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Abstract: This article aims to mark out new conditions for oscillation of the even-order Emden–Fowler
neutral delay differential equations with neutral term

(
β1(ı)Φα[ζ(r−1)(ı)]

)′
+ β3(ı)Φα[ς(ξ(ı))] = 0.

The obtained results extend, and simplify known conditions in the literature. The results are illus-
trated with examples.

Keywords: oscillation; even-order

1. Introduction

Over the past few years, oscillation of Emden–Fowler-Type neutral delay differential
equations with are attracting a lot of attention. As a matter of fact, natural of differential
equation appear in the study of several real world problems such as biological systems,
population dynamics, pharmacoki-netics, theoretical physics, biotechnology processes,
chemistry, engineering, control, see [1–7].

In this manuscript, we investigate the oscillation of the following even-order Emden-
Fowler neutral differential equations:(

β1(ı)Φα[ζ
(r−1)(ı)]

)′
+ β3(ı)Φα[ς(ξ(ı))] = 0, ı ≥ ı0, (1)

where ζ(ı) := ς(ı) + β̂(ı)ς($(ı)). Throughout this paper, we make the hypotheses as fol-
lows:


Φα[s] = |s|α−1s, β1 ∈ C[ı0, ∞), β1(ı) > 0, β′1(ı) ≥ 0,
$ ∈ C1[ı0, ∞), ξ ∈ C[ı0, ∞), $′(ı) > 0, $(ı) ≤ ı , limı→∞ $(ı) = limı→∞ ξ(ı) = ∞,
β̂, β3 ∈ C[ı0, ∞), β3(ı) > 0, 0 ≤ β̂(ı) < β̂0 < ∞,
r ≥ 4 is an even natural number, r is a quotient of odd positive integers.

The following relations are satisfied∫ ∞

ı0
β−1/α

1 (s)ds = ∞. (2)
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Definition 1. Let

E = {(ı, s) ∈ R2 : ı ≥ s ≥ ı0} and E0 = {(ı, s) ∈ R2 : ı > s ≥ ı0}.

Let ϕi ∈ C(E,R) for i = 1, 2,

(i) ϕi(ı, s) = 0 for ı ≥ ı0, ϕi(ı, s) > 0, (ı, s) ∈ E0;
(ii) Let ∂ϕi/∂s on E0 and there exist functions a1, a2 ∈ C1([ı0, ∞), (0, ∞)) and ϕ̂i ∈ C(E0,R)

such that
∂

∂s
ϕ1(ı, s) +

a′1(s)
a1(s)

ϕ(ı, s) = ϕ̂1(ı, s)ϕ
α/(α+1)
1 (ı, s) (3)

and
∂

∂s
ϕ2(ı, s) +

a′2(s)
a2(s)

ϕ2(ı, s) = ϕ̂2(ı, s)
√

ϕ2(ı, s). (4)

In recent years, and in context of oscillation theory, many studies have been devoted
to the oscillation conditions for non-linear delay differential equations; the reader can refer
to [8–16].

Li et al. [17] discussed oscillation criteria for the equation
(

α1(ı)|ζ ′′′(ı)|p−2
ζ ′′′(ı)

)′
+ β(ı)|ς(ξ(ı))|p−2ς(ξ(ı)) = 0,

1 < p < ∞, ı ≥ ı0 > 0,

where ζ(ı) := ς(ı) + β̂(ı)ς($(ı)).
Liu et al. [18] have obtained some oscillation conditions for equation

(
α1(ı)Φ

(
ζ(r−1)(ı)

))′
+ α2(x)Φ

(
ζ(r−1)(ı)

)
+ β(ı)Φ(ζ(ξ(ı))) = 0,

Φ = |s|p−2s, ı ≥ ı0 > 0, r is even.

They used integral averaging technique.
Moaaz et al. [19] proved that equation(

β1(ı)
(

ζ(r−1)(ı)
)α)′

+ β3(ı)ςα(ξ(ı)) = 0, (5)

is oscillatory if

lim inf
ı→∞

∫ ı

$−1(δ(ı))

( (
$−1(δ(s))

)r−1

β1/α
1 ($−1(δ(s)))

)α

β3(s)Fα
r (ξ(s))ds >

((r− 1)!)α

e
(6)

and
lim inf

ı→∞

∫ ı

$−1(ζ(ı))
$−1(ζ(s))Gr−3(s)ds >

1
e

(7)

and used the Riccati method. The authors in [20] confirmed that (5) is oscillatory if(
ξ−1(ı)

)′
≥ ξ0 > 0, $′(ı) ≥ $0 > 0, $−1(ξ(ı)) < ı

and

lim inf
ı→∞

∫ ı

$−1(ξ(ı))

β̂3(s)
β1(s)

(
sr−1

)α
ds >

(
1
ξ0

+
β̂α

0
ξ0$0

)
>

((r− 1)!)α

e
, (8)

where β̂3(ı) := min
{

β3
(
ξ−1(ı)

)
, β3
(
ξ−1($(ı))

)}
. They used the comparison technique.
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If we apply the results obtained by the authors in [19–22] to the equation(
ς(ı) +

7
8

ς

(
1
e

ı
))(4)

+


ı4
ς

(
1
e2 ı
)
= 0, ı ≥ 1, (9)

then we get that (9) is oscillatory if  > 113981.3,  > 3561.9,  > 3008.5,  > 587.93, respectively.
Thus, [19] improved the results in [20–22].
This article purpose to establish new oscillation criteria for (1). The criteria obtained

in this article complement the results in [19–22]. We provided an example to examine our
main results.

These are some of the important Lemmas:

Lemma 1 ([3]). If ς(i)(ı) > 0, i = 0, 1, ..., r, and ς(r+1)(ı) < 0, then

ς(ı)
ır/r!

≥ ς′(ı)
ır−1/(r− 1)!

.

Lemma 2 ([5]). Let ς ∈ Cr([ı0, ∞), (0, ∞)), ς(r−1)(ı)ς(r)(ı) ≤ 0 and limı→∞ ς(ı) 6= 0, then for
every ε ∈ (0, 1) there exists ıε ≥ ı1 such that

ς(ı) ≥ ε

(r− 1)!
ır−1

∣∣∣ς(r−1)(ı)
∣∣∣ for ı ≥ ıε ≥ ı1, ε ∈ (0, 1).

Lemma 3 ([4]). Let α ≥ 1, L2 > 0. Then

L1ς− L2ς(α+1)/α ≤ αα

(α + 1)α+1
Lα+1

1
Lα

2
.

Lemma 4 ([8]). Assume that

ς be an eventually positive solution of (1). (10)

Then, we have these cases:

(S1) ζ(ı) > 0, ζ ′(ı) > 0, ζ ′′(ı) > 0, ζ(r−1)(ı) > 0, ζ(r)(ı) < 0,
(S2) ζ(ı) > 0, ζ(j)(ı) > 0, ζ(j+1)(ı) < 0 for all odd integer

j ∈ {1, 3, ..., r− 3}, ζ(r−1)(ı) > 0, ζ(r)(ı) < 0,

for ı ≥ ı1, where ı1 ≥ ı0 is sufficiently large.

Lemma 5. Let (10) hold and(
$−1

(
$−1(ı)

))r−1
<
(

$−1(ı)
)r−1

β̂
(

$−1
(

$−1(ı)
))

. (11)

Then

ς(ı) ≥
ζ
(
$−1(ı)

)
β̂($−1(ı))

− 1
β̂($−1(ı))

ζ
(
$−1($−1(ı)

))
β̂($−1($−1(ı)))

. (12)

Proof. Let (10) hold. From the definition of ζ(ı), we have that

β̂(ı)ς($(ı)) = ζ(ı)− ς(ı)

and so
β̂
(

$−1(ı)
)

ς(ı) = ζ
(

$−1(ı)
)
− ζ
(

$−1(ı)
)

.
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Repeating the same process, we obtain

ς(ı) =
1

β̂($−1(ı))

(
ζ
(

$−1(ı)
)
−
(

ζ
(
$−1($−1(ı)

))
β̂($−1($−1(ı)))

−
ς
(
$−1($−1(ı)

))
β̂($−1($−1(ı)))

))
,

which yields

ς(ı) ≥
ζ
(
$−1(ı)

)
β̂($−1(ı))

− 1
β̂($−1(ı))

ζ
(
$−1($−1(ı)

))
β̂($−1($−1(ı)))

.

Thus, (12) holds. This completes the proof.

Here, we define the next notations:

Fı(ı) =
1

β̂($−1(ı))

(
1−

(
$−1($−1(ı)

))ı−1

($−1(ı))ı−1
β̂($−1($−1(ı)))

)
, for ı = 2, r,

G0(ı) =

(
1

β1(ı)

∫ ∞

ı
β3(s)Fα

2 (ξ(s))ds
)1/α

,

Θ(ı) = α
ε1

(r− 2)!

(
β1(ı)

β1($−1(ξ(ı)))

)1/α
(
$−1(ξ(ı))

)′(
$−1(ξ(ı))

)r−2

(β1a1)
1/α(ı)

,

Θ̃(ı) =
ϕ̂α+1

1 (ı, s)ϕα
1(ı, s)

(α + 1)α+1
((r− 2)!)αβ1

(
$−1(ξ(ı))

)
a1(ı)(

ε1($−1(ξ(ı)))′($−1(ξ(ı)))r−2
)α

and
Gm(ı) =

∫ ∞

ı
Gm−1(s)ds, m = 1, 2, ..., r− 3.

Lemma 6. Let (10) hold and(
β1(ı)

(
ζ(r−1)(ı)

)α)′
≤ −ζα

(
$−1(ξ(ı))

)
β3(ı)Fα

r (ξ(ı)), if ζ satisfies (S1) (13)

and
ζ ′′(ı) + Gr−3(ı)ζ

(
$−1(ξ(ı))

)
≤ 0, if ζ satisfies (S2). (14)

Proof. Let (10) hold. From Lemma 4, we have(S1) and (S2).
Let case (S1) holds. Using Lemma 6, we get ζ(ı) ≥ 1

(r−1) ıζ ′(ı) and hence the function

ı1−rζ(ı) is nonincreasing, which with the fact that $(ı) ≤ ı gives(
$−1(ı)

)r−1
ζ
(

$−1
(

$−1(ı)
))
≤
(

$−1
(

$−1(ı)
))r−1

ζ
(

$−1(ı)
)

. (15)

Combining (12) and (15), we conclude that

ς(ı) ≥ 1
β̂($−1(ı))

(
1−

(
$−1($−1(ı)

))r−1

($−1(ı))r−1
β̂($−1($−1(ı)))

)
ζ
(

$−1(ı)
)

= Fr(ı)ζ
(

$−1(ı)
)

. (16)

From (1) and (16), we obtain(
β1(ı)

(
ζ(r−1)(ı)

)α)′
≤ −β3(ı)Fα

r (ξ(ı))ζ
α
(

$−1(ξ(ı))
)

≤ −ζα
(

$−1(ξ(ı))
)

β3(ı)Fα
r (ξ(ı)).

Thus, (13) holds.
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Let case (S2) holds. Using Lemma 6, we get that

ζ(ı) ≥ ıζ ′(ı) (17)

and thus the function ı−1ζ(ı) is nonincreasing, eventually. Since $−1(ı) ≤ $−1($−1(ı)
)
, we

obtain
$−1(ı)ζ

(
$−1

(
$−1(ı)

))
≤ $−1

(
$−1(ı)

)
ζ
(

$−1(ı)
)

. (18)

Combining (12) and (18), we find

ς(ı) ≥ 1
β̂($−1(ı))

(
1−

(
$−1($−1(ı)

))
($−1(ı))β̂($−1($−1(ı)))

)
ζ
(

$−1(ı)
)

= F2(ı)ζ
(

$−1(ı)
)

,

which with (1) yields(
β1(ı)

(
ζ(r−1)(ı)

)α)′
+ β3(ı)Fα

2 (ξ(ı))ζ
α
(

$−1(ξ(ı))
)
≤ 0. (19)

Integrating the (19) from ı to ∞, we obtain

ζ(r−1)(ı) ≥ G0(ı)ζ
(

$−1(ξ(ı))
)

.

NOW, integrating from ı to ∞ a total of r− 3 times, we obtain

ζ ′′(ı) + Gr−3(ı)ζ
(

$−1(ξ(ı))
)
≤ 0.

Thus, (14) holds. This completes the proof.

2. Philos-Type Oscillation Criteria

Theorem 1. Let ξ(ı) ≤ ξ(ı) and (11) holds. If the functions a1, a2 ∈1 ([ı0, ∞),R) such that

lim sup
ı→∞

1
ϕ(ı, ı1)

∫ ı

ı1

(
ϕ(ı, s)D(s)− Θ̃(s)

)
ds = ∞ (20)

and

lim sup
ı→∞

1
ϕ2(ı, ı1)

∫ ı

ı1

(
ϕ2(ı, s)D∗(s)−

a2(s)ϕ̂2
2(ı, s)

4

)
ds = ∞, (21)

where

D(s) = a1(ı)β3(ı)Fα
r (ξ(ı)), D∗(s) = a2(ı)Gr−3(ı)

(
$−1(ξ(ı))

ı

)
and

Θ̃(s) =
ϕ̂α+1

1 (ı, s)ϕα
1(ı, s)

(α + 1)α+1
((r− 2)!)αβ1

(
$−1(ξ(ı))

)
a1(ı)(

ε1($−1(ξ(ı)))′($−1(ξ(ı)))r−2
)α ,

then (1) is oscillatory.

Proof. Let ς be a non-oscillatory solution of (1), then ς > 0. Let (S1) holds.
Define

X(ı) := a1(ı)
β1(ı)

(
ζ(r−1)(ı)

)α

ζα($−1(ξ(ı)))
> 0.
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Differentiating and using (13), we obtain

X′(ı) ≤
a′1(ı)
a1(ı)

X(ı)− a1(ı)β3(ı)Fα
r (ξ(ı))

−αa1(ı)
β1(ı)

(
ζ(r−1)(ı)

)α(
$−1(ξ(ı))

)′
ζ ′u
(
$−1(ξ(ı))

)
ζα+1

u ($−1(ξ(ı)))
. (22)

Recalling that β1(ı)
(

ζ(r−1)(ı)
)α

is decreasing, we get

β1

(
$−1(ξ(ı))

)(
ζ(r−1)

(
$−1(ξ(ı))

))α
≥ β1(ı)

(
ζ(r−1)(ı)

)α
.

This yields (
ζ(r−1)

(
$−1(ξ(ı))

))α
≥ β1(ı)

β1($−1(ξ(ı)))

(
ζ(r−1)(ı)

)α
. (23)

It follows from Lemma 2 that

ζ ′
(

$−1(ξ(ı))
)
≥ ε1

(r− 2)!

(
$−1(ξ(ı))

)r−2
ζ(r−1)

(
$−1(ξ(ı))

)
, (24)

for all ε1 ∈ (0, 1) and every sufficiently large ı. Thus, by (22)–(24), we get

X′(ı) ≤ a′1(ı)
a1(ı)

X(ı)− a1(ı)β3(ı)Fα
r (ξ(ı))

−αa1(ı)
ε1

(r−2)!

(
β1(ı)

β1($−1(ξ(ı)))

)1/α
β1(ı)(ζ(r−1)(ı))

α+1
($−1(ξ(ı)))

′
($−1(ξ(ı)))

r−2

ζα+1($−1(ξ(ı)))
.

Hence,

X′(ı) ≤
a′1(ı)
a1(ı)

X(ı)− a1(ı)β3(ı)Fα
r (ξ(ı)) (25)

−Θ(ı)X
α+1

α (ı).

Multiplying (25) by ϕ(ı, s) and integrating from ı1 to ı; we obtain

∫ ı

ı1
ϕ(ı, s)D(s)ds ≤ X(ı1)ϕ(ı, ı1) +

∫ ı

ı1

(
∂

∂s
ϕ(ı, s) +

a′1(s)
a1(s)

ϕ(ı, s)
)

X(s)ds

−
∫ ı

ı1
Θ(s)ϕ(ı, s)X

α+1
α (s)ds.

From (3), we get∫ ı

ı1
ϕ(ı, s)D(s)ds ≤ X(ı1)ϕ(ı, ı1) +

∫ ı

ı1
ϕ̂1(ı, s)ϕ

α/(α+1)
1 (ı, s)X(s)ds

−
∫ ı

ı1
Θ(s)ϕ(ı, s)X

α+1
α (s)ds. (26)

Using Lemma 3 with L2 = Θ(s)ϕ(ı, s), L1 = ϕ̂1(ı, s)ϕ
α/(α+1)
1 (ı, s) and ς = X(s),

we get

ϕ̂1(ı, s)ϕ
α/(α+1)
1 (ı, s)X(s)−Θ(s)ϕ(ı, s)X

α+1
α (s)

≤
ϕ̂α+1

1 (ı, s)ϕα
1(ı, s)

(α + 1)α+1
((r− 2)!)αβ1

(
$−1(ξ(ı))

)
a1(ı)(

ε1($−1(ξ(ı)))′($−1(ξ(ı)))r−2
)α ,
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which, with (26) gives

1
ϕ(ı, ı1)

∫ ı

ı1

(
ϕ(ı, s)D(s)− Θ̃(s)

)
ds ≤ X(ı1),

which contradicts (20).
Let (S2) holds. Define

Z(ı) = a2(ı)
ζ ′(ı)
ζ(ı)

. (27)

Then Z(ı) > 0 for ı ≥ ı1. By differentiating Z and using (14), we find

Z′(ı) =
a′2(ı)
a2(ı)

Z(ı) + a2(ı)
ζ ′′(ı)
ζ(ı)

− a2(ı)
(

ζ ′(ı)
ζ(ı)

)2

≤ a′2(ı)
a2(ı)

Z(ı)− a2(ı)Gr−3(ı)
ζ
(
$−1(ξ(ı))

)
ζ(ı)

− 1
a2(ı)

Z2(ı). (28)

By using Lemma 1, we find that

ζ(ı) ≥ ıζ ′(ı). (29)

From (29), we get that

ζ
(

$−1(ξ(ı))
)
≥ $−1(ξ(ı))

ı
ζ(ı). (30)

Thus, from (28) and (30), we obtain

Z′(ı) ≤
a′2(ı)
a2(ı)

Z(ı)− a2(ı)Gr−3(ı)
(

$−1(ξ(ı))
ı

)
− 1

a2(ı)
Z2(ı). (31)

Multiplying (31) by ϕ2(ı, s) and integrating the resulting from ı1 to ı, we see∫ ı

ı1
ϕ2(ı, s)D∗(s)ds ≤ Z(ı1)ϕ2(ı, ı1)

+
∫ ı

ı1

(
∂

∂s
ϕ2(ı, s) +

a′2(s)
a2(s)

ϕ2(ı, s)
)

Z(s)ds

−
∫ ı

ı1

1
a2(s)

ϕ2(ı, s)Z2(s)ds.

Thus, ∫ ı

ı1
ϕ2(ı, s)D∗(s)ds ≤ Z(ı1)ϕ2(ı, ı1) +

∫ ı

ı1
ϕ̂2(ı, s)

√
ϕ2(ı, s)Z(s)ds

−
∫ ı

ı1

1
a2(s)

ϕ2(ı, s)Z2(s)ds

≤ Z(ı1)ϕ2(ı, ı1) +
∫ ı

ı1

a2(s)ϕ̂2
2(ı, s)

4
ds

and so
1

ϕ2(ı, ı1)

∫ ı

ı1

(
ϕ2(ı, s)D∗(s)−

a2(s)ϕ̂2
2(ı, s)

4

)
ds ≤ Z(ı1),

which contradicts (21). This completes the proof.



Mathematics 2021, 9, 714 8 of 10

Corollary 1. Let (11) holds and a1, a2 ∈1 ([ı0, ∞),R) such that

∫ ∞

ı0

v(s)− (r− 2)!α

(α + 1)α+1
β1
(
$−1(ξ(ı))

)(
a′1(ı)

)α+1(
ε1a1(ı)($−1(ξ(ı)))′($−1(ξ(ı)))r−2

)α

ds = ∞ (32)

and ∫ ∞

ı0

(
θ(s)− (a′2(s))

2

4a2(s)

)
ds = ∞, (33)

for some ε1 ∈ (0, 1), where
v(ı) := a1(ı)β3(ı)Fα

r (ξ(ı))

and

θ(ı) := F1a2(ı)
∫ ∞

ı

(
1

β1($)

∫ ∞

$
β3(s)

(
$−1(ξ(s))

s

)α

ds

)1/α

d$,

then (1) is oscillatory.

Proof. The proof of this theorem is the same as that of Theorem 1.

Example 1. Consider the equation(
ς(ı) + β̂0ς(δı)

)(r)
+



ır
ς(λı) = 0, (34)

where ı ≥ 1,  > 0, δ ∈
(

β̂
−1/(r−1)
0 , 1

)
, λ ∈ (0, δ), β1(ı) = 1, β̂(ı) = β̂0, $(ı) = δı, ξ(ı) = λı

and β3(ı) = /ır. Thus, we find

F1(ı) =
1
β̂0

(
1− 1

δ3 β̂0

)
, F2(ı) =

1
β̂0

(
1− 1

δβ̂0

)
, Ψ(ı) =

F1 

ı

and
B(ı) =

F2λ

6δı
.

Thus, (32) and (33) becomes∫ ∞

ı0

(
F1(ı)

s
− 9δ4

2λ4
1
s

)
ds =

(
F1(ı)− 9δ4

2λ4

)
(+∞)

and ∫ ∞

ı0

(
B(s)− (a′2(s))

2

4a2(s)

)
ds =

(
F2λ

6δ
− 1

4

)
(+∞),

From Corollary 1, the equation (34) is oscillatory if


1
β̂0

(
1− 1

δ3 β̂0

)
>

9δ4

2λ4 (35)

and


1
β̂0

(
1− 1

δβ̂0

)
>

3δ

2λ
. (36)

Let β̂0 = 16, δ = 1/2 and λ = 1/3, Condition (35) yields  > 41.14. Whereas, the criterion
obtained from the results of [20] is  > 4850.4 and [19] is  > 587.93.

Remark 1. Hence, our results extend and simplify the results in [19–22].
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Example 2. Consider the equation(
ς(ı) +

1
3

ς
( ı

2

))(4)
+



ı4
ξ
( ı

2

)
= 0, (37)

where ı ≥ 1 and q0 > 0. Let

r = 4, β1(ı) = 1, β̂(ı) = 1/3, $(ı) = ξ(ı) = ı/2 and β3(ı) = /ı4.

Then ∫ ∞

ı0
β−1/α

1 (s)ds = ∞.

So, we see that the conditions (20) and (21) holds. By Theorem 1, all solution of (37) is
oscillatory.

3. Conclusions

In this article, we give several oscillatory properties of differential equation of even-
order with neutral term. The criteria obtained in this article complements the results
in [19–22]. In our future work, and to supplement our results, we will present and dis-
cuss some oscillation theorems for differential equations of this type by using comparing
technique with first/second-order delay differential equation.
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