;
stefan.rohrmanstorfer95@gmail.com (S.R.); felix.moedritscher@technikum-wien.at (F.M.)

2 Department of Business Informatics, Graduate School of Business, National Research University Higher
School of Economics, 101000 Moscow, Russia

* Correspondence: mkomarov@hse.ru

Abstract: With the always increasing amount of image data, it has become a necessity to automatically
look for and process information in these images. As fashion is captured in images, the fashion sector
provides the perfect foundation to be supported by the integration of a service or application that
is built on an image classification model. In this article, the state of the art for image classification
is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be
implemented to successfully extract features out of fashion data. For this purpose, a human-worn
fashion dataset with 2567 images was created, but it was significantly enlarged by the performed
image operations. The results show that convolutional neural networks are the undisputed standard
for classifying images, and that TensorFlow is the best library to build them. Moreover, through
the introduction of dropout layers, data augmentation and transfer learning, model overfitting was
successfully prevented, and it was possible to incrementally improve the validation accuracy of the
created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like
trousers, shoes and hats were better classified than other upper body clothes.

Keywords: image classification; neural network; convolutional; machine learning; fashion; apparel

1. Introduction

For humans, it does not take too much effort to tell apart trousers from a sweater or
to recognize the outfit of a person. However, assigning features in an image to a certain
category is still a hard problem to solve for computers [1]. Images are captured everywhere.
On Facebook alone, about 350 million images are uploaded every day [2], and many of
them contain fashion objects or apparel. With the continuously increasing amount of data,
it is crucial to automatically extract information out of image data. Over the last decade, the
progress to address these deep learning problems has been enormous. The latest common
method to understand features in images is a model called a convolutional neural network
(CNN), a subtype of neural networks [3].

1.1. Problem Statement

It is a difficult task to find the most suitable architecture for the models’ classification
purpose, and it often takes a lot of time and trials. In addition, these convolutional neural
networks require big datasets, and despite the ever-increasing amount of image data,
in real-world applications, it is often difficult to get access to image data if you are not
a company like Facebook or Google. For this, researchers have introduced techniques
like dropout regularity, data augmentation and transfer learning to make models more
generalizable even when they are trained on a small dataset.

The existing literature mostly addresses the problem of recognizing and classifying
product images in order to, for example, suggest similar products in online stores. However,
the research for classifying human-worn fashion images is limited, and the rapidly growing

Mathematics 2021, 9, 624. https://doi.org/10.3390/math9060624 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2499-6175
https://doi.org/10.3390/math9060624
https://doi.org/10.3390/math9060624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9060624
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9060624?type=check_update&version=2


Mathematics 2021, 9, 624 2 of 32

e-commerce industry offers plenty of application scenarios for image classification. One of
them is to automatically add links to social media posts that lead to an online shop with
already predefined search criteria.

The goal of this research is to provide a successful approach for implementing an
image classification model on a small dataset to extract features in fashion images. The
results will show which methods and approaches are best suited for classifying fashion
images and which techniques help to improve the generalization of small datasets.

1.2. Structure of the Work

This article begins with a brief insight into machine learning to provide a fundamental
understanding of how machines learn. Next, neural networks are discussed. Here, it will
first be described how single artificial neurons try to mimic biological neurons and how they
process inputs to generate outputs, before networks that consist of thousands of neurons
are explained. In the following subsections, it will be discussed how convolutional neural
networks can be used for image classification, as well as how and when transfer learning
should be applied. Furthermore, the most important types of layers and frameworks are
explained.

The third section specifies the setup for the implementation phase and gives an
overview of the most popular frameworks and libraries. In the fourth section, the public
benchmark dataset Fashion MNIST and, in the course of this article, the created dataset are
given.

In the fifth and sixth section, the different implementation approaches are described
and implemented before being evaluated by their performance. Sections seven, eight and
nine are meant to discuss, conclude and give an outlook on the article for further work.

1.3. Boundaries

This article attempts to examine the standard to automatically extract features in
fashion images and aims to successfully implement an image classification model. The
implemented image classifier shall be able to classify the input images into one of the
following ten classes:

• Bag;
• Coat;
• Dress;
• Hat;
• Pullover;
• Shoes;
• Shirt;
• Suit;
• Trouser;
• T-shirt.

Furthermore, the color, pattern or brand of the clothes will not be considered in the
classification and is not a part of this article.

2. Literature Review

This section provides the theoretical background necessary to understand the methods
and approaches in the following sections. First, machine learning (ML) is described in
general, with its most common types followed by the most relevant details of neural
networks being given. Finally, it will be explained how these disciplines are combined in
convolutional neural networks (CNNs) and what CNNs can achieve.

2.1. Machine Learning Types and Algorithms

Machine learning algorithms can be largely classified in two main types: supervised
and unsupervised learning. The main difference between these two taxonomies is that with
supervised learning, the algorithm is given labeled data with a known and correct output,



Mathematics 2021, 9, 624 3 of 32

whereas when it comes to unsupervised data, the output of the algorithm is unknown.
This also explains the naming, as the labeling for the output vectors of the data requires a
supervisor [4].

Supervised learning is the most widely used ML form in practice and is most common
for solving classification and regression problems. In classification, the model is required to
learn a function which maps input vectors into one of several classes by looking at several
input–output examples called training data [5]. A typical supervised machine learning
function looks as simple as the following:

Y = f (X) (1)

where Y is the predicted outcome, f is an unknown function and X represents the input
data.

Classification again comes in two forms: binary classification and multiclass classifica-
tion. If the classification consists of just two possible outcomes (zero or one), then it speaks
of a binary classification. On the other hand, if there are more than two possible outcomes,
it speaks of a multiclass classification [6]. A regression problem is when the function tries
to predict a continuous output variable, such as stocks or salaries [7].

Unsupervised Learning is harder to implement, as the ML algorithm does not have
a training set to learn from. Computers are presented with real-world data without the
corresponding correct output values and must learn from that data on their own [8].
Clustering is most often used for unsupervised learning and has the goal of discovering a
structure or patterns by investigating similarities between the objects in the input data [7].

2.2. Neural Networks for Image Classification

Neural networks have their origins in 1943, when Warren McCulloch and Walter
Pitts published a paper on how neurons work and presented the first model of artificial
neurons [9]. This model could approximate the output as a weighted sum of the inputs
that is passed through a threshold function [6]. Between 1957 and 1958, Frank Rosenblatt’s
research in neurobiology resulted in the invention of the perceptron, the oldest neural
network that is still in use [9]. In the 1970s, Marvin Minsky and Seymour Papert published
the book Perceptrons, demonstrating all the concerning limitations, which diminished
the interest in the field and led to some quiet years [10]. In 1986, backpropagation was
introduced by Rumelhart, Hinton and Williams [11], which enabled it to fit models with
hidden layers [12]. This was marked as a breakthrough in neural network algorithms.

The fact that research in modern neural networks is mostly guided by mathemati-
cians and engineers rather than biologists also shows that it is not the goal to perfectly
model the brain, but to achieve statistical generalization through approximation function
machines [13].

2.2.1. Artificial Neurons

An artificial neuron is considered the basic element in an artificial neural network
(ANN) [14] and carries out the computational operations in the network. The way these
neurons are interconnected constitutes the neural network [15]. In general, a neuron
receives two or more inputs from other neurons, which are connected by weighted links.
The neuron takes the weighted sum of these inputs into its activation function, adds the
bias value and generates a single output, which then may be broadcasted as an input to a
large number of other neurons [16]. In Figure 1, a one-neuron structure is shown.



Mathematics 2021, 9, 624 4 of 32Mathematics 2021, 9, x FOR PEER REVIEW 4 of 32 
 

 

 
Figure 1. An artificial neuron [16]. 

To calculate the weighted sum of the input components, the following formula is 
used: 

𝑌௞ =  𝜑(𝑌௞) =  𝜑 ൭෍ 𝑤௜௞𝑥௜ ൅ 𝑏௞௡
௜ୀଵ ൱ (2)

where 𝑌௞ is the weighted sum of the kth neuron with n input parameters, 𝑥௜ and n, 𝑤௜௞  
represents the weight parameters received from the preceding layer and 𝑏௞ illustrates the 
bias value for the kth neuron. To get the output of the neuron k, the weighted sum 𝑌௞ is 
put in an activation function φ [17]. To get the desired output, the neuron will be trained 
by adjusting the weights through many training cycles [16]. 

2.2.2. Multilayer Perceptron 
The multilayered perceptron (MLP) paradigm is widely considered the most popular 

and most utilized one among all ANN paradigms and managed to find usage in a growing 
spectrum of applications, such as time series prediction, speech and pattern recognition 
and robotics [5,7,9,16,18–20]. The focus of this article will be on the pattern recognition of 
image data. The MLP architecture consists of at least three layers: one input layer, one or 
more hidden layers and one output layer. Each layer comprises several processing units 
or neurons. All neurons in one layer are fully connected to each neuron in the next layer, 
but they are not interconnected within a layer [14,16,21]. The input layer only passes the 
raw data along. The output layer’s task is to convert the results from the hidden layers to 
an output, such as a classification category [12]. Figure 2 shows an example of a multilayer 
neural network with two hidden layers. 

Figure 1. An artificial neuron [16].

To calculate the weighted sum of the input components, the following formula is used:

Yk = ϕ(Yk) = ϕ

(
n

∑
i=1

wikxi + bk

)
(2)

where Yk is the weighted sum of the kth neuron with n input parameters, xi and n, wik
represents the weight parameters received from the preceding layer and bk illustrates the
bias value for the kth neuron. To get the output of the neuron k, the weighted sum Yk is put
in an activation function ϕ [17]. To get the desired output, the neuron will be trained by
adjusting the weights through many training cycles [16].

2.2.2. Multilayer Perceptron

The multilayered perceptron (MLP) paradigm is widely considered the most popular
and most utilized one among all ANN paradigms and managed to find usage in a growing
spectrum of applications, such as time series prediction, speech and pattern recognition
and robotics [5,7,9,16,18–20]. The focus of this article will be on the pattern recognition of
image data. The MLP architecture consists of at least three layers: one input layer, one or
more hidden layers and one output layer. Each layer comprises several processing units or
neurons. All neurons in one layer are fully connected to each neuron in the next layer, but
they are not interconnected within a layer [14,16,21]. The input layer only passes the raw
data along. The output layer’s task is to convert the results from the hidden layers to an
output, such as a classification category [12]. Figure 2 shows an example of a multilayer
neural network with two hidden layers.



Mathematics 2021, 9, 624 5 of 32
Mathematics 2021, 9, x FOR PEER REVIEW 5 of 32 
 

 

 
Figure 2. A multilayer network with two hidden layers [22]. 

One reason for its high success and popularity is that it is considered as a universal 
approximator, which means that it is capable of modeling almost any function when a 
sufficient number of hidden layers is added [7,19,23]. 

2.2.3. Backpropagation: Learning a Function 
Learning is an essential characteristic of all ANN algorithms [24] and is usually 

achieved in two steps: forward propagation, followed by backward propagation [18]. 
Backward propagation, or backpropagation, was introduced by Rumelhart, Hinton and 
Williams in 1986 and is fundamental for the learning behavior of neural networks [24]. 
The forward propagation computes the output after processing the input data. The back-
propagation starts at the output layer [25], where it takes the computed output and com-
pares it to the actual, desired output [23]. It then adds up the squares of the differences 
between each component, called the squared error (SE). The formula considering one sin-
gle input is defined as 𝑆𝐸 = (𝑑 − 𝑓)ଶ (3)

where SE represents the error rate, d is the actual output and f is the output that the net-
work gives. To not just evaluate the performance of a single input vector, but the entire 
network, the loss function is used, which calculates the mean squared error (MSE) [26] as 
follows: 

𝑀𝑆𝐸 =  1𝑛 ෍(𝑑௜ − 𝑓௜)ଶ௡
௜ୀଵ  (4)

where 𝑀𝑆𝐸 represents the output of the function, n stands for the number of data points 
in the training set and 𝑑௜ and 𝑓௜  represent the desired and actual output of the model for 
the data point i [27]. 

Backpropagation uses gradient descent to update the interconnection weights to 
minimalize the mean squared error in the network in many iterations [24]. Typically, in 

Figure 2. A multilayer network with two hidden layers [22].

One reason for its high success and popularity is that it is considered as a universal
approximator, which means that it is capable of modeling almost any function when a
sufficient number of hidden layers is added [7,19,23].

2.2.3. Backpropagation: Learning a Function

Learning is an essential characteristic of all ANN algorithms [24] and is usually
achieved in two steps: forward propagation, followed by backward propagation [18].
Backward propagation, or backpropagation, was introduced by Rumelhart, Hinton and
Williams in 1986 and is fundamental for the learning behavior of neural networks [24]. The
forward propagation computes the output after processing the input data. The backpropa-
gation starts at the output layer [25], where it takes the computed output and compares it
to the actual, desired output [23]. It then adds up the squares of the differences between
each component, called the squared error (SE). The formula considering one single input is
defined as

SE = (d − f )2 (3)

where SE represents the error rate, d is the actual output and f is the output that the network
gives. To not just evaluate the performance of a single input vector, but the entire network,
the loss function is used, which calculates the mean squared error (MSE) [26] as follows:

MSE =
1
n

n

∑
i=1

(di − fi)
2 (4)

where MSE represents the output of the function, n stands for the number of data points in
the training set and di and fi represent the desired and actual output of the model for the
data point i [27].



Mathematics 2021, 9, 624 6 of 32

Backpropagation uses gradient descent to update the interconnection weights to
minimalize the mean squared error in the network in many iterations [24]. Typically, in
the first training iteration, the interconnections of the network layers are assigned random
weights. The resulting mean squared error is then broadcasted backward to the input layer
to update the weights and therefore decrease the gradient.

2.2.4. Activation Functions

An activation function is applied to determine the output of the neurons, where each
output of a neuron contributes to the final output of the network [18]. The activation
function models the firing rate of the artificial neuron, and usually, nonlinear functions are
used to narrow the output (e.g., a threshold function limits it to 0 or 1; a sigmoid function
between 0 and 1; and a hyperbolic tangent between −1 and 1) [28]. Nowadays, it is strongly
recommended to use the rectified linear unit (ReLu) in more modern neural networks. The
ReLu function calculates the output using a ramp with

f (x) = max(0, x) (5)

The ReLu function gives an output of x if x is positive and an output of zero if it is
negative [13]. As all negative outputs are set to zero, a fewer number of neurons will be
considered in the propagation. This results in a more lightweight network that is capa-
ble of going through iterations quickly without significantly affecting the generalization
accuracy [3].

For multiclass classification problems, the softmax activation function is often used in
the output layer. Softmax is a linear function that takes the activations from the previous
layer to generate an output between 0 and 1 for each class. This output is interpreted as the
class probability [7].

2.2.5. Optimizers

Optimizers are used in the backpropagation process and help to minimize the error
rate of the learning function. This is often achieved by using stochastic gradient descent
(SGD). SGD leads to an optimization of the learnable parameters in the network, as well
as to convergence to the local minima by performing parameter updates for each training
example individually [6]. There are a bunch of existing SGD options which all try to solve
the problems of optimization. The most common optimizers are AdaGrad, RMSProp and
Adam, although the publishers of the Adam algorithm insist that they combine both the
benefits of the other two algorithms [29].

2.2.6. The Problem of Overfitting

Another concern regarding backpropagation is that it only minimizes the error rate of
the training data and not new data. This could have a negative impact on the generalization
of the network [5]. A model is said to be overfitted when it tends to remember features
rather than learn them [17]. This results in a much worse performance of new data and
therefore loses its generalization, and it is not applicable to other datasets anymore [18].
Overfitting depends on many variables, such as the size of the training data, number of
training iterations, the bias and the number of layers and nodes. A large training dataset
usually results in a better generalization of the model [9,26].

2.2.7. Conclusion: Neural Networks for Image Classification

Neural networks consist of a certain number of neurons, which try to mimic the
biological neuron when processing inputs to generate a specific output. Backpropagation
is used to improve the generated output by automatically updating the models’ internal
structure to reduce the difference between the generated output and the correct output.
For multiclass classification problems, ReLu is the standard to use for activation functions,
while Adam is the most used optimizer.



Mathematics 2021, 9, 624 7 of 32

2.3. Convolutional Neural Networks

A CNN is a deep artificial neural network that is widely known for its usage with
image data. In some ways, its architecture is similar to typical neural networks, as it consists
of fully connected layers comprising many neurons, which have learnable parameters such
as weights and biases. The difference is that convolutional neural networks do not only
consist of fully connected layers. They instead make use of convolutional layers combined
with pooling layers, while fully connected layers are mostly used as the last layers of the
network to generate an interpretable output. A big advantage of CNNs is that once a
feature is learned by the network, it is recognized regardless of its position in an image. By
stacking these three layers in different ways, a vast number of various architectures can be
designed [30].

2.3.1. Transfer Learning

The idea of transfer learning is to understand new tasks easier through leveraging
familiar conditions, and it is an approach closely related to learning by analogy. The main
concern is the analogy between the source and the new target, which can even be in a
completely different application. However, it is crucial that a sufficient analogy between the
underlying datasets or tasks exists [31]. Figure 3 shows the difference between traditional
ML tasks and tasks that are accomplished using transferred knowledge.

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 32 
 

 

2.3. Convolutional Neural Networks 
A CNN is a deep artificial neural network that is widely known for its usage with 

image data. In some ways, its architecture is similar to typical neural networks, as it con-
sists of fully connected layers comprising many neurons, which have learnable parame-
ters such as weights and biases. The difference is that convolutional neural networks do 
not only consist of fully connected layers. They instead make use of convolutional layers 
combined with pooling layers, while fully connected layers are mostly used as the last 
layers of the network to generate an interpretable output. A big advantage of CNNs is 
that once a feature is learned by the network, it is recognized regardless of its position in 
an image. By stacking these three layers in different ways, a vast number of various archi-
tectures can be designed [30]. 

2.3.1. Transfer Learning 
The idea of transfer learning is to understand new tasks easier through leveraging 

familiar conditions, and it is an approach closely related to learning by analogy. The main 
concern is the analogy between the source and the new target, which can even be in a 
completely different application. However, it is crucial that a sufficient analogy between 
the underlying datasets or tasks exists [31]. Figure 3 shows the difference between tradi-
tional ML tasks and tasks that are accomplished using transferred knowledge. 

 
Figure 3. Transfer learning compared with traditional machine learning (ML) tasks. 

Transfer learning can be used to train parts of a dataset separately and then transfer 
the results to the next part, which can be in a different algorithm [32]. Transfer learning is 
a commonly used method in deep learning and can be especially useful in large-scale im-
age classification applications, which require expensive computational power. In a CNN, 
it can also help to prevent overfitting when the training data set is too small. In these cases, 
a pretrained network is used instead of the usual random initialization. 

  

Figure 3. Transfer learning compared with traditional machine learning (ML) tasks.

Transfer learning can be used to train parts of a dataset separately and then transfer
the results to the next part, which can be in a different algorithm [32]. Transfer learning is a
commonly used method in deep learning and can be especially useful in large-scale image
classification applications, which require expensive computational power. In a CNN, it can
also help to prevent overfitting when the training data set is too small. In these cases, a
pretrained network is used instead of the usual random initialization.



Mathematics 2021, 9, 624 8 of 32

2.3.2. Data Augmentation

Data augmentation is a regularization method for deep neural networks. The best
way to improve the performance of a neural network is to increase the size of the dataset.
However, with image data, it often is difficult to acquire more data. One workaround
is to create fake data from the existing dataset. This approach is especially appropriate
for image classification tasks, as images are high dimensional and contain lot of variation
factors. Therefore, it is important to compute image transformation without altering the
corresponding class (rotating an image of the digit 6 by 180◦ would result in a 9).

With data augmentation, images can be, for example, rotated, flipped, scaled, trans-
lated or subsampled with various crops and scales. Figure 4 shows how augmentation
transforms images to amplify the dataset with fake data. In this example, the operation on
one input image results in nine augmented fake images.

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 32 
 

 

2.3.2. Data Augmentation 
Data augmentation is a regularization method for deep neural networks. The best 

way to improve the performance of a neural network is to increase the size of the dataset. 
However, with image data, it often is difficult to acquire more data. One workaround is 
to create fake data from the existing dataset. This approach is especially appropriate for 
image classification tasks, as images are high dimensional and contain lot of variation fac-
tors. Therefore, it is important to compute image transformation without altering the cor-
responding class (rotating an image of the digit 6 by 180° would result in a 9). 

With data augmentation, images can be, for example, rotated, flipped, scaled, trans-
lated or subsampled with various crops and scales. Figure 4 shows how augmentation 
transforms images to amplify the dataset with fake data. In this example, the operation on 
one input image results in nine augmented fake images. 

 
Figure 4. Original image with data augmentation [33]. 

2.3.3. Important Layer Types 
CNNs for classification purposes usually consist of three layers: convolutional, pool-

ing and dense layers [34]. To prevent overfitting, the dropout layer is indispensable as 
well. 

The convolutional layer is generally the first layer in a CNN after the input layer. At 
first, the input matrix is analyzed by a defined number of filters with a certain kernel size 
(e.g., 3 × 3). These filters then move from the top-left to the bottom-right with a defined 
step size, or stride. In addition to the stride and kernel size, a padding that decides what 
to do when the filter hits the edge of the matrix is defined. 

Figure 5 demonstrates the calculation of the feature map for a two-dimensional input. 
The blue matrix depicts the input, whereas the green matrix depicts the filter. The filter 
matrix is multiplied with every distinct 3 × 3 subregion of the input matrix to form the 
feature map, starting from the top-left. The red marked square in the input matrix is called 
the receptive field. In the receptive field, the input values are multiplied with the filter 
values and summed up as 1 × 1 + 1 × 0 +1 × 1 + 0 × 0 + 1 × 1 + 1 × 0 + 0 × 1 + 0 × 0 + 1 × 1. This 
calculation results in four, the first value of the feature map. Here, the input values are on 
the left side with the multiplication, and the filter values are on the right side. 

Figure 4. Original image with data augmentation [33].

2.3.3. Important Layer Types

CNNs for classification purposes usually consist of three layers: convolutional, pooling
and dense layers [34]. To prevent overfitting, the dropout layer is indispensable as well.

The convolutional layer is generally the first layer in a CNN after the input layer. At
first, the input matrix is analyzed by a defined number of filters with a certain kernel size
(e.g., 3 × 3). These filters then move from the top-left to the bottom-right with a defined
step size, or stride. In addition to the stride and kernel size, a padding that decides what to
do when the filter hits the edge of the matrix is defined.

Figure 5 demonstrates the calculation of the feature map for a two-dimensional input.
The blue matrix depicts the input, whereas the green matrix depicts the filter. The filter
matrix is multiplied with every distinct 3 × 3 subregion of the input matrix to form the
feature map, starting from the top-left. The red marked square in the input matrix is called
the receptive field. In the receptive field, the input values are multiplied with the filter
values and summed up as 1 × 1 + 1 × 0 +1 × 1 + 0 × 0 + 1 × 1 + 1 × 0 + 0 × 1 + 0 × 0 +
1 × 1. This calculation results in four, the first value of the feature map. Here, the input
values are on the left side with the multiplication, and the filter values are on the right side.



Mathematics 2021, 9, 624 9 of 32

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 32 
 

 

 
Figure 5. Convolution operation. 

The second import layer type is the pooling layer and, in short, the main task of the 
pooling layer can be described as sampling down the previous input to decrease the com-
plexity for the next layer. In image data processing, downsampling can be considered as 
reducing the resolution of the features in the image, which makes it resilient against noise. 
Two common ways have emerged to perform pooling: max pooling and average pooling. 
For both methods, a filter size and a stride are needed. The filter size describes how many 
values should be downsampled; usually, a size of 2 × 2 is chosen. The stride describes how 
many fields the filter moves and is usually chosen to be of the same length as the filter 
size. The pooling starts at the top-left of the input matrix and takes the first 2 × 2 subregion. 
As shown in Figure 6 below, the two methods differ at this point; max pooling will just 
return the maximum of the four values, whereas average pooling will calculate and return 
the average value within the subregion [12]. 

Figure 5. Convolution operation.

The second import layer type is the pooling layer and, in short, the main task of
the pooling layer can be described as sampling down the previous input to decrease the
complexity for the next layer. In image data processing, downsampling can be considered
as reducing the resolution of the features in the image, which makes it resilient against
noise. Two common ways have emerged to perform pooling: max pooling and average
pooling. For both methods, a filter size and a stride are needed. The filter size describes
how many values should be downsampled; usually, a size of 2 × 2 is chosen. The stride
describes how many fields the filter moves and is usually chosen to be of the same length
as the filter size. The pooling starts at the top-left of the input matrix and takes the first 2 ×
2 subregion. As shown in Figure 6 below, the two methods differ at this point; max pooling
will just return the maximum of the four values, whereas average pooling will calculate
and return the average value within the subregion [12].

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 32 
 

 

 
Figure 6. Average pooling and max pooling [1]. 

The dense layer is the only fully connected layer in a CNN with a linear connection 
from input to output, like how neurons interact in a traditional neural network. After the 
features are extracted by the convolutional layer and downsampled by the pooling layer, 
the dense layer’s goal is to perform classification. Therefore, it receives input from all neu-
rons of the previous layer to process them in a linear input-to-output connection [34]. In 
Figure 7, the left model shows a densely connected neural network with two hidden lay-
ers. 

 
Figure 7. Effect on neurons after applying a dropout layer [33]. 

Fully connected layers entail a vast number of parameters and can result in very ex-
pensive computations when used for high-dimensional image data. Because of this, it is 
mostly used only in the final or two final layers of the network [12]. 

Figure 6. Average pooling and max pooling [1].



Mathematics 2021, 9, 624 10 of 32

The dense layer is the only fully connected layer in a CNN with a linear connection
from input to output, like how neurons interact in a traditional neural network. After the
features are extracted by the convolutional layer and downsampled by the pooling layer,
the dense layer’s goal is to perform classification. Therefore, it receives input from all
neurons of the previous layer to process them in a linear input-to-output connection [34].
In Figure 7, the left model shows a densely connected neural network with two hidden
layers.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 32 
 

 

 
Figure 6. Average pooling and max pooling [1]. 

The dense layer is the only fully connected layer in a CNN with a linear connection 
from input to output, like how neurons interact in a traditional neural network. After the 
features are extracted by the convolutional layer and downsampled by the pooling layer, 
the dense layer’s goal is to perform classification. Therefore, it receives input from all neu-
rons of the previous layer to process them in a linear input-to-output connection [34]. In 
Figure 7, the left model shows a densely connected neural network with two hidden lay-
ers. 

 
Figure 7. Effect on neurons after applying a dropout layer [33]. 

Fully connected layers entail a vast number of parameters and can result in very ex-
pensive computations when used for high-dimensional image data. Because of this, it is 
mostly used only in the final or two final layers of the network [12]. 

Figure 7. Effect on neurons after applying a dropout layer [33].

Fully connected layers entail a vast number of parameters and can result in very
expensive computations when used for high-dimensional image data. Because of this, it is
mostly used only in the final or two final layers of the network [12].

The use of dropout layers is an efficient way to prevent overfitting through model
combination. A dropout layer sets the output of randomly chosen neurons to zero. There-
fore, the dropped-out neurons neither participate in the forward nor in the backward
propagation, meaning that the model builds a different architecture for every new input it
receives. The percent of randomly dropped-out neurons is provided by the user. Due to
this method, neurons tend to rely less on the presence of other neurons and decreases the
possible complex coadaptions of neurons [35].

2.3.4. Conclusion: Convolutional Neural Networks

• Convolutional Neural Networks (CNN) are the standard;

CNNs depict input images as matrixes of numbers, which represent the pixel values of
the image. Typically, CNNs consist of three different layers—convolutional layers, pooling
layers and fully connected layers—where the convolutional layers build the core part of a
CNN. CNNs learn the features in images regardless of their position in the image. When it
comes to multiclass image classification problems, convolutional neural networks are the
standard and will also be used to implement the image classifier for fashion images in this
article.



Mathematics 2021, 9, 624 11 of 32

• Data augmentation enlarges the dataset;

In real-word applications, it is often a difficult task to collect a big dataset that is
necessary for a successful neural network. With the help of data augmentation, more
data can be created by rotating, scaling, cropping, flipping or zooming the original input
images. Through these operations, the dataset is enlarged with fake data and can lead to
an improved generalization of the network.

• Transfer learning is the answer to small datasets.

Transfer learning is a machine learning approach that is mainly used when dealing
with small datasets. Its focus is to store the knowledge from one application scenario to
later use it on a different but related application scenario to save computational resources
and make use of a bigger but different dataset. Transfer learning can lead to an improved
generalization of the network and a decreased training time. In addition, several options
for well-established CNN architectures were presented to perform transfer learning on.

3. Set-Up for Case Study

For the practical part of this paper, the main task was to implement a CNN to see how
well a classifier performs on a small fashion dataset. To properly test the performance, four
approaches are used. First, a model is trained on general data (i.e., the fashion MNIST
dataset) to test how it performs on new, specific tasks. Secondly, a model is pretrained
on the fashion MNIST dataset and fine-tuned with a created training dataset. The last
approach trains the model only with the created training dataset, without using the fashion
MNIST dataset.

3.1. Hardware

One of the major limitations for the usage of deep learning methods is the need for
computational power and the high amount of training data that is needed to produce
generalizations. For the training phase of the CNN in this article, neither a server farm
nor a top-notch Graphics Processing Unit (GPU) was available. Therefore, the neural
network was trained on a running Proxmox 6.0-4 virtual environment on a Linux server
with following technical specifications:

• Linux/Ubuntu server as a virtual machine;
• DELL Poweredge R730;
• Processor: Two Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz;
• Drive: 256 GB SSD;
• RAM: Ten DDR4-2666 with 16 GB.

Training a deep neural network from scratch without using a proper GPU is tremen-
dously time-consuming. Thus, the transfer learning method is applied to make use of an
already successfully established CNN to try to save computational power. The training
time will not be evaluated precisely, but it will be tracked and analyzed to see if techniques
like dropout, data augmentation or transfer learning have an impact on the training time.

3.2. Libraries and Frameworks

The best-suited framework for a network depends on the network itself and on the
preferences of the people who are building it. Table 1 depicts the ranking of the most
popular open software libraries based on stars and forks, which are received from the
GitHub community [36].



Mathematics 2021, 9, 624 12 of 32

Table 1. Software frameworks ranked by the GitHub community (accessed 28 September 2020).

Framework Stars Forks Contributors Language

TensorFlow 149,000 82,800 2735 Python
Keras 49,900 18,600 864 Python
Caffe 30,900 18,500 269 C++

PyTorch 42,800 11,100 1593 Lua

In this article, TensorFlow will be used as the backend, and Keras will operate on top
of it. Both will run in an Anaconda environment using Jupyter Notebook. The following
subsections will explain the chosen frameworks and justify the selection.

3.2.1. TensorFlow

TensorFlow is open-source, rapidly evolving and backed by a strong industrial com-
pany. Therefore, it is widely considered as the most popular and most used deep learning
tool. The high popularity can also be seen in Table 1 [37]. The main advantages of Tensor-
Flow are as follows:

• It already offers multilanguage support, with a foreseeable increase in supported
languages in the future;

• Its high performance;
• Its support for multi-Central Processing Units (CPU), GPU and even hybrid platforms;
• Its high portability.

Because of the already-established popularity and the support received from Google, it
is foreseeable that TensorFlow will have major advantages to the deep learning frameworks
that are maintained by individuals or universities in the future [38].

3.2.2. Keras

Keras is another deep learning library written in Python, and it makes use of either
Theano or TensorFlow as its backend. Keras is built on four principles [37]:

1. User friendliness;

Keras was designed for humans, not machines, and therefore offers Application
Programming Interfaces (API) that are consistent and simple to use.

2. Modularity;

Neural layers, optimizers, activation functions, cost functions, initialization schemes
and regularization schemes all act as independent, fully configurable modules and result
in the model when they are plugged together.

3. Easy extensibility;

New required modules are easy to add, and already existing modules are provided
with sufficient examples to reach clarification.

4. Work with Python.

The use of Python makes the models easier to debug, more compact and enables easy
extensibility.

3.2.3. Anaconda

Anaconda is an open-source distribution for performing machine learning and data
science tasks in Python and R, either on Windows, Linux or Mac OS X. Figure 8 compares
the training and inference performances of four different image classification models, where
TensorFlow is installed once with conda and once with pip; both used the same version. As
can be seen, the performances of the models installed with conda were significantly better
in speed than the performances of the models with pip in all of the four cases [39].



Mathematics 2021, 9, 624 13 of 32

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 32 
 

 

4. Work with Python. 
The use of Python makes the models easier to debug, more compact and enables easy 

extensibility. 

3.2.3. Anaconda 
Anaconda is an open-source distribution for performing machine learning and data 

science tasks in Python and R, either on Windows, Linux or Mac OS X. Figure 8 compares 
the training and inference performances of four different image classification models, 
where TensorFlow is installed once with conda and once with pip; both used the same 
version. As can be seen, the performances of the models installed with conda were signif-
icantly better in speed than the performances of the models with pip in all of the four cases 
[39]. 

Anaconda is the leading integrated development environment (IDE) for data science 
projects and particularly offers great performance and integration with TensorFlow. 
Keras, TensorFlow and Anaconda harmonize excellently with each other and build the 
foundation of many CNN projects. 

 
Figure 8. TensorFlow training performance with synthetic data [39]. 

3.3. Datasets 
This section describes the fashion MNIST dataset, which is the standard for bench-

marking computer vision and deep learning models. However, this section also describes 
the creation process of the training and test datasets, which will be classified in the course 
of this article. 

3.3.1. Fashion MNIST Benchmark 
The original MNIST dataset consists of handwritten digits and was used as a bench-

mark for machine learning algorithms over the past few years. The fashion MNIST dataset 

Figure 8. TensorFlow training performance with synthetic data [39].

Anaconda is the leading integrated development environment (IDE) for data science
projects and particularly offers great performance and integration with TensorFlow. Keras,
TensorFlow and Anaconda harmonize excellently with each other and build the foundation
of many CNN projects.

3.3. Datasets

This section describes the fashion MNIST dataset, which is the standard for bench-
marking computer vision and deep learning models. However, this section also describes
the creation process of the training and test datasets, which will be classified in the course
of this article.

3.3.1. Fashion MNIST Benchmark

The original MNIST dataset consists of handwritten digits and was used as a bench-
mark for machine learning algorithms over the past few years. The fashion MNIST dataset
consists of 70,000 article images provided by Zalando. The dataset is split into a training set
containing 60,000 images and a test set with 10,000 images. Each data entry is a grayscale
image of the size 28 × 28 and belongs to one of the 10 class labels shown in Figure 9.



Mathematics 2021, 9, 624 14 of 32

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 32 
 

 

consists of 70,000 article images provided by Zalando. The dataset is split into a training 
set containing 60,000 images and a test set with 10,000 images. Each data entry is a gray-
scale image of the size 28 × 28 and belongs to one of the 10 class labels shown in Figure 9. 

 
Figure 9. Fashion MNIST class labels and examples from [40]. 

3.3.2. Created myFashion Dataset 
The to-be-implemented network model used supervised learning, and thus it needed 

labeled data for the training phase. The image data was gathered and downloaded with 
the Fatkun Batch Download Image extension for Google Chrome. The Fatkun extension 
downloads all selected images for a specific Google query. The following table shows the 
key search phrases that were used for the data collection process. 

The created dataset consisted of 2567 images, which were divided into 10 classes. As 
can be seen in Table 2, the classes within the dataset had a balanced image count. With 
288 images, dress was the class with the highest image count. The hat class, on the other 
hand, comprised the fewest images with just 202. Besides these two classes, the margin 
between the other eight classes was relatively small and reached from 232 to 281 images. 
The dataset consisted of human-worn fashion images. The images could be both indoor 
and outdoor, and all had different backgrounds. Before preprocessing, the dataset had a 
size of 191 MB. All images were color images and were of different dimensions. The cre-
ated dataset will from now on be referenced as the myFashion dataset. 

Table 2. Google search phrases for each class for the collection of the datasets. 

Class Search Phrases Number of 
Images 

Bag Bag Zalando, Handbag model, Bag on shoulder 232 
Coat Coat Zalando, Coat men, Coat women, Coat model, Winter coat men Zalando 244 
Dress Red dress, Long dress Zalando, Long dress 288 

Figure 9. Fashion MNIST class labels and examples from [40].

3.3.2. Created myFashion Dataset

The to-be-implemented network model used supervised learning, and thus it needed
labeled data for the training phase. The image data was gathered and downloaded with
the Fatkun Batch Download Image extension for Google Chrome. The Fatkun extension
downloads all selected images for a specific Google query. The following table shows the
key search phrases that were used for the data collection process.

The created dataset consisted of 2567 images, which were divided into 10 classes. As
can be seen in Table 2, the classes within the dataset had a balanced image count. With
288 images, dress was the class with the highest image count. The hat class, on the other
hand, comprised the fewest images with just 202. Besides these two classes, the margin
between the other eight classes was relatively small and reached from 232 to 281 images.
The dataset consisted of human-worn fashion images. The images could be both indoor
and outdoor, and all had different backgrounds. Before preprocessing, the dataset had
a size of 191 MB. All images were color images and were of different dimensions. The
created dataset will from now on be referenced as the myFashion dataset.



Mathematics 2021, 9, 624 15 of 32

Table 2. Google search phrases for each class for the collection of the datasets.

Class Search Phrases Number of Images

Bag Bag Zalando, Handbag model, Bag on shoulder 232

Coat Coat Zalando, Coat men, Coat women, Coat model, Winter coat
men Zalando 244

Dress Red dress, Long dress Zalando, Long dress 288
Hat Bonnet Zalando, Bonnet men, Winter bonnet women 202

Pullover Pullover Zalando, Hoodie men, Hoodie women 278
Shirt Business Shirt, Shirt formal 242

Shoes
Sneaker Zalando, Sneaker men, Sneaker women, Sandals, Sandals

Zalando, Ankle boots Zalando, Ankle boots men, Ankle boots
women

276

Suit Business suit, Suit Zalando, Zalando suit model 265
Trousers Trousers Zalando, trousers 259

T-Shirt T-shirt Zalando, Casual t-shirt Zalando, T-shirt women model,
T-shirt men model 281

The myFashion dataset was split into training and testing datasets with a proportion
of 80:20. The training dataset will be used for network training, while the testing dataset
will be used to evaluate the model.

3.3.3. Potential Difficulties with the Dataset

1. Size of the dataset;

With just roughly 2600 images, the size of the dataset is rather small and usually not
sufficient to reach a generalizable result with the model. Because of this, data augmentation
will be used to significantly enlarge the dataset.

2. Images can contain more than one fashion class.

Another potential problem is that the model will classify each input image into one
certain class. However, it is possible that some of the images contain more than one class
feature, such as a person wearing a bag and trousers. In this case, the network is much
more error-prone and could end up making wrong classifications easier than normal.

4. Implementation
4.1. Approach

To see if the models’ performances—measured in accuracy and loss rate—could be
incrementally improved, the following four approaches were defined:

1. Classifying fashion MNIST;

To find the most accurate architecture with the highest accuracy, several models would
be trained. These to-be-implemented models were based on the AlexNet architecture and,
to figure out the most suitable architecture, they would differ in following characteristics:

• Number of convolutional layers with the respective filters;
• Number of fully connected layers with the respective units in them;
• Use of dropout layers.

To ensure the same training conditions, as well as to decrease the number of models,
the following training parameters would be the same for all models:

• Optimizer = Adam;
• Activation function = relu and softmax;
• Kernel size = 3 × 3 pixel;
• Max pooling = 2 × 2 pixel;
• Batch size = 64;
• Training epochs = 50.



Mathematics 2021, 9, 624 16 of 32

To show if the dropout layers could help prevent against overfitting, each model was
trained one time with dropout layers and one time without. If dropout layers were added,
they would be applied after each convolutional layer and the first fully connected layer
with a value of 0.4. The model architecture that achieved the best validation accuracy
would be described and presented in the next section. In addition, the weights of the most
accurate model would be saved and used for transfer learning in the third approach.

2. Classifying the myFashion Dataset;

The model with the best performance in the first approach would be used for this
approach as well, but in this approach, the collected images of the myFashion dataset
would be classified. Here, the network would be trained one time with data augmentation
and one time without data augmentation. This should show if data augmentation could
further improve the performance of a model trained on a small image dataset. Furthermore,
if applying data augmentation turned out to be helpful and improved performance, it
would also be used for the third and fourth approach.

3. Transfer Learning with MNIST;

In this approach, the model would be initialized with the saved weights from the most
accurate model of approach one, meaning that the same architecture must be used, includ-
ing the input layer with the same input shape. This could negatively affect performance,
as the myFashion dataset mainly consists of large color images. Furthermore, to see how
well the myFashion dataset could be classified based just on the knowledge gained from
the Fashion MNIST, all convolutional layers would be frozen. This means that the weights
within the layers would not be updated during the training phase. Therefore, every single
time an input image was put into the frozen pretrained network, it would result in the same
class. The theory says that transfer learning can be used to save computational resources
and, as a result, also save time. To prove the theory, the training time would be measured
for this model.

4. Transfer Learning on ImageNet with VGG-16 and GoogLeNet.

With the help of Keras’ application module, already-established deep learning models
could be easily imported alongside their pretrained weights and be used for feature
extraction. However, as the model should now fulfil a different classification task, it was
essential to import the model without its last layers and add our own fully connected layers
that were necessary to classify the myFashion dataset. For this purpose, four fully connected
layers would be added, whereas the first two fully connected layers were followed by
dropout layers. Furthermore, to efficiently make use of the transferred knowledge, all
weights in the convolutional layers would be frozen so that they would not be updated
during the training phase. As ResNet requires the most computational power and hardware
capabilities, VGG-16 and GoogLeNet were the most suited and would be used for this
approach.

Preprocessing

As the created myFashion dataset was too small to perform a generalizable image
classification, data augmentation was used as described in Section 2.3.2. The Keras module
ImageDataGenerator did all the work for labeling, preprocessing and loading the dataset.
To decrease the computational power required, all images were divided by 255 to receive
values between 0 and 1. Furthermore, the dataset would be significantly increased by
performing the following image operations:

• Rotating the image by a specific degree value;
• Moving the image vertically and horizontally by a relative value between 0 and 1;
• Zooming randomly inside the image by a float value;
• Flipping or mirroring the image on the horizontal axis by setting the value to true or

false;
• Filling the pixels that were newly created (e.g., by image rotation or zooming).



Mathematics 2021, 9, 624 17 of 32

The following argument–value pairs were passed to the ImageDataGenerator:

• Rescale = (1./255);
• Rotation_range = 4;
• Width_shift_range = 0.2;
• Height_shift_range = 0.2;
• Zoom_range = 0.2;
• Horinzontal_flip = True;
• Fill_mode = Nearest.

After successfully specifying the ImageDataGenerator, the datasets were loaded to
the network with the flow_from_directory function. Given a directory, it loaded all subdi-
rectories to the network and assigned the label of their parent folder to the images. This
function again took some beneficial arguments to ease the set-up for the training phase.
For this purpose, we wanted to set the following parameters:

• Directory path to load the datasets;
• Required target size of the images in the shape of (height, width);
• Required color mode of the loaded images can be either set to grayscale or color

images defined by the primary colors: Red, Green, Blue (RGB);
• Class mode to determine the return type, either binary, sparse, categorical, input or

none;
• Batch size that was fed into each training iteration.

The following argument–value pairs were passed to the flow_from_directory function:

• Directory = directory path to train or test the dataset;
• Target_size = (120,120);
• Color_mode = rgb;
• Class_mode = categorical;
• Batch_size = 32.

In conclusion, the images were cropped from different dimensions to color images
64 × 64 pixels in size and feed to the network in batch sizes of 32. As the class mode was
set to categorical, the network returned exactly one predicted class for each image.

5. Evaluation and Results

In this section, the four described approaches to build an image classifier for feature
extraction in fashion data are evaluated by their validation accuracy, and the results of the
experiments are presented. It should be noted that the models from approach two, three
and four are all evaluated on the same test dataset. For these evaluations, the confusion
matrix will be calculated to compare the implemented models by their respective f1-scores.
The validation accuracies were calculated with the built-in evaluation module of Keras.

Table 3 displays the best-performing models that were trained on fashion MNIST to
find the most appropriate model to work on fashion data. As the input shape of the images
was 28 × 28 pixels and each max pooling layer was cutting the image in half, a maximum
of four convolutional layers could be used. All models were compiled with the following
parameters:

• Loss = categorical_crossentropy;
• Optimizer = adam;
• Metrics = accuracy.

Finally, the model was trained with following settings:

• Train_generator = train_generator.flow_from_directory([path_to_parent_directory]);
• Steps_per_epoch = train_dataset_size/batch_size;
• Epochs = 50;
• Validation data = test_generator.flow_from_directory([path_to_parent_directory]);
• Validation steps = test_dataset_size/batch_size.



Mathematics 2021, 9, 624 18 of 32

Table 3. One-model approach evaluation.

Number Architecture
Validation Accuracy

(1) (2)

1.1 2 Convolutional (32, 64)
2 Dense (64, 10) 92% 93.14%

1.2 2 Convolutional (32, 64)
3 Dense (128, 64, 10) 92.47% 92.61%

1.3 2 Convolutional (32, 64)
4 Dense (128, 64, 32, 10) 91.4% 92.86%

1.4 3 Convolutional (32, 64, 128)
2 Dense (128, 10) 91.67% 93.13%

1.5 4 Convolutional (32, 64, 128, 256)
2 Dense (128, 10) 90.04% 90.56%

1.6 3 Convolutional (32, 64, 128)
3 Dense (128, 64, 10) 92.02% 93.29%

1.7 4 Convolutional (32, 64, 128, 256)
3 Dense (128, 64, 10) 90.06% 91.21%

1.8 3 Convolutional (32, 64, 128)
4 Dense (256, 128, 64, 10) 92.09% 93.33%

1.9 4 Convolutional (32, 64, 128, 256)
4 Dense (256, 128, 64, 10) 90.6% 91.42%

1.10 4 Convolutional (32, 128, 256, 512)
4 Dense (256, 128, 64, 10) 90.23% 91.89%

1.11 3 Convolutional (64, 128, 256)
3 Dense (256, 128, 10) 92.25% 94.02%

1.12 2 Convolutional (64, 128)
2 Dense (128, 10) 92.15% 92.91%

The architecture column in the table defines the layers that were used to build the
model. The values in the brackets describe the number of filters or units within the layer.
Model number 1.4 will be described to clarify the format. The model comprised three
convolutional layers. The first one, the so-called input layer, comprised 32 filters, the
second 64 and the third one 128. For classification, two dense layers were used. The first
one consisted of 128 neurons, and the last layer consisted of 10 neurons, where each neuron
represented one of the 10 fashion categories. In this table, the validation accuracy column
displays the evaluated accuracy of the model for training under the following conditions:

1. Without dropout layers;
2. With dropout layers.

As can be seen from the table, the performances of the different models did not differ
too much in their validation accuracy. Basically, models with four or more convolutional
layers resulted in rather worse performance compared with models with three or fewer
convolutional layers. Furthermore, all models that were trained with three convolutional
layers reached a validation accuracy above 93%. Based on the performed model evaluations
in Table 3, we can conclude that models with three convolutional layers were best suited
for classifying fashion images. On the other hand, the number of fully connected layers
and its respective units did not significantly affect the validation accuracy.

Next, we can see that all models that were trained with dropout layers achieved a
higher accuracy than the ones that were trained without them, even if the differences
were minimal at some models. Model number 1.11, the model with the highest validation
accuracy, reached a training accuracy of 99.27% and therefore classified almost every single
training image correctly when it was trained without dropout layers. However, when
it had to process new, unknown data, the accuracy dropped by more than 7% to a final
92.02% validation accuracy. This can be interpreted as a result of overfitting, as the network
tended to capture and memorize the image features instead of learning them. Figure 10
plots the training and validation accuracy over 50 epochs without dropout layers.



Mathematics 2021, 9, 624 19 of 32

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 32 
 

 

had to process new, unknown data, the accuracy dropped by more than 7% to a final 
92.02% validation accuracy. This can be interpreted as a result of overfitting, as the net-
work tended to capture and memorize the image features instead of learning them. Figure 
10 plots the training and validation accuracy over 50 epochs without dropout layers. 

 
Figure 10. Training and validation accuracy of model 1.11 without dropout layers. 

In Figure 11, the same model trained with dropout layers is plotted, and the differ-
ence is quite clear to see. The gap between the training and validation accuracy almost 
vanished when dropout was applied. 

 
Figure 11. Training and validation accuracy of model 1.11 with dropout layers. 

Figure 10. Training and validation accuracy of model 1.11 without dropout layers.

In Figure 11, the same model trained with dropout layers is plotted, and the difference
is quite clear to see. The gap between the training and validation accuracy almost vanished
when dropout was applied.

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 32 
 

 

had to process new, unknown data, the accuracy dropped by more than 7% to a final 
92.02% validation accuracy. This can be interpreted as a result of overfitting, as the net-
work tended to capture and memorize the image features instead of learning them. Figure 
10 plots the training and validation accuracy over 50 epochs without dropout layers. 

 
Figure 10. Training and validation accuracy of model 1.11 without dropout layers. 

In Figure 11, the same model trained with dropout layers is plotted, and the differ-
ence is quite clear to see. The gap between the training and validation accuracy almost 
vanished when dropout was applied. 

 
Figure 11. Training and validation accuracy of model 1.11 with dropout layers. Figure 11. Training and validation accuracy of model 1.11 with dropout layers.



Mathematics 2021, 9, 624 20 of 32

This implies that we can assume that dropout regularization helps to prevent against
overfitting, and at the same time, it can improve the models’ generalization abilities for new
data the network has not seen before. As was already stated before, deeper models usually
take longer to train, and to put that into perspective, models 1.4, 1.9, 1.10 and 1.12 were
adduced and compared in Table 4. Models 1.9 and 1.10 had the same number of layers and
just differed in their number of neurons and filters within these layers. Model 1.9 came to a
total of 495,434 trainable parameters, while model 1.10 consisted of more than 1.6 million,
almost four times more parameters. Model 1.4 featured one additional convolutional and
max pooling layer compared with model 1.12, but this one extra convolutional considerably
reduced the number of parameters fed into the fully connected layers and, subsequently,
the number of parameters of the model as well.

Table 4. Model training performance.

Model Total Parameters Training Time

1.4 503,690 1 h and 3 min
1.9 495,434 1 h and 9 min

1.10 1,685,770 2 h and 26 min
1.12 2,435,210 1 h and 57 min

In conclusion, it is important to find the right number of convolutional layers that is
needed to successfully extract features while maintaining solid performance by reducing
the total parameters of the model. It is worth mentioning that applying or not applying
dropout layers did not significantly affect the training time.

5.1. Winning Model Architecture

This subsection describes the model that is going to be used for classifying the my-
Fashion dataset alongside its components and parameters. It is based on the winning
model that achieved the highest accuracy for the fashion MNIST dataset in the previous
subsection but uses a different input shape.

The architecture of the used model is demonstrated in Figure 12. Altogether, the
neural network contained six layers. The first three were convolutional layers, and the
remaining three were fully connected layers. For the first convolutional layer, a stride of
2 × 2 pixels was defined, and the remaining convolutional layers had a stride of 1 × 1
pixel. Just by increasing the stride in the input layer to 2 × 2 pixels, the number of total
parameters was reduced from 11.5 million to only 2 million trainable parameters. The last
fully connected layer fed its output to a 10 way softmax activation layer, which mapped
the final output to a distribution over the 10 class labels.

Mathematics 2021, 9, x FOR PEER REVIEW 20 of 32 
 

 

This implies that we can assume that dropout regularization helps to prevent against 
overfitting, and at the same time, it can improve the models’ generalization abilities for 
new data the network has not seen before. As was already stated before, deeper models 
usually take longer to train, and to put that into perspective, models 1.4, 1.9, 1.10 and 1.12 
were adduced and compared in Table 4. Models 1.9 and 1.10 had the same number of 
layers and just differed in their number of neurons and filters within these layers. Model 
1.9 came to a total of 495,434 trainable parameters, while model 1.10 consisted of more 
than 1.6 million, almost four times more parameters. Model 1.4 featured one additional 
convolutional and max pooling layer compared with model 1.12, but this one extra con-
volutional considerably reduced the number of parameters fed into the fully connected 
layers and, subsequently, the number of parameters of the model as well. 

Table 4. Model training performance. 

Model Total Parameters Training Time 
1.4 503,690 1 h and 3 min 
1.9 495,434 1 h and 9 min 

1.10 1,685,770 2 h and 26 min 
1.12 2,435,210 1 h and 57 min 

In conclusion, it is important to find the right number of convolutional layers that is 
needed to successfully extract features while maintaining solid performance by reducing 
the total parameters of the model. It is worth mentioning that applying or not applying 
dropout layers did not significantly affect the training time. 

5.1. Winning Model Architecture 
This subsection describes the model that is going to be used for classifying the my-

Fashion dataset alongside its components and parameters. It is based on the winning 
model that achieved the highest accuracy for the fashion MNIST dataset in the previous 
subsection but uses a different input shape. 

The architecture of the used model is demonstrated in Figure 12. Altogether, the neu-
ral network contained six layers. The first three were convolutional layers, and the re-
maining three were fully connected layers. For the first convolutional layer, a stride of 2 × 
2 pixels was defined, and the remaining convolutional layers had a stride of 1 × 1 pixel. 
Just by increasing the stride in the input layer to 2 × 2 pixels, the number of total parame-
ters was reduced from 11.5 million to only 2 million trainable parameters. The last fully 
connected layer fed its output to a 10 way softmax activation layer, which mapped the 
final output to a distribution over the 10 class labels. 

 
Figure 12. Winning model architecture.



Mathematics 2021, 9, 624 21 of 32

• ReLU and softmax activation function;

In 2012, Krizhevsky et al. showed that deep convolutional neural networks that
used rectified linear units (ReLU) as activation functions trained many times faster than
equivalent neural networks that used tanh activation functions. Since then, ReLU has been
considered the standard activation function, and it was also used for all but the last layer
in this model. For the last fully connected layer, the softmax activation function would be
used to distribute the probabilities over the 10 classes.

• Training on a CPU;

Due to limitations in technical resources, the training was done on a CPU in place of a
more-suitable GPU. This will potentially lead to an enormously increased training time but
will not affect the accuracy of the model.

• Dropout;

To reduce overfitting and improve the generalization of the model, dropout was used.
Three dropout layers were added to the network: two after the convolutional layers, and
the last dropout layer was added after the first fully connected layer. A dropout value of
40% was used.

• Overlapping pooling, optimizer and kernel size.

As already defined beforehand, max pooling with a filter size of 2 × 2 pixels was
used instead of average pooling, as it used simpler computations that would save some
computational resources. The kernel or filter size of the model was set to 3 × 3 pixels with
a different number of filters in each convolutional layer, and the Adam optimizer was used
to minimize the error rate.

The following performance evaluations in the next two sections were performed using
the 10 class model architecture described in this section.

5.2. Classifying the myFashion Dataset

This performance evaluation was performed using the 10 class model architecture
of the previous section. With roughly 2600 images, the dataset was rather small, and in
order to achieve higher accuracy by maximizing the use of the data, the myFashion dataset
was split into 90% training data and 10% test data. The input shape of the images that
were fed to the network was 120 × 120 pixels. The first model in the table was trained
without both dropout and data augmentation. In model 2.2, the input data was loaded
without preprocessing, and in model 2.3, data augmentation was used for preprocessing as
described in Section 4.1. For evaluation of the different models in Table 5, the confusion
matrix was used to calculate the F1-score. The F1-score would then be used to compare the
models with each other.

Table 5. Evaluation table for the second approach.

Number Data
Augmentation Dropout Training

Time
Validation
Accuracy F1-Score

2.1 no no 79 min 69.74% 0.64
2.2 no yes 35 min 71.04% 0.68
2.3 yes yes 42 min 79.16% 0.78

As can be seen in Table 5, the two approaches gave the following results:



Mathematics 2021, 9, 624 22 of 32

• Without both dropout and data augmentation, the model achieved a validation accu-
racy of 69.74% and an F1-score of 0.64. The model was trained for 79 min;

• Without data augmentation, the neural network achieved a validation accuracy of
71.04%, and it took the network 35 min to train over 50 epochs. This resulted in a
rather low F1-score of 0.68;

• With the use of data augmentation, the network achieved a validation accuracy of
79.16%. The network was trained over 50 epochs, and training took 42 min. The model
resulted in a final F1-score of 0.78;

Figure 13 plots the training and validation accuracy of the first approach. Looking
at the big gap between the training and validation accuracies in the plot, it is clear to see
that the model was overfitted. Overfitting is a common problem when dealing with rather
small datasets and makes the model not applicable for new and unseen data. In this model,
the use of dropout was not enough to successfully prevent the model from overfitting. In
the next step, data augmentation was used for preprocessing the data and to enlarge the
training dataset.

Mathematics 2021, 9, x FOR PEER REVIEW 22 of 32 
 

 

• Without data augmentation, the neural network achieved a validation accuracy of 
71.04%, and it took the network 35 min to train over 50 epochs. This resulted in a 
rather low F1-score of 0.68; 

• With the use of data augmentation, the network achieved a validation accuracy of 
79.16%. The network was trained over 50 epochs, and training took 42 min. The 
model resulted in a final F1-score of 0.78; 
Figure 13 plots the training and validation accuracy of the first approach. Looking at 

the big gap between the training and validation accuracies in the plot, it is clear to see that 
the model was overfitted. Overfitting is a common problem when dealing with rather 
small datasets and makes the model not applicable for new and unseen data. In this 
model, the use of dropout was not enough to successfully prevent the model from over-
fitting. In the next step, data augmentation was used for preprocessing the data and to 
enlarge the training dataset. 

 
Figure 13. Training and validation accuracy without data preprocessing, trained over 50 epochs. 

Figure 14 plots the training and validation accuracy of exactly the same model, with 
the only difference being that the input data was preprocessed with data augmentation. 
By just enlarging the dataset with fake data, the problem of overfitting vanished, and at 
the same time, the validation accuracy improved from 71.04% to 79.16%. 

Figure 13. Training and validation accuracy without data preprocessing, trained over 50 epochs.

Figure 14 plots the training and validation accuracy of exactly the same model, with
the only difference being that the input data was preprocessed with data augmentation. By
just enlarging the dataset with fake data, the problem of overfitting vanished, and at the
same time, the validation accuracy improved from 71.04% to 79.16%.



Mathematics 2021, 9, 624 23 of 32Mathematics 2021, 9, x FOR PEER REVIEW 23 of 32 
 

 

 
Figure 14. Training and validation accuracy with data preprocessing, trained over 50 epochs. 

Due to the data augmentations, images were horizontally flipped, rotated, zoomed 
in and out and randomly shifted so that the features were not always placed in the center 
of the image. The image data augmentations meant that the neural network had to learn 
more robust, complex features and could not memorize the images as simply as with the 
myFashion dataset solely. 

To further analyze the models’ performances, the confusion matrix was calculated 
with the test dataset, and it is presented with the classification report below. In Figure 15, 
the confusion matrix is given. The red diagonal from the top left to the bottom right de-
scribes all correctly classified images for each class. The precision column in the classifi-
cation report in Figure 16 indicates how many images of all the test data were classified 
as class X and how many actually were in class X. For example, in the seventh column, 
there is one cell with 17 entries, and all other cells in this column are zero. This means that 
out of all the test data points, the classifier predicted 17 images as shoes, and all of them 
were shoes. This resulted in a precision of 1, or 100%. Recall, on the other hand, indicates 
how many of the test data of a certain class were predicted correctly. For example, in the 
first row, there is a total of 25 test images for the bag class. Out of these 25 images, 19 were 
predicted correctly, resulting in a class recall of 0.76. The F1-score describes a weighted 
mean between recall and precision and is, in general, lower than the accuracy and should 
not be interpreted as accuracy. However, it can be used to compare classes or even classi-
fication models. The support is the total number of appearances of the respective class in 
the dataset. 

Figure 14. Training and validation accuracy with data preprocessing, trained over 50 epochs.

Due to the data augmentations, images were horizontally flipped, rotated, zoomed
in and out and randomly shifted so that the features were not always placed in the center
of the image. The image data augmentations meant that the neural network had to learn
more robust, complex features and could not memorize the images as simply as with the
myFashion dataset solely.

To further analyze the models’ performances, the confusion matrix was calculated with
the test dataset, and it is presented with the classification report below. In Figure 15, the
confusion matrix is given. The red diagonal from the top left to the bottom right describes
all correctly classified images for each class. The precision column in the classification
report in Figure 16 indicates how many images of all the test data were classified as class X
and how many actually were in class X. For example, in the seventh column, there is one
cell with 17 entries, and all other cells in this column are zero. This means that out of all the
test data points, the classifier predicted 17 images as shoes, and all of them were shoes. This
resulted in a precision of 1, or 100%. Recall, on the other hand, indicates how many of the
test data of a certain class were predicted correctly. For example, in the first row, there is a
total of 25 test images for the bag class. Out of these 25 images, 19 were predicted correctly,
resulting in a class recall of 0.76. The F1-score describes a weighted mean between recall
and precision and is, in general, lower than the accuracy and should not be interpreted as
accuracy. However, it can be used to compare classes or even classification models. The
support is the total number of appearances of the respective class in the dataset.



Mathematics 2021, 9, 624 24 of 32Mathematics 2021, 9, x FOR PEER REVIEW 24 of 32 
 

 

 
Figure 15. Confusion matrix for the myFashion dataset. 

 
Figure 16. Classification report on the myFashion dataset. 

In Figure 16, the classification report is shown. Looking at the F1-score, pullovers 
were classified the worst and t-shirts the best. The remaining eight classes reached F1-
scores between 0.66 and 0.92. Hence, there was big classification fluctuation between the 
classes. The report also showed that all t-shirts were correctly predicted. In addition, 10 
out of 36 trousers test images were wrongly classified as shirts. This indicates that the 
model had problems with distinguishing between trousers and shirts, and this could be a 
result of when some images entailed both classes. The model achieved an overall F1-score 
of 0.78, and this score would be used for comparison with other models. 

Figure 15. Confusion matrix for the myFashion dataset.

Mathematics 2021, 9, x FOR PEER REVIEW 24 of 32 
 

 

 
Figure 15. Confusion matrix for the myFashion dataset. 

 
Figure 16. Classification report on the myFashion dataset. 

In Figure 16, the classification report is shown. Looking at the F1-score, pullovers 
were classified the worst and t-shirts the best. The remaining eight classes reached F1-
scores between 0.66 and 0.92. Hence, there was big classification fluctuation between the 
classes. The report also showed that all t-shirts were correctly predicted. In addition, 10 
out of 36 trousers test images were wrongly classified as shirts. This indicates that the 
model had problems with distinguishing between trousers and shirts, and this could be a 
result of when some images entailed both classes. The model achieved an overall F1-score 
of 0.78, and this score would be used for comparison with other models. 

Figure 16. Classification report on the myFashion dataset.

In Figure 16, the classification report is shown. Looking at the F1-score, pullovers were
classified the worst and t-shirts the best. The remaining eight classes reached F1-scores
between 0.66 and 0.92. Hence, there was big classification fluctuation between the classes.
The report also showed that all t-shirts were correctly predicted. In addition, 10 out of 36
trousers test images were wrongly classified as shirts. This indicates that the model had
problems with distinguishing between trousers and shirts, and this could be a result of
when some images entailed both classes. The model achieved an overall F1-score of 0.78,
and this score would be used for comparison with other models.



Mathematics 2021, 9, 624 25 of 32

5.3. Transfer Learning with the Fashion MNIST Dataset

In this section, the third approach will be evaluated. For this evaluation, the best
model of approach was saved and loaded with its weights for transfer learning. In the
previous model evaluation, we proved the importance of data augmentation when dealing
with smaller datasets. Therefore, for the upcoming models, data augmentation would be
used for the preprocessing phase. Furthermore, as the input shape of the fashion MNIST
images was 28 × 28 pixels, and the color mode was grayscale, the same settings were used
for this model. In Figure 17, the training and validation accuracies of the model are plotted
over 50 epochs.

Mathematics 2021, 9, x FOR PEER REVIEW 25 of 32 
 

 

5.3. Transfer Learning with the Fashion MNIST Dataset 
In this section, the third approach will be evaluated. For this evaluation, the best 

model of approach was saved and loaded with its weights for transfer learning. In the 
previous model evaluation, we proved the importance of data augmentation when deal-
ing with smaller datasets. Therefore, for the upcoming models, data augmentation would 
be used for the preprocessing phase. Furthermore, as the input shape of the fashion 
MNIST images was 28 × 28 pixels, and the color mode was grayscale, the same settings 
were used for this model. In Figure 17, the training and validation accuracies of the model 
are plotted over 50 epochs. 

 
Figure 17. Training and validation accuracies over 50 epochs for transfer learning with the fashion 
MNIST dataset. 

In this plot, the validation accuracy is higher than the training accuracy. This could 
also be a result of when dropout was applied. Because 40% of all neurons were dropped, 
the data never passed through the whole network in the training phase. However, when 
the model was validated, the whole network was used, and this could lead to further im-
provement of the validation accuracy. The training time, validation accuracy and the f1-
score were summarized in Table 6 and shows that the training phase only took 12 min, 
which was approximately 30 min less compared with the models that were trained with-
out transfer learning. Alongside the training time, the validation accuracy decreased by 
16% to a validation accuracy of 63.12%. To conclude, transfer learning saved computa-
tional resources and could significantly reduce the training time of a neural network. 
However, the fashion MNIST dataset was not suited for transfer learning to classify hu-
man-worn fashion images. This assumption was also reflected by the low F1-score of just 
0.38. 

Table 6. Evaluation table for the third approach. 

Number Training Time Validation Accuracy F1-Score 
3.1 12 min 63.12% 0.38 

  

Figure 17. Training and validation accuracies over 50 epochs for transfer learning with the fashion MNIST dataset.

In this plot, the validation accuracy is higher than the training accuracy. This could
also be a result of when dropout was applied. Because 40% of all neurons were dropped,
the data never passed through the whole network in the training phase. However, when
the model was validated, the whole network was used, and this could lead to further
improvement of the validation accuracy. The training time, validation accuracy and the
f1-score were summarized in Table 6 and shows that the training phase only took 12 min,
which was approximately 30 min less compared with the models that were trained without
transfer learning. Alongside the training time, the validation accuracy decreased by 16%
to a validation accuracy of 63.12%. To conclude, transfer learning saved computational
resources and could significantly reduce the training time of a neural network. However,
the fashion MNIST dataset was not suited for transfer learning to classify human-worn
fashion images. This assumption was also reflected by the low F1-score of just 0.38.

Table 6. Evaluation table for the third approach.

Number Training Time Validation Accuracy F1-Score

3.1 12 min 63.12% 0.38



Mathematics 2021, 9, 624 26 of 32

5.4. Transfer Learning with the ImageNet Dataset

The two deep learning models, VGG-16 and GoogLeNet, were both trained on
the ImageNet dataset, but consisted of different architectures. This section is going to
show which of these two deep learning models was most suited for classifying human-
worn fashion images and if the validation accuracy of 79.16%, which was reached in
Section 5.2, could be further improved with transfer learning. Table 7 gives an overview of
the evaluated models with their respective training times and validation accuracies. With
just 59 min, GoogLeNet was the fastest to finish the network training. In contrast, VGG-16
needed 1 h and 47 min.

Furthermore, VGG-16 was able to improve the validation accuracy reached in
Section 5.2, where the myFashion dataset was classified without transfer learning. VGG-16
achieved a validation accuracy of 83.96% and hence improved the performance by more
than 4%. GoogLeNet, on the other hand, achieved a validation accuracy of 76.63%, which
was a decrease of about 3%.

The evaluation plot in Figure 18 shows that transferring the knowledge from VGG-16
worked quite well. The model started with a validation accuracy of more than 65% in the
first epoch of the training, which was significantly better than the validation accuracies of
the previous models in their first epochs. It can also be seen that the validation accuracy
was rather consistent over the 50 training epochs, with small fluctuations between 78% and
84%.

Mathematics 2021, 9, x FOR PEER REVIEW 26 of 32 
 

 

5.4. Transfer Learning with the ImageNet Dataset 
The two deep learning models, VGG-16 and GoogLeNet, were both trained on the 

ImageNet dataset, but consisted of different architectures. This section is going to show 
which of these two deep learning models was most suited for classifying human-worn 
fashion images and if the validation accuracy of 79.16%, which was reached in Section 5.2, 
could be further improved with transfer learning. Table 7 gives an overview of the evalu-
ated models with their respective training times and validation accuracies. With just 59 
min, GoogLeNet was the fastest to finish the network training. In contrast, VGG-16 
needed 1 h and 47 min. 

Furthermore, VGG-16 was able to improve the validation accuracy reached in Section 
5.2, where the myFashion dataset was classified without transfer learning. VGG-16 
achieved a validation accuracy of 83.96% and hence improved the performance by more 
than 4%. GoogLeNet, on the other hand, achieved a validation accuracy of 76.63%, which 
was a decrease of about 3%. 

The evaluation plot in Figure 18 shows that transferring the knowledge from VGG-
16 worked quite well. The model started with a validation accuracy of more than 65% in 
the first epoch of the training, which was significantly better than the validation accuracies 
of the previous models in their first epochs. It can also be seen that the validation accuracy 
was rather consistent over the 50 training epochs, with small fluctuations between 78% 
and 84%. 

 
Figure 18. Training and validation accuracies for transferred VGG-16, trained over 50 epochs. 

The evaluation of the second transfer learning approach with GoogLeNet is plotted 
in Figure 19. Here the validation accuracy of the first epoch is worse compared with the 
transferred VGG-16, but with approximately 55%, it is still significantly better at the early 
stage than the previous models that classified the myFashion dataset. Here, the fluctuation 
of the validation accuracy is a little bit stronger than with VGG-16. A big fluctuation could 
indicate that some samples were guessed at some stages during training, and this may 
occur when important neurons are dropped because of dropout regularity. 

Figure 18. Training and validation accuracies for transferred VGG-16, trained over 50 epochs.

The evaluation of the second transfer learning approach with GoogLeNet is plotted
in Figure 19. Here the validation accuracy of the first epoch is worse compared with the
transferred VGG-16, but with approximately 55%, it is still significantly better at the early
stage than the previous models that classified the myFashion dataset. Here, the fluctuation
of the validation accuracy is a little bit stronger than with VGG-16. A big fluctuation could
indicate that some samples were guessed at some stages during training, and this may
occur when important neurons are dropped because of dropout regularity.



Mathematics 2021, 9, 624 27 of 32Mathematics 2021, 9, x FOR PEER REVIEW 27 of 32 
 

 

 
Figure 19. Training and validation accuracies for the transferred GoogLeNet, trained over 50 
epochs. 

The F1-score is a good metric to compare different classification models and looking 
at the F1-scores in Table 7, it can be seen that the transferred VGG-16 achieved a better 
result than GoogLeNet. Therefore, the transferred VGG-16 classifier was further analyzed 
with the aid of the confusion matrix and classification report. Looking at the classification 
report in Figure 20, it can be seen that with a precision of 1.00 none of the test images were 
wrongly classified as a hat or trousers; Furthermore, with an F1-score of just 0.67, the 
model classified pullovers the worst followed by shirts, with an F1-score of 0.73. The 
shoes, hat and trousers classes reached a remarkable F1-score of 0.98 and hence were the 
classes that were classified the best. The confusion matrix on the left shows, among other 
classes, that 24 out of the 25 hats in the test set were classified correctly, the other one was 
wrongly classified as shirt. 

Table 7. Transfer learning with the ImageNet dataset using VGG-16 and GoogLeNet. 

Number Transferred Model Training Time Validation Accuracy F1-Score 
4.1 VGG-16 1 h 47 min 83.96% 0.85 
4.2 GoogLeNet/Inception 59 min 76.63% 0.72 

 

  

Figure 19. Training and validation accuracies for the transferred GoogLeNet, trained over 50 epochs.

The F1-score is a good metric to compare different classification models and looking
at the F1-scores in Table 7, it can be seen that the transferred VGG-16 achieved a better
result than GoogLeNet. Therefore, the transferred VGG-16 classifier was further analyzed
with the aid of the confusion matrix and classification report. Looking at the classification
report in Figure 20, it can be seen that with a precision of 1.00 none of the test images were
wrongly classified as a hat or trousers; Furthermore, with an F1-score of just 0.67, the model
classified pullovers the worst followed by shirts, with an F1-score of 0.73. The shoes, hat
and trousers classes reached a remarkable F1-score of 0.98 and hence were the classes that
were classified the best. The confusion matrix on the left shows, among other classes, that
24 out of the 25 hats in the test set were classified correctly, the other one was wrongly
classified as shirt.

Table 7. Transfer learning with the ImageNet dataset using VGG-16 and GoogLeNet.

Number Transferred Model Training Time Validation
Accuracy F1-Score

4.1 VGG-16 1 h 47 min 83.96% 0.85
4.2 GoogLeNet/Inception 59 min 76.63% 0.72

With an F1-score of 0.85, the transferred VGG-16 also outperformed model 2.2, which
was implemented without transfer learning in Section 5.2. This result means that in relation
to the models’ performances, transfer learning was successful for this case study. Using the
transferred knowledge of VGG-16, it was possible to further improve the F1-score from
0.78 up to 0.85, as well as improve the validation accuracy from 79% to a final 83%. On
the other hand, this time, the training time suffered from the applied transfer learning.
Training the transferred VGG-16 took about 45 min longer than in model 2.2 solely.



Mathematics 2021, 9, 624 28 of 32

Mathematics 2021, 9, x FOR PEER REVIEW 27 of 32 
 

 

 
Figure 19. Training and validation accuracies for the transferred GoogLeNet, trained over 50 
epochs. 

The F1-score is a good metric to compare different classification models and looking 
at the F1-scores in Table 7, it can be seen that the transferred VGG-16 achieved a better 
result than GoogLeNet. Therefore, the transferred VGG-16 classifier was further analyzed 
with the aid of the confusion matrix and classification report. Looking at the classification 
report in Figure 20, it can be seen that with a precision of 1.00 none of the test images were 
wrongly classified as a hat or trousers; Furthermore, with an F1-score of just 0.67, the 
model classified pullovers the worst followed by shirts, with an F1-score of 0.73. The 
shoes, hat and trousers classes reached a remarkable F1-score of 0.98 and hence were the 
classes that were classified the best. The confusion matrix on the left shows, among other 
classes, that 24 out of the 25 hats in the test set were classified correctly, the other one was 
wrongly classified as shirt. 

Table 7. Transfer learning with the ImageNet dataset using VGG-16 and GoogLeNet. 

Number Transferred Model Training Time Validation Accuracy F1-Score 
4.1 VGG-16 1 h 47 min 83.96% 0.85 
4.2 GoogLeNet/Inception 59 min 76.63% 0.72 

 

  

Figure 20. The left sub-image depicts the confusion matrix that was calculated for the transferred VGG-16. The right
sub-image depicts the classification report of the transferred VGG-16 model.

In a final step, to visualize the results, 16 test images were plotted together with
their predicted labels in Figure 21. In the plot, 14 out of the 16 test images were predicted
correctly. The image in the fourth column in the second row was wrongly classified as a suit
when it was a shirt. The image had some similarities to a suit outfit, especially because of
the tie. The prediction could indicate that the model associated a shirt and tie combination
with a suit. Principally, it can be said that the model had problems with the classification of
long-sleeved apparel, like coats and pullovers. In general, upper body parts were classified
worse than more distinct classes like trousers, shoes or hats.

Mathematics 2021, 9, x FOR PEER REVIEW 28 of 32 
 

 

Figure 20. The left sub-image depicts the confusion matrix that was calculated for the transferred VGG-16. The right sub-
image depicts the classification report of the transferred VGG-16 model. 

With an F1-score of 0.85, the transferred VGG-16 also outperformed model 2.2, which 
was implemented without transfer learning in Section 5.2. This result means that in rela-
tion to the models’ performances, transfer learning was successful for this case study. Us-
ing the transferred knowledge of VGG-16, it was possible to further improve the F1-score 
from 0.78 up to 0.85, as well as improve the validation accuracy from 79% to a final 83%. 
On the other hand, this time, the training time suffered from the applied transfer learning. 
Training the transferred VGG-16 took about 45 min longer than in model 2.2 solely. 

In a final step, to visualize the results, 16 test images were plotted together with their 
predicted labels in Figure 21. In the plot, 14 out of the 16 test images were predicted cor-
rectly. The image in the fourth column in the second row was wrongly classified as a suit 
when it was a shirt. The image had some similarities to a suit outfit, especially because of 
the tie. The prediction could indicate that the model associated a shirt and tie combination 
with a suit. Principally, it can be said that the model had problems with the classification 
of long-sleeved apparel, like coats and pullovers. In general, upper body parts were clas-
sified worse than more distinct classes like trousers, shoes or hats. 

 
Figure 21. Predicted class labels for 16 randomly selected test images. 

  

Figure 21. Predicted class labels for 16 randomly selected test images.



Mathematics 2021, 9, 624 29 of 32

6. Discussion

Research in apparel classification is increasing, but previous research mostly focused
on recognizing and segmenting fashion article images solely without humans wearing
the articles (e.g., for market basket analysis). To date, apparel classification mostly found
application in criminal law, e-commerce or social media advertising [25]. This article
focused on classifying human-worn fashion images. The resulting model can be used
for many different e-commerce applications. One of them is to automatically add links
to social media posts, which lead to an online shop that directly shows all articles of the
extracted apparel from the social media post.

To the authors, it was surprising at first that the state of the art for image classification
was that one-sided. Almost all researchers in the novel literature are using TensorFlow to
implement their convolutional neural network for image classification problems. Anaconda
and Keras are not essential but make it much easier and convenient to build classification
models.

The results of this article show that choosing the right CNN architecture is a com-
plex task to do. Minor changes in the architecture can lead to big changes in the models’
performances, and just by changing the number of neurons or layers, a vast number of
different architectures can be built [30]. For this article, an architecture comprising three
convolutional and three fully connected layers was defined. This architecture achieved an
initial validation accuracy of 69.74% but was improved to 71.04% just by adding dropout
regularity to the model. The validation accuracy further improved to 79.16% when data
augmentation was used for preprocessing the data. Furthermore, for this dataset, applying
dropout alone was not enough to prevent the model from overfitting, which only van-
ished when dropout and data augmentation were used together. The reason why data
augmentation works so well on small datasets is through flipping, shifting and rotating,
as well as zooming the training images, a bunch of new fake data is created and prevents
the network from learning irrelevant features for the respective classes. Due to its success,
data augmentation was also used for transfer learning. Transfer learning was used with
the pretrained weights on ImageNet, which contains human-worn fashion images. With a
validation accuracy of 83.96%, the VGG-16 dataset outperformed GoogLeNet, which only
achieved a validation accuracy of 76.63%. In general, fine-tuning the transferred model
improved the performance as well, but as the new dataset was small, it would more likely
result in overfitting rather than in a performance improvement. Both models were trained
with their respective preprocessing functions and the same training parameters. Hence, it
can be assumed that the VGG-16 dataset was more suited to classify human-worn fashion
images than GoogLeNet.

Compared with the transferred VGG-16 dataset, we can see that model 2.3 had more
problems with classifying upper body parts. This can be interpreted as all upper body
clothes entail similar characteristics and since model 2.2 was trained exclusively on the
created dataset, the size may not have been large enough for the model to better distin-
guish between upper body clothes. The transferred VGG-16 dataset was pretrained with
ImageNet, and hence it had much more data to learn more robust features for classification.

This article showed that for transfer learning, it is crucial that sufficient analogy
between the source and target dataset exists. The analogy between fashion product im-
ages and human-worn fashion images was not sufficient, as the performance dropped
significantly when the knowledge from the fashion MNIST dataset was used to predict
human-worn fashion images. Therefore, the fashion MNIST dataset should rather be used
for benchmarking prototypes.

The goal of this article was to implement an image classification model that extracted
features from human-worn fashion images. This goal was achieved with the help of transfer
learning using the VGG-16 dataset as a base model, with a final validation accuracy of
83.96% and a final F1-score of 0.85.



Mathematics 2021, 9, 624 30 of 32

7. Conclusions

The aim of this article was to implement an image classification model to extract
features from human-worn fashion images in small datasets. For this, the related literature
was reviewed until the state of the art for image classification was sufficiently elaborated.
It was found that convolutional neural networks were the undisputed standard for image
classification tasks, and that they were most often implemented in an Anaconda environ-
ment with TensorFlow as the backend. Furthermore, methods like dropout regularity, data
augmentation and transfer learning should be used when dealing with small datasets, as
they can prevent against overfitting and improve the model’s generalization.

For the practical part, a human-worn fashion dataset with 2567 images was created. To
see if and how the performance of a classification model that was trained on a small dataset
could be improved, four approaches were defined and implemented in the course of this
article. On the benchmark fashion MNIST dataset, dropout successfully prevented the
model from overfitting and, in addition, was able to slightly improve the accuracy by 2% to
a final validation accuracy of 94.02%. The second approach classified the created myFashion
dataset solely. Here, the influence of data augmentation was tested. It showed that data
augmentation not only prevented the model from overfitting, but it also improved the
validation accuracy by 8% to 79.16% and the F1-score from 0.68 to 0.78. The third approach
aimed to make use of the knowledge gained in approach one. However, the fashion MNIST
dataset, consisting of Zalando product images, was not suited for classifying human-worn
fashion images and resulted in a low F1-score of just 0.38 and a validation accuracy of
63.12%. In the fourth and last approach, transfer learning was performed on the VGG-
16 and GoogLeNet datasets, loading their pretrained weights from ImageNet. With an
F1-score of 0.85, the VGG-16 dataset outperformed GoogLeNet, which only achieved an
F1-score of 0.72. The model predicted more distinct classes like hats, shoes and trousers the
best and long-sleeved upper body clothes like coats and pullovers the worst.

To summarize, dropout prevented the model from overfitting, but only had a minor
impact on the performance. Data augmentation could be used to enlarge the dataset
with fake data and successfully prevented the model from overfitting and significantly
improved the performance of the model. Data augmentation is vital when dealing with
small datasets. Lastly, transfer learning showed that it is crucial that sufficient analogy
between the source and the target dataset exists. The analogy between fashion product
images and human-worn fashion images was not sufficient, as the performance dropped
significantly when the knowledge from the fashion MNIST dataset was transferred.

Author Contributions: Conceptualization, S.R. and F.M.; methodology, F.M. and M.K.; software,
S.R.; validation, S.R., M.K. and F.M.; writing—review and editing, S.R. and M.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Long. Convolutional Neural Network. Long. 1 June 2017. Available online: https://medium.com/@Aj.Cheng/convolutional-

neural-network-d9f69e473feb (accessed on 29 April 2019).
2. Szeliski, R. Computer Vision; Springer: London, UK, 2011.
3. Traore, B.B.; Kamsu-Foguem, B.; Tangara, F. Deep convolution neural network for image recognition. Ecol. Inform. 2018, 48,

257–268. [CrossRef]
4. Tack, P. Artificial intelligence and machine learning applications in musculoskeletal physiotherapy. Musculoskelet Sci. Pract. 2018,

39, 164–169. [CrossRef] [PubMed]
5. Ayodele, T.O. Types of machine learning algorithms. New Adv. Mach. Learn. 2010. [CrossRef]
6. Murphy, K.P. Machine Learning-A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012; Available online: https:

//mitpress.mit.edu/books/machine-learning-1 (accessed on 21 January 2019).

https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb
http://doi.org/10.1016/j.ecoinf.2018.10.002
http://doi.org/10.1016/j.msksp.2018.11.012
http://www.ncbi.nlm.nih.gov/pubmed/30502096
http://doi.org/10.5772/9385
https://mitpress.mit.edu/books/machine-learning-1
https://mitpress.mit.edu/books/machine-learning-1


Mathematics 2021, 9, 624 31 of 32

7. Bishop, P. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
8. Portugal, I.; Alencar, P.; Cowan, D. The use of machine learning algorithms in recommender systems: A systematic review. Expert

Syst. Appl. 2018, 97, 205–227. [CrossRef]
9. Rojas, R. Neural Networks: A Systematic Introduction; Springer: Berlin/Heidelberg, Germany, 1996.
10. Yadav, N.; Yadav, A.; Kumar, M. History of Neural Networks. An Introduction to Neural Network Methods for Differential Equations;

Springer: Amsterdam, The Netherlands, 2015; pp. 13–15. [CrossRef]
11. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 6088, 533.

[CrossRef]
12. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning by Shai Shalev-Shwartz. Cambridge Core. Available online:

core/books/understanding-machine-learning/3059695661405D25673058E43C8BE2A6 (accessed on 27 January 2019).
13. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning. Available online: https://www.deeplearningbook.org/ (accessed on 21

January 2019).
14. Messikh, N.; Bousba, S.; Bougdah, N. The use of a multilayer perceptron (MLP) for modelling the phenol removal by emulsion

liquid membrane. J. Environ. Chem. Eng. 2017, 4, 3483–3489. [CrossRef]
15. Miikkulainen, R. Neuron. In Encyclopedia of Machine Learning; ICT Institute: Amsterdam, The Netherlands, 2011; pp. 720–721.
16. Akdag, U.; Komur, M.A.; Ozguc, A.F. Estimation of heat transfer in oscillating annular flow using artifical neural networks. Adv.

Eng. Softw. 2009, 9, 864–870. [CrossRef]
17. Long, L.N.; Gupta, A. Scalable massively parallel artificial neural networks. J. Aerosp. Comput. Inf. Commun. 2008, 1, 3–15.

[CrossRef]
18. Park, Y.-S.; Lek, S. Artificial neural networks: Multilayer perceptron for ecological modeling. Dev. Environ. Model. 2016, 28,

123–140. [CrossRef]
19. Yang, J.; Ma, J. Feed-forward neural network training using sparse representation. Expert Syst. Appl. 2019, 116, 255–264. [CrossRef]
20. Amakdouf, H.; El Mallahi, M.; Zouhri, A.; Tahiri, A.; Qjidaa, H. Classification and recognition of 3D image of Charlier moments

using a Multilayer perceptron architecture. Procedia Comput. Sci. 2018, 127, 226–235. [CrossRef]
21. Bhattacharyya, S.; Maulik, U. Transformation invariant image recognition using multilayer perceptron. Soft Comput. Image

Multimed. Data Process. 2013, 73–87. [CrossRef]
22. Gibson, A.; Patterson, J. Major Architectures of Deep Networks-Deep Learning. Available online: https://www.oreilly.com/

library/view/deep-learning/9781491924570/ch04.html (accessed on 29 April 2019).
23. Miikkulainen, R. Topology of a neural network. In Encyclopedia of Machine Learning; ICT Institute: Amsterdam, The Netherlands,

2011; pp. 988–989.
24. Burse, K.; Manoria, M.; Kirar, V.P.S. Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model;

Springer: Berlin/Heidelberg, Germany, 2011.
25. Mondal, A.; Ghosh, A.; Ghosh, S. Scaled and oriented object tracking using ensemble of multilayer perceptrons. Appl. Soft Comput.

2018, 73, 1081–1094. [CrossRef]
26. Nilsson, N.J. Introduction to Machine Learning. Available online: https://ai.stanford.edu/~{}nilsson/mlbook.html (accessed on

26 January 2019).
27. Bhattacharyya, S. Neural networks: evolution, topologies, learning algorithms and applications. Available online: https://www.

researchgate.net/publication/236268473_Neural_networks_evolution_topologies_learning_algorithms_and_applications (ac-
cessed on 31 January 2019).

28. Miikkulainen, R. Neuron; Sammut, P., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2014; p. 1.
29. Kingma, D.P.; Ba, J.A. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
30. Seo, Y.; Shin, K. Image Classification of fine-Grained Fashion Image Based on Style Using Pre-Trained Convolutional Neural

Network. In Proceedings of the IEEE 3rd International Conference on Big Data Analysis, Shanghai, China, 9–12 March 2018; pp.
387–390. [CrossRef]

31. Ma, Y.; Xu, J.; Wu, X.-Y.; Chen, W.; Wang, F. A visual analytical approach for transfer learning in classification. Inf. Sci. 2017,
54–69. [CrossRef]

32. Yian, S.; Kyung-Shik, S. Hierarchical convolutional neural networks for fashion image classification. Expert Syst. Appl. 2019, 116,
328–339. [CrossRef]

33. Shanmugamani, R. Dropout-Deep Learning for Computer Vision. Available online: https://www.oreilly.com/library/view/
deep-learning-for/9781788295628/a22e6b18-79e3-4875-b003-2f4c6080bf54.xhtml (accessed on 29 April 2019).

34. Tensorflow. TensorFlow documentation. Contribute to tensorflow/docs development by creating an account on GitHub/Tensorflow,
tensorflow, 2019. Available online: https://github.com/tensorflow/docs (accessed on 29 April 2020).

35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Available online:
https://dl.acm.org/citation.cfm?id=2999257 (accessed on 31 January 2019).

36. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.; Philbrick, K. Toolkits and libraries for deep learning. J. Digit. Imaging 2017, 4,
400–405. [CrossRef] [PubMed]

37. Nguyen, G.; Dlugolinsky, S.; Bobak, M.; Tran, V.; Lopez Garcia, A.; Heredia, I.; Malik, P.; Hluchy, L. Machine Learning and Deep
Learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 1–48. [CrossRef]

http://doi.org/10.1016/j.eswa.2017.12.020
http://doi.org/10.1007/978-94-017-9816-7_2
http://doi.org/10.1038/323533a0
core/books/understanding-machine-learning/3059695661405D25673058E43C8BE2A6
https://www.deeplearningbook.org/
http://doi.org/10.1016/j.jece.2017.06.053
http://doi.org/10.1016/j.advengsoft.2009.01.010
http://doi.org/10.2514/1.31026
http://doi.org/10.1016/B978-0-444-63623-2.00007-4
http://doi.org/10.1016/j.eswa.2018.08.038
http://doi.org/10.1016/j.procs.2018.01.118
http://doi.org/10.1007/978-3-642-40255-5_2
https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html
https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html
http://doi.org/10.1016/j.asoc.2018.09.028
https://ai.stanford.edu/~{}nilsson/mlbook.html
https://www.researchgate.net/publication/236268473_Neural_networks_evolution_topologies_learning_algorithms_and_applications
https://www.researchgate.net/publication/236268473_Neural_networks_evolution_topologies_learning_algorithms_and_applications
http://doi.org/10.1109/ICBDA.2018.8367713
http://doi.org/10.1016/j.ins.2016.03.021
http://doi.org/10.1016/j.eswa.2018.09.022
https://www.oreilly.com/library/view/deep-learning-for/9781788295628/a22e6b18-79e3-4875-b003-2f4c6080bf54.xhtml
https://www.oreilly.com/library/view/deep-learning-for/9781788295628/a22e6b18-79e3-4875-b003-2f4c6080bf54.xhtml
https://github.com/tensorflow/docs
https://dl.acm.org/citation.cfm?id=2999257
http://doi.org/10.1007/s10278-017-9965-6
http://www.ncbi.nlm.nih.gov/pubmed/28315069
http://doi.org/10.1007/s10462-018-09679-z


Mathematics 2021, 9, 624 32 of 32

38. Wang, Z.; Liu, K.; Zhu, Y.; Zhang, Y. Various Frameworks and Libraries of Machine Learning and Deep Learning: A Survey. Arch.
Comput. Methods Eng. 2019, 1–24. [CrossRef]

39. Helmus, J. TensorFlow in Anaconda. Anaconda. Available online: https://www.anaconda.com/tensorflow-in-anaconda/
(accessed on 4 April 2019).

40. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv
2017, arXiv:1708.07747.

http://doi.org/10.1007/s11831-018-09312-w
https://www.anaconda.com/tensorflow-in-anaconda/

	Introduction 
	Problem Statement 
	Structure of the Work 
	Boundaries 

	Literature Review 
	Machine Learning Types and Algorithms 
	Neural Networks for Image Classification 
	Artificial Neurons 
	Multilayer Perceptron 
	Backpropagation: Learning a Function 
	Activation Functions 
	Optimizers 
	The Problem of Overfitting 
	Conclusion: Neural Networks for Image Classification 

	Convolutional Neural Networks 
	Transfer Learning 
	Data Augmentation 
	Important Layer Types 
	Conclusion: Convolutional Neural Networks 


	Set-Up for Case Study 
	Hardware 
	Libraries and Frameworks 
	TensorFlow 
	Keras 
	Anaconda 

	Datasets 
	Fashion MNIST Benchmark 
	Created myFashion Dataset 
	Potential Difficulties with the Dataset 


	Implementation 
	Approach 

	Evaluation and Results 
	Winning Model Architecture 
	Classifying the myFashion Dataset 
	Transfer Learning with the Fashion MNIST Dataset 
	Transfer Learning with the ImageNet Dataset 

	Discussion 
	Conclusions 
	References

