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Abstract: This article aims to mark out new conditions for oscillation of the ev/en—order Emden-Fowler
neutral delay differential equations with neutral term ([31 (1)@ gD (1)}) + B3 (1)Py[g(E(2))] = 0.
The obtained results extend, and simplify known conditions in the literature. The results are illus-
trated with examples.
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1. Introduction

Over the past few years, oscillation of Emden-Fowler-Type neutral delay differential
equations with are attracting a lot of attention. As a matter of fact, natural of differential
equation appear in the study of several real world problems such as biological systems,
population dynamics, pharmacoki-netics, theoretical physics, biotechnology processes,
chemistry, engineering, control, see [1-7].

In this manuscript, we investigate the oscillation of the following even-order Emden-
Fowler neutral differential equations:

(B2 (0]) + Bs()@ule ()] =0, 1 > 10, M

where (1) := ¢(1) + B(1)c(0(1)). Throughout this paper, we make the hypotheses as fol-
lows:

®,[s] = |s|* s, By € Clig, ), B1(2) > 0,B(1) >0,

0 € Cl1p,00),& € Clig,0),0' (1) >0,0(1) <1, im0 0(2) = lim 06 &(1) = o0,
B/.B3 € C[Zo,OO),ﬁ:g(l) >0,0< B(Z) < BO < 0o,

r > 4 is an even natural number, r is a quotient of odd positive integers.

The following relations are satisfied

/loo BV (s)ds = oo. 2)
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Definition 1. Let
E={(1,5) €R?*:1>s>1}and Eg = {(1,5) €ER®:1>5>1p}.

Let 9; € C(E,R) fori=1,2,

(i) @i(1,s) =0for1 >19, ¢;(13,5) >0, (1,8) € Eyp;
(ii) Let d¢;/ds on Eg and there exist functions ay,ay € C([1g,0), (0,00)) and ¢; € C(Eo, R)

such that 3 ,
2010, + 5 0005) = 916,901 19 ®
d
" 0 2(5) N e
g(pz(l,S) + 2(5) @2(1,8) = @P2(1,8)\/ 2(1, ). (4)

In recent years, and in context of oscillation theory, many studies have been devoted

to the oscillation conditions for non-linear delay differential equations; the reader can refer
to [8-16].
Li et al. [17] discussed oscillation criteria for the equation

l<p<oo,12>19>0,

{ (@O 2" W) +BOlEO)I 26(Ew) =0,

where {(1) := ¢(1) + B(1)(e(1))-

Liu et al. [18] have obtained some oscillation conditions for equation

O = |s|”_25, 1>19 >0, ris even.

{ (@ (20I0)) + ()@ (01 0) +0SEEN) =0,

They used integral averaging technique.
Moaaz et al. [19] proved that equation

(B (20" + s )@ =0, )
is oscillatory if
imin 1 W)“ SYES(F(s))ds ((r=1)H)"
s e-wl»(ﬁ}/“@—ws))) Fo(E)EF (EleNds > T ©
and Z )
imin “1(7(s))G,_3(s)ds > ~
lim inf -1z (2(5))Grs(s)ds > @)

and used the Riccati method. The authors in [20] confirmed that (5) is oscillatory if

(67'0) 28>0 d() 2 00>0 071 E0) <

and

=% Jor1(z() Pa(s) So oo e
where B3(1) := min{3(&1(1)), B3(& (a(1))) }. They used the comparison technique.

lim inf [ Bs(s) (s’—l)“ds > <1+ s ) S (=Y ®)
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If we apply the results obtained by the authors in [19-22] to the equation

(4)
(g(z) + Zg(il)) + 1]4g<e121> =0,1>1, 9)

then we get that (9) is oscillatory if ; > 113981.3,7 > 3561.9, ; > 3008.5, ; > 587.93, respectively.
Thus, [19] improved the results in [20-22].
This article purpose to establish new oscillation criteria for (1). The criteria obtained
in this article complement the results in [19-22]. We provided an example to examine our
main results.
These are some of the important Lemmas:

Lemma 1 ([3]). Ifg(i)(z) >0,i=0,1,...,r,and ¢+ (1) <0, then

(1) ¢'(1)
i /r! = 1/ (r—1)0

Lemma 2 ([5]). Let ¢ € C"([tg,0), (0,00)), ¢~V (1)¢( (1) < 0and lim, o0 ¢(1) # 0, then for
every € € (0,1) there exists 1, > 11 such that

¢(1) > ﬁz’_l‘gu_l)(z)‘fom >1.>11,e€(0,1).

Lemma 3 ([4]). Letaw > 1, Ly > 0. Then

+1
(a+1)/a at Llié
T (a+1)rr LS

Lig — Lag

Lemma 4 ([8]). Assume that
¢ be an eventually positive solution of (1). (10)
Then, we have these cases:
(S1) ¢(1)>0,8()>0,"(1) >0, (" V()>0, (V1) <0,
(S2) ¢(1) > 0,29 (1) > 0,20tV (1) < 0 forall odd integer
je{1,3,..,r=3}, 0"V >0,70) <0,

for1 > 11, where 11 > 19 is sufficiently large.

Lemma 5. Let (10) hold and
(e (@) < (e'm) Be (e W), )

Ce'm) 1 Llel(e M) 12)

Z B W) Al ') Ale e ()

Proof. Let (10) hold. From the definition of {(z), we have that

p()c(e(®)) = (1) —¢(1)

Then

(1)

and so
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Repeating the same process, we obtain

_ 1 i) é(e1(el<z>)>_g(el(el<z>)>>)
0= B (C(Q ) (ﬁ(el(el(zm B ) ) )

which yields

A1 G ) B S 1 (i G 0))}
T BN ) BleT') BleM e ()
Thus, (12) holds. This completes the proof. [

Here, we define the next notations:

1/ -1 . 1—1
E(1) = = }1 (1— 71(Q 1—(1QA (7)1))71 ), for1=2,7r,
Ble™(1)) (e71(®)" Ble~H(e (1))

oS 1/«
6o = (g ) BOREDS)

N -, B\ (e ' Ew) (et Em)
o0 = o725 (Eieon) B0
o) — 0009 (r=2YA(e EW)a)

@+ (e @) (1))

and -
Gm(1) = / Gp-1(s)ds, m=1,2,..,r =3.
1

Lemma 6. Let (10) hold and

(B0 (2" 00)") < ~¢*(¢7 €0 ) B €)), ifC satisfies (81)  (13)

and

¢"(1) + G5 ()5 (71 (E(1)) <0, if C satisfies (So). (14)

Proof. Let (10) hold. From Lemma 4, we have(S;) and (S>).
Let case (S1) holds. Using Lemma 6, we get {(1) > #—ng’ (1) and hence the function

11777(1) is nonincreasing, which with the fact that o(1) < 1 gives

(@) (e (e'®)) < (e (e m)) 2(e' W) (15)
Combining (12) and (15), we conclude that
1 1 I e CRO) ) ) .
= ﬁ<e1<z>><1 oy e ey J0)
_ Fr(z)C(Q_l(z)). (16)

From (1) and (16), we obtain

(e w))

!/

IN

—B(F E)E* (071 ()
~2*(071€ () B (2 (r))-

IN

Thus, (13) holds.



Mathematics 2021, 9, 714 50f 10

Let case (S;) holds. Using Lemma 6, we get that

¢() =1’ (1) (17)
and thus the function 171 (1) is nonincreasing, eventually. Since ¢~ 1(1) < 071 (071(2)), we
obtain

o' (e7 (7)) <0 (o7 W)e (o7 )). (18)

Combining (12) and (18), we find

1 B G (i 0)) ) g,
N PRI (l Ry ) 0)
B0 (e7(),

which with (1) yields

(B0 (27 V0)") +Bs0E €@ (0G0 <. (19)
Integrating the (19) from 1 to co, we obtain
V() > Go(ng (7€),
NOW, integrating from 1 to oo a total of r — 3 times, we obtain
¢"(1) +Gra(0z (071 (E)) <.
Thus, (14) holds. This completes the proof. [

2. Philos-Type Oscillation Criteria
Theorem 1. Let &(1) < &(2) and (11) holds. If the functions a1, a, €' ([19,00), R) such that

lirlrﬁgpq)(ill) /l:(q)(l,s)D(s) —O(s))ds = o0 (20)
and >
liﬂ%pq)z(ill) /11 <<P2(1/5)D*(5) - az(s)(ff(ls)) ds = co, (21)
where .
D) = m(DBa(E (E()), D' (5) = na()Groa) (51 )
and

o’

ors) = A9 (=20 B @) ()
@) (a0 1€ 0) (0 €0 )

then (1) is oscillatory.

Proof. Let ¢ be a non-oscillatory solution of (1), then ¢ > 0. Let (S1) holds.

Define "
Bir(1)(¢" VW)
EREO)

X(1) :=a1(1) > 0.
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Differentiating and using (13), we obtain

X'(1) < X(1) = (1)B3(1)E(8(1))

B (20 0) (07 (@) Tle € ()))
e @) '

(22)

Recalling that B1(1) <§ (r=1) (z)) "is decreasing, we get

B1(e1 @) (2" V(e @w)) = s (T V)"

This yields

(#ee) = gl (o) @

It follows from Lemma 2 that

€1

007 e) = 5255 (@) (e ew), 1)

forall e; € (0,1) and every sufficiently large 1. Thus, by (22)—(24), we get

X'(1) < BWOX () — a1 (1) B3 () E(E(2)

—aay (1) ) B0E ) 0 @) (@)
B2\ pr(o1(2()) I CRIED)))

r=2

Hence,

X < ““”X()—al()ﬁg() XH0) @5)

Multiplying (25) by ¢(1,s) and integrating from 17 to 7; we obtain

4 (s)

[ ot ap@ds < Xeotn + (5009 + 5009 X(6)ds

at1

- /l O(s)p(1,5)X = (s)ds.

From (3), we get
/lq)(z s)D(s)ds < X(1)e(1,1 —|—/ (1,9) q)i{/(“ﬂ)(z,s)X(s)ds
1

- /I:®(s)(p(l s)X%(s)ds. (26)

Using Lemma 3 with L, = O(s)¢(,s), L1 = ¢1(1,5)¢; ! (1,5) and ¢ = X(s),
we get

010,5) 92 (1,5)X (5) — ©(s) (. >X T (s)

P (1s)pt(bs) ((r—2)!
(a_|_1>rx+l ( (6
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which, with (26) gives

which contradicts (20).
Let (Sz) holds. Define

Z(1) = (1) %/((Z)). (27)

Then Z(1) > 0 for 1 > 17. By differentiating Z and using (14), we find

O PRI BN A O N
20 = our0+a0g -a0(53)
a5 (1) B gle'(€)) 1
< az(l)Z(l) ﬂz(Z)Gr,:;(l) C(l) l?lz(l)z (l) (28)
By using Lemma 1, we find that
¢(1) 2 '(1). (29)
From (29), we get that
(o) = TEW ), 0)
Thus, from (28) and (30), we obtain
7/ < 282@) ()G (1) (9_1<f“>>) - 20, 61)

Multiplying (31) by ¢2(1,5) and integrating the resulting from ; to 7, we see
/ ¢2(1,5)D*(s)ds < Z(11)p2(1,11)
a5 (s)
+ [(Gea09) + 25 02(09) ) Z(s)ds

/11 PN )cpz(z, )Z 2(s)ds.

Thus,
[ 209D 0ds < Z@)ga(tn) + [ 9200,5)/92(0,5)2(5)ds
- [ g2 s
< Z(n)ea(t,nn +/ %ds
and so

q)2<1) /1 ((pz(l,S)D*(s) - WM)ds < Z(Z]),
1,11 1

4
which contradicts (21). This completes the proof. [
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Corollary 1. Let (11) holds and a1, a, €' ([10, ), R) such that

/oo ofs)— =2 51(9_1(6(1))2(01/1 ds=oc0  (32)

(+ 1" (e101 (1) (01 (61) (0

) / 2
/10 <9(s) - (ZZES(Z; )ds — o, (33)

@(1) = a1 (1) B3 (1) F(E(1))

(Z))Dé-l-l
1

) 7)

and

for some &1 € (0,1), where

and
1/«

6(1) = Fas (1) /l°°<511(g) /Qwﬁg(s)<e‘1(sé(5>)>“ds> do,

then (1) is oscillatory.
Proof. The proof of this theorem is the same as that of Theorem 1. O
Example 1. Consider the equation

(6(1) + Bos (o))" + Le(a) = o, (34

A A

where1>1, 1>0,6 € (,801/(771),1) A €(0,0), B1(1) =1, B(1) = Bo, 0(1) = &1, E(1) = A
and B3 (1) = j/1". Thus, we find

A0 = 5 (1- 55 ) B0 =5 (1- 5 ) v = 2

b 3B Bo éBo !
and EA
2/4]
B() = 601
Thus, (32) and (33) becomes
(R0 91\ 4o (g %
/10 ( s o)) (A1 55 ) ()
and )
* (a3(s)) _(RBA 1
[0 (B(S) 4a2(s) ds = a] 1 <+OO),
From Corollary 1, the equation (34) is oscillatory if
1 1 954
— (1= =) > = 35
];BO < 53ﬁ0> 2)\4 ( )
and 1 1 36
Po 6B/ 27

Let By = 16,6 = 1/2and A = 1/3, Condition (35) yields j > 41.14. Whereas, the criterion
obtained from the results of [20] is ] > 4850.4 and [19] is ] > 587.93.

Remark 1. Hence, our results extend and simplify the results in [19-22].
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Example 2. Consider the equation

(c0+36(3)) " + 5e(3) -0 &

where 1 > 1 and qog > 0. Let

r=4, g1(1) =1, B(z) =1/3, 0(1) = &(1) = 1/2and B3(1) :]/14.

Then .
/ By %(s)ds = co.
)

So, we see that the conditions (20) and (21) holds. By Theorem 1, all solution of (37) is
oscillatory.

3. Conclusions

In this article, we give several oscillatory properties of differential equation of even-
order with neutral term. The criteria obtained in this article complements the results
in [19-22]. In our future work, and to supplement our results, we will present and dis-
cuss some oscillation theorems for differential equations of this type by using comparing
technique with first/second-order delay differential equation.
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