A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria
Abstract
:1. Introduction
2. Definition of the Model and Methods for Estimating a SEM Problem
2.1. Definition of the Model
2.2. Methods for Estimating an SEM Problem
2.2.1. Two Stage Least Squares (2SLS)
2.2.2. Bayesian Method of Moments ()
2.2.3. Bayesian Approach in Two Stages ()
2.2.4. Markov Chain Monte Carlo (MCMC)
3. The Proposed Estimation Method: Optimized BMOM Method ()
4. Entropy as an Information Parameter Criteria
5. Experimental Design and Results
5.1. Experimental Design
5.2. Experimental Results
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gujarati, D.; Porter, D. Econometría, 5th ed.; México, D.F., Ed.; McGraw-Hill Interamericana Editores SA: Ciudad de México, México, 2004. [Google Scholar]
- Zellner, A. The finite sample properties of simultaneous equations’ estimates and estimators Bayesian and non-Bayesian approaches. J. Econom. 1998, 83, 185–212. [Google Scholar] [CrossRef]
- Chao, J.C.; Phillips, P.C. Jeffreys prior analysis of the Simultaneous Equations Model in the case with n+1 endogenous variables. J. Econom. 2002, 111, 251–283. [Google Scholar] [CrossRef] [Green Version]
- Geweke, J. Bayesian Reduced Rank Regression in Econometrics. J. Econ. Trics 1996, 75, 121–146. [Google Scholar] [CrossRef]
- Kleibergen, F.; Dijk, H.V. Bayesian simultaneous equation analysis using reduced rank structures. Econom. Theory 1998, 14, 701–743. [Google Scholar] [CrossRef] [Green Version]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall: New York, NY, USA, 2015. [Google Scholar]
- Siburian, M.E. Fiscal decentralization and regional income inequality: Evidence from Indonesia. Appl. Econ. Lett. 2019, 1–4. [Google Scholar] [CrossRef]
- Steele, F.; French, R.; Bartley, M. Adjusting for Selection Bias in Longitudinal Analysis Using Simultaneous Equations Modeling. The Relationship Between Employment Transitions and Mental Health. Epidemiology 2013, 24, 703–711. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, B. Impact of foreign trade on energy efficiency in China’s textile industry. J. Clean. Prod. 2019, 245, 118878. [Google Scholar] [CrossRef]
- Adewuyi, A.O.; Awodumi, O.B. Biomass energy consumption, economic growth and carbon emi-ssions: Fresh evidence from West Africa using a simultaneous equation model. Energy 2017, 119, 453–471. [Google Scholar] [CrossRef]
- King, T. Using simultaneous equation modelling for defining complex phenotypes. BMC Genet. 2003, 4, S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitfield, D.; Caves, R.; Quddus, M. Airline strategies for aircraft size and airline frequency with changing demand and competition: A simultaneous-equations approach for traffic on the north Atlantic. J. Air Transp. Manag. 2009, 16, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Olmeda, N.G.; Martinez, I.B. Application of simultaneous equation models to temporary disability prescriptions in primary healthcare centres. Int. J. Comput. Math. 2014, 91, 252–260. [Google Scholar] [CrossRef]
- Strathe, A.; Jørgensen, H.; Kebreab, E.; Danfær, A. Bayesian simultaneous equation models for the analysis of energy intake and partitioning in growing pigs. J. Agric. Sci. 2012, 150, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Duan, W. An empirical study of how third-party websites influence the feedback mechanism between online Word-of-Mouth and retail sales. Decis. Support Syst. 2015, 76, 14–23. [Google Scholar] [CrossRef]
- Yang, S.; Narayan, V.; Assael, H. Estimating the Interdependence of Television Program Viewership Between Spouses: A Bayesian Simultaneous Equation Model. Mark. Sci. 2006, 25, 336–349. [Google Scholar] [CrossRef]
- Park, H.; Manchanda, P. When Harry Bet with Sally: An Empirical Analysis of Multiple Peer Effects in Casino Gambling Behavior. Mark. Sci. 2015, 2, 179–194. [Google Scholar] [CrossRef]
- Chen, C.; Chang, K.; Lin, L.; Lee, J. Health risk perception and betel chewing behavior. The evidence from Taiwan. Addict. Behav. 2013, 38, 2714–2717. [Google Scholar] [CrossRef]
- Cohen, D.P.; Benadjaoud, M.A.; Lestaevel, P.; Lebsir, D.; Benderitter, M.; Souidi, M. Effects of repetitive Iodine Thyroid Blocking on the Development of the Foetal Brain and Thyroid in rats: A Systems Biology approach. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle; Springer: New York, NY, USA, 1998. [Google Scholar]
- Keerativibool, W. New Criteria for Selection in Simultaneous Equations Model. Thail. Stat. 2012, 10, 163–181. [Google Scholar]
- Hurvich, C.; Tsai, C. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–397. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Findley, D.F. Counterexamples to parsimony and BIC. Ann. Inst. Stat. Math. 1991, 43, 505–514. [Google Scholar] [CrossRef]
- Hannan, E.J.; Quinn, B.G. The Determination of the Order of an Autoregression. J. R. Stat. Soc. Ser. B (Methodol.) 1979, 41, 190–195. [Google Scholar] [CrossRef]
- Keerativibool, W.; Jitthavech, J. Model Selection Criterion Based on Kullback-Leibler’s Symmetric Divergence for Simultaneous Equations Model. Chiang Mai J. Sci. 2015, 42, 761–773. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Zhou, R.; Cai, R.; Tong, G. Applications of Entropy in Finance: A Review. Entropy 2013, 15, 4909–4931. [Google Scholar] [CrossRef]
- Cui, H.; Sivakumar, B.; Singh, V. Entropy Applications in Environmental and Water Engineering. Entropy 2019, 20, 598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purvis, B.; Mao, Y.; Robinson, D. Entropy and its Application to Urban Systems. Entropy 2019, 21, 56. [Google Scholar] [CrossRef] [Green Version]
- Oruç, Ö.E.; Kuruoglu, E.; Gündüz, A. Entropy Applications for Customer Satisfaction Survey in Information Theory. Front. Sci. 2011, 1, 1–4. [Google Scholar] [CrossRef]
- Amigó, J.M.; Balogh, S.G.; Hernández, S. A Brief Review of Generalized Entropies. Entropy 2018, 20, 813. [Google Scholar] [CrossRef] [Green Version]
- Qayyum, Z.; Hasan, S.S. K-Class estimators-a Review. Int. J. Math. Trends Technol. 2017, 50, 104–107. [Google Scholar] [CrossRef]
- Theil, H. Repeated Least Squares Applied to Complete Equation Systems; Central Planning Bureau: The Hague, The Netherlands, 1953.
- Basmann, R.L. A Generalized Classical Method of Linear Estimation of Coefficients in a Structural Equation. Econometrica 1957, 25, 77–83. [Google Scholar] [CrossRef]
- Clausius, R. The Mechanical Theory of Heat; Macmillan: New York, NY, USA, 1879. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Lombardi, O.; Holik, F.; Vanni, L. What is Shannon information? Synthese 2016, 193, 1983–2012. [Google Scholar] [CrossRef] [Green Version]
Loss Function | BMOM Approach | |
---|---|---|
Goodness of fit | , | |
Precision of estimation |
m | k | n | 2SLS | BMOM | MCMC | ||||
---|---|---|---|---|---|---|---|---|---|
Goodness of Fit | Precision of Estimation | ||||||||
10 | 20 | 100 | 27.670 | 40.914 7.538 | 40.966 7.546 | 20.647 8.826 | 33.673 12.084 | 71.410 10.491 | |
10 | 40 | 100 | 40.927 9.104 | 58.635 8.039 | 58.932 8.100 | 26.769 8.209 | 56.340 13.721 | 91.076 4.918 | |
20 | 60 | 100 | 115.852 8.537 | 141.029 6.294 | 140.906 6.250 | 94.999 12.498 | 146.640 5.904 | 163.771 6.092 | |
10 | 20 | 400 | 16.563 11.257 | 27.508 6.955 | 27.534 6.974 | 10.619 5.868 | 22.233 17.026 | 70.449 7.899 | |
10 | 40 | 400 | 15.199 4.366 | 30.538 6.467 | 30.494 6.446 | 7.923 2.576 | 26.009 22.856 | 90.357 5.568 | |
10 | 40 | 1000 | 7.394 2.830 | 17.218 5.450 | 17.229 5.458 | 5.130 1.944 | 9.233 7.540 | 95.210 10.424 | |
10 | 20 | 100 | 1361.764 781.683 | 1895.361 801.349 | 1896.600 800.971 | 1156.465 792.277 | 1993.402 831.727 | 4598.074 395.783 | |
10 | 40 | 100 | 1915.270 651.931 | 2345.388 636.213 | 2351.286 635.582 | 1718.000 626.334 | 2531.052 715.689 | 4547.361 286.781 | |
20 | 60 | 100 | 5941.844 779.559 | 6458.904 762.773 | 6456.303 763.063 | 5692.839 793.354 | 6732.681 777.638 | 10,172.018 206.247 | |
10 | 20 | 400 | 4438.187 3271.180 | 7319.586 3449.337 | 7323.685 3450.560 | 3409.573 3232.656 | 7517.898 5184.224 | 22875.120 1641.293 | |
10 | 40 | 400 | 4645.919 2358.815 | 6989.900 2744.681 | 6983.853 2744.491 | 3877.930 2299.173 | 7382.701 4943.642 | 22,057.334 917.641 | |
10 | 40 | 1000 | 6824.562 8001.673 | 11,738.582 8294.696 | 11,742.499 8294.949 | 5913.439 8123.421 | 9046.596 8850.159 | 63,247.410 2586.679 | |
10 | 20 | 100 | 2168.030 854.334 | 1784.122 808.851 | 1783.602 808.150 | 2419.415 893.327 | 2391.887 785.620 | 4413.688 421.952 | |
10 | 40 | 100 | 2009.636 639.153 | 1850.753 626.141 | 1850.716 626.059 | 2372.355 692.930 | 2254.874 728.737 | 4348.852 256.390 | |
20 | 60 | 100 | 3866.102 1051.585 | 3647.221 1056.690 | 3645.439 1056.018 | 4543.780 1054.504 | 4119.416 1128.524 | 9856.712 241.454 | |
10 | 20 | 400 | 15,027.648 3347.331 | 13,448.372 3161.253 | 13,446.459 3161.039 | 15,524.231 3459.419 | 15626.142 3279.198 | 22,160.759 1516.667 | |
10 | 40 | 400 | 12,849.587 2699.761 | 11,990.079 2509.827 | 11,991.659 2509.734 | 13,479.303 2744.344 | 13,606.665 2961.619 | 21,421.728 858.468 | |
10 | 40 | 1000 | 37,879.770 9621.598 | 36,438.251 9459.390 | 36,437.331 9459.167 | 38,479.010 9605.284 | 38,035.942 9483.024 | 61,720.600 2138.345 | |
10 | 20 | 100 | 4.074 0.013 | 4.081 0.012 | 4.081 0.012 | 4.074 0.013 | 4.084 0.018 | 4.096 0.016 | |
10 | 40 | 100 | 4.076 0.012 | 4.080 0.010 | 4.080 0.010 | 4.075 0.014 | 4.084 0.011 | 4.087 0.014 | |
20 | 60 | 100 | 4.086 0.008 | 4.087 0.009 | 4.087 0.009 | 4.086 0.009 | 4.086 0.009 | 4.088 0.009 | |
10 | 20 | 400 | 5.579 0.005 | 5.579 0.005 | 5.579 0.005 | 5.579 0.005 | 5.587 0.021 | 5.609 0.008 | |
10 | 40 | 400 | 5.590 0.005 | 5.590 0.005 | 5.590 0.005 | 5.590 0.005 | 5.593 0.014 | 5.602 0.007 | |
10 | 40 | 1000 | 6.530 0.003 | 6.531 0.003 | 6.531 0.003 | 6.530 0.004 | 6.532 0.013 | 6.568 0.004 | |
Time (s) | 10 | 20 | 100 | 0.073 0.145 | 0.732 0.246 | 0.732 0.246 | 258.227 98.562 | 0.056 0.017 | 294.453 17.949 |
10 | 40 | 100 | 0.143 0.047 | 1.022 0.395 | 1.022 0.395 | 274.088 345.929 | 0.140 0.050 | 499.554 68.116 | |
20 | 60 | 100 | 0.314 0.047 | 2.495 0.395 | 2.495 0.395 | 748.504 345.929 | 0.407 0.145 | 1435.791 0.145 | |
10 | 20 | 400 | 0.125 0.031 | 4.265 0.864 | 4.265 0.864 | 2586.186 1005.068 | 0.109 0.030 | 328.571 18.174 | |
10 | 40 | 400 | 0.235 0.037 | 4.533 0.765 | 4.533 0.765 | 2281.255 804.186 | 0.214 0.032 | 507.791 38.694 | |
10 | 40 | 1000 | 0.426 0.066 | 21.385 1.595 | 21.385 1.595 | 14,534.080 21,689.539 | 0.376 0.107 | 524.904 26.564 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Sánchez, B.; González, M.; Perea, C.; López-Espín, J.J. A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria. Mathematics 2021, 9, 700. https://doi.org/10.3390/math9070700
Pérez-Sánchez B, González M, Perea C, López-Espín JJ. A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria. Mathematics. 2021; 9(7):700. https://doi.org/10.3390/math9070700
Chicago/Turabian StylePérez-Sánchez, Belén, Martín González, Carmen Perea, and Jose J. López-Espín. 2021. "A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria" Mathematics 9, no. 7: 700. https://doi.org/10.3390/math9070700
APA StylePérez-Sánchez, B., González, M., Perea, C., & López-Espín, J. J. (2021). A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria. Mathematics, 9(7), 700. https://doi.org/10.3390/math9070700