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Abstract: An RNA bi-structure is a pair of RNA secondary structures that are considered as arc-
diagrams. We present a novel weighted homology theory for RNA bi-structures, which was obtained
through the intersections of loops. The weighted homology of the intersection complex X features
a new boundary operator and is formulated over a discrete valuation ring, R. We establish basic
properties of the weighted complex and show how to deform it in order to eliminate any 3-simplices.
We connect the simplicial homology, Hi(X), and weighted homology, Hi,R(X), in two ways: first, via
chain maps, and second, via the relative homology. We compute H0,R(X) by means of a recursive
contraction procedure on a weighted spanning tree and H1,R(X) via an inflation map, by which
the simplicial homology of the 1-skeleton allows us to determine the weighted homology H1,R(X).
The homology module H2,R(X) is naturally obtained from H2(X) via chain maps. Furthermore,
we show that all weighted homology modules Hi,R(X) are trivial for i > 2. The invariant factors
of our structure theorems, as well as the weighted Whitehead moves facilitating the removal of
filled tetrahedra, are given a combinatorial interpretation. The weighted homology of bi-structures
augments the simplicial counterpart by introducing novel torsion submodules and preserving the
free submodules that appear in the simplicial homology.

Keywords: weighted simplicial complex; weighted homology; modules over PIDs (Principal Ideal
Domain); torsion; embedding; spanning sub-trees

1. Introduction

This paper is concerned with the weighted homology of the nerve complex of RNA
bi-structures [1]. The weighted nerve complex of such bi-structures provides a framework
for studying the computational complexity of algorithms for identifying sequences that are
thermodynamically stable with respect to a given bi-structure. Such sequences hold the
key for evolutionary optimization [2].

The weighted homology introduced here augments the simplicial homology by mak-
ing the weights of the simplices an integral part of the theory. In our situation, these
weights encode the cardinality of intersections of loops in a bi-structure. Along the lines
of [3], the notion of a weighted complex is introduced. Differently from [3], the weights of
simplices in this paper are taken from a discrete valuation ring that contains a copy of the
integers as units and in which the weight of a simplex divides the weight of its faces.

1.1. Background

RNA sequences are linear, single-stranded sequences composed of the bases A,U,G,
and C. In contrast to double-stranded DNA, RNA sequences fold into structures (see
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Figure 1). A particularly important class of RNA structures is that of RNA secondary struc-
tures [4]. Secondary structures can be represented as planar, non-crossing arc diagrams [5,6].
By means of its folded structure, RNA facilitates a plethora of important functional roles [7].
The boundary components of an RNA secondary structure, when viewed as a fatgraph [8],
are called loops, and they determine the minimum free energy of the structure.
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Figure 1. Left: a planar RNA secondary structure with a closing base pair r = (0, 20). Right: its
diagram representation on the set of vertices [19] with two additional vertices, 0 and 20, forming the
rainbow r = (0, 20), the loop s = [3, 4] ∪ [8, 12] ∪ [16, 17] (shaded), and the corresponding intervals
(underlined). The arc x = (3, 17) is the maximal arc of s, αs = x.

Secondary structures have been studied from the perspectives of enumerative combi-
natorics [9–12], algebraic combinatorics [13], matrix models [14,15], and topology [16–18].

In [10], a bijection between linear trees and secondary structures was presented. In [13],
the authors enumerated k-non-crossing RNA structures by employing a bijection between
k-non-crossing partial matchings and walks in the interior of the Weyl-chamber C0 based
on a certain bijection between oscillating tableaux and matchings [19–21]. The geometrical
realization of a certain complex of secondary structures was studied in [22].

A key determinant of a sequence–structure pair is its thermodynamic stability, which
is measured via its free energy. Given a sequence σ, RNA structure prediction algorithms
identify structures by assuming minimal or low free energy with respect to σ [23]. Given
any RNA sequence–structure pair (a, S), the free energy η(a, S) is computed by adding all
loop energy contributions [24,25], i.e., η(a, S) = ∑s∈S η(a, s). Here, η(a, s) depends on the
loop type of s (hairpin, interior, multi-branch, etc.) and the particular nucleotides of the
sequence a that appear in the loop s. Details on loop decompositions, partition functions,
and recursive constructions for the folded structure—derived via polynomial-time dynamic
programming (DP)—can be found in [9,23,26–28]. In [12], the notion of bi-secondary
structures was introduced. Bi-secondary structures are central to identifying sequences
that can realize two mutually exclusive minimum free energy (mfe) conformations. Such
sequences naturally appear in the context of evolutionary transitions [29] and of RNA
riboswitches, i.e., sequences that exhibit two distinct, stable configurations [30].

1.2. Motivation

This paper was motivated by the problem of computing thermodynamically stable
sequences for two distinguished secondary structures, S and T [2]. The problem can be
formalized as the computation of a sequence a that minimizes η(a, S, T), where

η(a, S, T) = ∑
s∈S

η(a, s) + ∑
t∈T

η(a, t).

The sub-problems of the underlying DP routine are associated with sets of loops
and recursively constructed by adding one loop at a time, where subsequently added
nucleotides affect the energy calculation if they appear in multiple loops simultaneously;
see Figure 2. This leads to the consideration of all such intersections as a simplicial complex,
X, whose homology provides insights into the above optimization problem.
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In [1,31], we computed the simplicial homology groups of X and proved that only the
second homology group carries information. This group was identified to be free, and its
generators were identified as the crossing components within the diagram representation.
All known RNA riboswitches exhibit one such crossing component, while random pairs of
structures contain multiple crossing components.

The simplicial homology of X in [1] only allows us to express the existence of loop
intersections. However, the crucial determinant for the algorithmic complexity of the DP
routine in [2] is the size of such intersections; see Figure 2. The recursion is over the set of
loops, successively examining one loop at a time. Each such examination affects certain
vertices that the currently examined loop shares with the unprocessed loops.
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Figure 2. Top: a bi-structure decomposed into a distinguished sub-structure and its complement.
The vertices contained in both (white) control the complexity of the dynamic programming (DP)
routine in [2]. Bottom: the recursive step of the DP routine. Note that the recursion changes the set of
white vertices by removing some and adding others.

It is thus natural to employ a homology theory that accounts for the intersection size.
The notion of weighted homology as originally formulated [3], assigns a certain weight to
each simplex, imposing specific divisibility conditions on these weights.

Our framework represents a variation on weighted homology as follows: We consider
homology with coefficients in a discrete valuation ring, which, in fact, makes any divisibility
constraints obsolete and allows us to deal with the cardinality of intersections in a natural
way. The boundary operator introduced here is new, and so is our approach to connecting
the weighted and simplicial homologies. More specifically, the construction of an inflation
map relating H1(X1) and H1,R(X1) is a new technique. The computation of the weighted
homology groups, H0,R, H1,R(X), and H2,R(X), is also novel. Specifically, the idea of
obtaining a combinatorial interpretation for the invariant factors in the structure theorems
for H0,R and H1,R(X) via particular X1-spanning trees is original. The chain maps between
Cn(X) and Cn,R(X), which relate the Hi(X) and Hi,R(X) introduced here, are new and
nontrivial. In particular, the injection inj : H2(X)→ H2,R(X) that induces the isomorphism
H2,R(X) ∼= R⊗Z H2(X) is a result of the fact that, in the expressions for the generators of
H2,R(X), any triangle has a corresponding intersection size of one.

1.3. Organization

The paper is organized as follows: In Section 2, the simplicial loop complex of a bi-
structure is introduced and the splicing of nucleotides is recalled [1]. In Section 3, the weighted
complex of a bi-structure and a modified splicing procedure are discussed. In Section 4, the
weighted homology and simplicial collapses [3,32] are introduced. In Section 5, a relative
point of view is adopted by relating the simplicial and weighted homologies. Specifi-
cally, we introduce the inflation map, which maps classes of unweighted 1-cycles into
corresponding weighted 1-cycles. In Section 6, we construct certain spanning trees that
will be instrumental for proving our main results in Section 7. Here, we compute the
weighted homology modules of bi-structures and provide combinatorial interpretations.
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The torsion module emerging in the zeroth homology stems from a recursive contraction
scheme on the distinguished weighted spanning trees of the complex. The torsion of the
first homology module can be understood via particular weighted edges that reference the
aforementioned spanning tree. We conclude the paper with the computation of the second
homology module, with all others being trivial. We integrate our results and outline future
work in Section 8.

2. The Simplicial Loop Complex of a Bi-Structure

An RNA diagram S over the set [n] := {1, · · · , n} is a vertex-labeled graph—whose
vertices represent nucleotides—drawn on the horizontal axis and labeled with elements
of the set [n]. An arc α = (i, j), i < j, is an ordered pair of vertices, which represents the
base pairing between the i-th and j-th nucleotides. Each S-vertex can be paired with at
most one other vertex, and the arc that connects them is drawn in the upper half-plane.
An RNA diagram over the set [n] is augmented with two additional vertices associated
with positions 0 and n + 1, together with the arc (0, n + 1), which is called the rainbow,
representing the closing base pair of the external loop of the RNA structure; see [23].
The set of vertices {i, i + 1, . . . , j− 1, j} is called an interval, and is denoted by [i, j]. The set
[0, n + 1] := {0, 1, · · · , n, n + 1} is referred to as the backbone of the diagram. Two arcs,
(i, j) and (p, q) with i < p, are called crossing if and only if i < p < j < q. S is called
a secondary structure if it does not contain any crossing arcs. A loop s in a secondary
structure S is represented as the disjoint union of intervals s =

⋃̇k
i=1[ai, bi], such that (a1, bk)

and (bi, ai+1), for 1 ≤ i ≤ k− 1, are arcs, and any other interval-vertices are unpaired. We
denote by αs the unique, maximal arc (a1, bk) of the loop s, and we have a correspondence
between loops and their maximal arcs; see Figure 1.

S-arcs and loops can be endowed with a partial order: (k, l) ≺S (i, j) ⇐⇒ i < k <
l < j. Abusing the notation, for the two loops s1, s2 ∈ S, we write s1 ≺S s2 if αs1 ≺S αs2 .
Accordingly, (a) any unpaired vertex is contained in exactly one loop, (b) any non-rainbow
arc appears in exactly two loops, and (c) the Hasse diagram of (S,≺S) is a rooted tree Tr(S)
with the rainbow arc as the root.

Given two secondary structures S and T, we refer to R = (S, T) as a bi-secondary
structure (bi-structure). Abusing the notation, we let R = S∪̇T be the loop set of R. We
represent a bi-structure R = (S, T) with the S-arcs in the upper and the T-arcs in the lower
half-plane along the same horizontal backbone.

Let A = {A0, A1, . . . , Am} be a collection of finite sets. We call B = {Ai0 , . . . , Aid} ⊆ A
a d-simplex of A if

⋂d
k=0 Aik 6= ∅. We set Ω(B) =

⋂d
k=0 Aik and let ω(B) = |Ω(B)| 6= 0.

Let Kd(A) be the set of all d-simplices of A. Then, the complex (nerve) of A is K(A) =⋃∞
d=0 Kd(A) ⊆ 2A. A d′-simplex B′ ∈ K(A) is called a d′-face of B if d′ ≤ d and B′ ⊆ B. Let

B′ be a d′-face of a maximal simplex B, where d′ < d. Then, B′ is B-free if no other maximal
simplex of K(A) contains B′ as a face. By construction, K(A) is a simplicial complex. For a
secondary structure S, K(S) ∼= Tr(S) is a tree.

Let R = (S, T) be a bi-structure with the loop complex X =
⋃̇∞

d=0Kd(R). Then, a
simplicial order, ≺R, is given by

r1 ≺R r2 ⇔


r1, r2 ∈ T and r1 ≺T r2

r1, r2 ∈ S and r1 ≺S r2

r1 ∈ S, r2 ∈ T

.

We specify a d-simplex, σ ∈ X, by the ordered d + 1-tuple σ = [ri0 , ri1 , ..., rid ], where
ri0 ≺R ri1 ≺R · · · ≺R rid .

A 1-simplex τ = [ri0 , ri1 ] ∈ X is called pure if ri0 and ri1 are loops in the same secondary
structure and mixed otherwise; see Figure 3.
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Figure 3. Left: a bi-structure R = (S, T) with S-loops a, b, S-rainbow arc αa, T-loops
c, d, and T-rainbow arc αc. Right: its weighted loop nerve K0(R) = {a, b, c, d}, K1(R) =

{[b, a], [b, c], [b, d], [d, c], [a, c], [a, d]} (with [b, a] and [d, c] being pure edges, and any other edge being
mixed), and K2(R) = {[b, a, c], [b, d, c], [b, a, d], [a, d, c]}. We have ω(a) = 7, ω(b) = 7, ω(c) = 8,
ω(d) = 6, ω([b, a, c]) = ω([b, d, c]) = ω([b, a, d]) = ω([a, d, c]) = 1, while the weights of 1-simplices
are displayed directly in the figure.

By construction, any 2-simplex ∆ ∈ X contains exactly one pure and two mixed
edges. Furthermore, X cannot contain simplices of a dimension greater than or equal
to four, as that would imply that three or more loops in the same secondary structure
intersect non-trivially. Moreover, for any σ = [s0, s1, t0, t1] ∈ K3(X), 1 ≤ ω(σ) ≤ 2 and
Ω(σ) ⊂ P = { p ∈ [n] | deg(p) = 4 }.

In [31], we investigated the effect of splicing a nucleotide p into two adjacent nu-
cleotides q1, q2 such that the two arcs incident to p were resolved into two non-crossing
arcs. In the case ω(σ) = 2, splitting does not change X, and if ω(σ) = 1, splitting induces a
specific alteration: the removal of σ from X, as well as a distinguished free edge, τσ, and
exactly two free triangles, ∆σ

1 , ∆σ
2 , glued at τσ. We refer to (τσ, ∆σ

1 , ∆σ
2 ) as a σ-butterfly;

see Figure 4.
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Figure 4. Splicing and removing tetrahedra together with their corresponding butterflies.

Lemma 1. Let R = (S, T) be a bi-structure with complex X; then, there exists a simple bi-structure
R = (S′, T′) with a complex X′ < X, where X′ is derived from X by successively removing any
3-simplex, σ, together with an associated σ-butterfly.

Thus, successively splicing all nucleotides in P induces a bi-structure (S′, T′), together
with an associated complex X′ < X, which is obtained by removing all σ-butterflies and
their corresponding σs from X.
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Removing a σ-butterfly and its corresponding σ is equivalent to X ↘ X′—a simplicial
collapse consisting of two elementary collapses [32,33]. The first removes σ and ∆σ

1 , and
the second removes τσ and ∆σ

2 .

Proposition 1. Let X be the loop complex of a bi-structure R = (S, T), and let X′ < X be an
X-sub complex obtained by removing all 3-simplices, σ, from X, together with corresponding
σ-butterflies. Then, X′ is the complex of a bi-structure R′ = (S′, T′) that satisfies (X′)2 = X′ for
any k ≥ 0, Hk(X′) ∼= Hk(X).

Note that after splicing, we have simplified X to a complex of a bi-structure, X′, thus
reducing its maximum simplex dimension and maintaining its homology. In the following,
we generalize this to weighted complexes.

3. µ-Splicings and the Weighted Complex of a Bi-Structure

We begin by modifying the splicing introduced in Section 2 as follows: Instead of
replacing a nucleotide p ∈ P by the two nucleotides q1 < q2, we substitute it by three
nucleotides, q1 < a < q2, such that the arcs in R that share p as an endpoint now have
endpoints q1 and q2, which are non-crossing, and a is unpaired. We call this a µ-splicing
of p.

Note that µ-splicing and splicing all p ∈ P have exactly the same effect on X—namely,
eventually removing any 3-simplex σ and a corresponding σ-butterfly. In terms of bi-
structures, from (S, T), µ-splicing P produces the bi-structure (S′, T′) augmented by a set
of distinguished, unpaired nucleotides A = {a1, . . . , an}, which only appear in 0- and
1-simplices. By construction, the complex X′ of (S′, T′) does not contain any 3-simplices.
Furthermore, after µ-splicing P, any distinguished nucleotide produced is flanked by
two distinct endpoints of non-crossing arcs. Thus, for any simplex σ ∈ X′, we have
h(σ) ≥ 0, where h(σ) denotes the difference between the number of non-distinguished
and distinguished nucleotides contained in σ. Note that h is a natural generalization of ω
in the context of complexes of bi-structures. Accordingly, we define a weighted complex
associated with a bi-structure as follows.

First, we recall that a ring R is called a discrete valuation ring if it is a Principal Ideal
Domain (PID) with exactly one non-zero maximal ideal. Any irreducible element is a
generator of this ideal and is called a uniformizer for R, and furthermore, any two such
elements differ only up to multiplication with a unit.

Definition 1. Let X be a complex of a bi-structure (S, T) such that for any σ ∈ X, we have
h(σ) ≥ 0. Let R ⊃ Z be a discrete valuation ring with uniformizer π. We define the weight
function v : X → R, v(σ) = πh(σ), and call (X, v) the weighted complex of (S, T).

Lemma 2. Let (S, T) be a bi-structure with no distinguished vertices and complex X. Let (S′, T′)
be derived from (S, T) via µ-splicing P, and we denote its complex by X′. Then, there exists an
embedding

ε : (X′, v) −→ (X, v),

where ε(X′) is a X-subcomplex obtained by removing any 3-simplices and associated butterflies.
Moreover, ε is an embedding of weighted complexes: σ = ε(σ′) =⇒ v(σ′) = v(σ).

Proof. Successively µ-splicing P generates the series of complexes X|P| = X > · · · >
X0 = X′. By construction, given Xi and a 3-simplex σ, the corresponding µ-splicing at p
replaces p with the triple qi

1 < ai < qi
2. Since ai is unpaired, ai is contained in exactly two

loops, λi−1, µi−1, the only two loops that change size in terms of number of nucleotides
when passing to Xi−1. Since the distinguished nucleotide contributes a −1, we note that
v(λi−1) = v(λi) and v(µi−1) = v(µi); furthermore, v([λi, µi]) = v([λi−1, µi−1]). Any other
Xi-simplex—differently from σ and its σ-butterfly, which are removed—is not affected by
the splicing, and consequently retains its weight in Xi−1, whence the lemma.
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4. Weighted Homology

Consider ∂v
n : Cn,R(X) → Cn−1,R(X), where Cn,R(X) denotes the free R-module

generated by all n-simplices contained in X. Let ∂v
n be given by

∂v
n(σ) =

n

∑
i=0

v(σ̂i)

v(σ)
· (−1)iσ̂i,

where the symbol v(σ̂i)
v(σ) = πh(σ̂i)

πh(σ) is defined to be πh(σ̂i)−h(σ). This is, in view of h(σ) ≤ h(σ̂i),
a non-negative power of the uniformizer π and, hence, still an element of the ring R. As

a result, the boundary operator ∂v
n is well defined. Since

v(σ̂i,j)

v(σ̂i)
· v(σ̂i)

v(σ) =
v(σ̂j,i)

v(σ̂j)
· v(σ̂j)

v(σ) , we

obtain ∂v
n−1(∂

v
n(σ)) = 0, i.e., ∂v

n is a boundary map.
Let Hn,R(X) denote the ∂v

n-homology groups. For (Y, v) ≤ (X, v), we have

0 // Cn,R(Y)

∂v

��

I // Cn,R(X)

∂v

��

J // Cn,R(X, Y)

∂
v

��

// 0

0 // Cn−1,R(Y)
I // Cn−1,R(X)

J // Cn−1,R(X, Y) // 0

,

and we denote the relative homology groups by Hn,R(X, Y). These are connected via the
long exact sequence

· · · // Hn,R(X, Y)
∂̂v

j // Hn−1(Y)
I∗ // Hn−1(X)

J∗ // Hn−1(X, Y)
∂̂v

n−1 // · · · .

Lemma 2 guarantees that, for any weighted complex (X, v) of a bi-structure (S, T),
there exists a bi-structure (S′, T′) with a weighted complex (X′, v) such that (X′, v) < (X, v)
and where X′2 = X′. Thus, the relative homology groups Hk,R(X, X′) and their associated
long sequence are well defined.

However, a weighted complex does not have to be induced by a bi-structure. The pre-
vious definitions still hold as long as σ′ ⊆ σ =⇒ v(σ)|v(σ′) for an arbitrary (X, v)-pair.
Weighted complexes represent a general combinatorial-algebraic framework that enhances
the simplicial homology for a wide range of applications. The next proposition extracts the
algebraic core of µ-splicings; it represents a variation of [32], and it also appears in some
form in [3].

Proposition 2. Let (X, v) be a weighted complex and let τ, σ ∈ X such that: (a) τ is σ-free; (b)
v(τ) = v(σ). Let Y be the X-subcomplex obtained by removing any τ ⊂ τ′ ⊂ σ (X ↘ Y). Then,

∀n ≥ 0; Hn,R(X) ∼= Hn,R(Y).

Proof. Claim 1. It suffices to prove the Lemma for a σ-free τ with the property dim(τ)+ 1 = dim(σ).
We may assume that σ = [v0, . . . , vk] and τ = [v0]. The lattice of sub-simplices of σ is

isomorphic to a binary k-cube, where cover relations are induced by face inclusions.
We prove by induction on k that a k-cube can be recursively decomposed into a

sequence of pairs Σk = (σi, τi)1≤i≤2k−1 , where σi is a maximal simplex with a free face τi.
The induction basis Σ1 = ([1], [0]) is immediate.

For the induction step, note that a k-cube decomposes into two disjoint copies of a
(k− 1)-cube based on if the last coordinate is zero or one. By the induction hypothesis, for
a (k− 1)-cube, there exists a sequence, Σk−1 = (σi, τi)1≤i≤2k−2 , with the desired properties;
appending one or zero as the last coordinate yields two mappings from the k− 1 cube into
the k cube. By construction, these form a family of disjoint-type embeddings, i.e., their
images are injective copies of the k− 1-cube that are vertex disjoint in the k-cube. Accord-
ingly, we obtain Σ1

k−1 = (σ1
i , τ1

i )i and Σ0
k−1 = (σ0

i , τ0
i )i. As the two sub-cubes are disjoint,
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we can immediately construct the desired sequence for the k-cube, Σk = Σ1
k−1Σ0

k−1; the
claim follows.

Claim 2. Let X ↘ Y, where σ ∈ X maximal, τ is σ-free, and dim(τ) + 1 = dim(σ) = k.
Then, for any n ≥ 0, Hn,R(X, Y) = 0.

Note that only Ck,R(X, Y) and Ck−1,R(X, Y) are non-trivial. Ck+1,R(X, Y) = 0 im-
plies Im(∂̂v

k+1) = 0; hence, Hk,R(X, Y) = Ker(∂̂v
k). Note that Ck,R(X, Y) = 〈σ〉R, so

∂̂v
k(r · σ) = 0 implies r = 0; thus, Hk,R(X, Y) = 0. Similarly, Ck−1,R(X, Y) = 〈τ〉R, so

Ker(∂̂v
k−1) ⊂ Ck−1,R(X, X′) is also generated by τ. Now, ∂̂v

k(σ) = v(τ)/v(σ) · τ = τ, and so
Hk−1,R(X, Y) = 0. Finally, for n 6= k, k− 1, Ker(∂̂v

n) ⊂ Cn,R(X, Y) = 0, so Hn,R(X, Y) = 0
for any n 6= k, k− 1, and Claim 2 follows.

The proposition is implied in view of Claim 2 and the following long exact sequence:

// Hn+1,R(X, Y)
∂v

n // Hn,R(Y)
I∗ // Hn,R(X)

J∗ // Hn,R(X, Y) // .

In view of X ↘ X′ and v(τσ) = v(∆σ
1 ) = v(∆σ

2 ) = v(σ), for any σ ∈ X3 and its
corresponding σ-butterfly, Proposition 2 implies the following.

Corollary 1. Let (X, v) be the complex of the bi-structure (S, T), and let (X′, v) be the complex of
(S′, T′) that is obtained by completely µ-splicing (S, T). Then,

∀k ≥ 0, Hk,R(X′) ∼= Hk,R(X).

5. The Inflation Map

In view of Corollary 1, we can assume that X is the complex of a bi-structure with the
property X2 = X, where Xk denotes the simplicial complex induced by all k-simplices in
X [34]. Clearly, the natural embedding X1 → X is an embedding of weighted complexes,
and we have the exact sequence

0 // Cn,R(X1)

∂v

��

I // Cn,R(X)

∂v

��

J // Cn,R(X, X1)

∂
v

��

// 0

0 // Cn−1,R(X1)
I // Cn−1,R(X)

J // Cn−1,R(X, X1) // 0

,

producing the long exact sequence

0
I∗ // H2,R(X)

J∗ // H2,R(X, X1)
∂̂v

2 // H1,R(X1)
I∗ // H1,R(X) // 0. (1)

We now adopt a relative point of view by relating the simplicial homology Hk(X) to
the weighted homology Hk,R(X). To this end, we consider the following two segments of
the long homology sequences

0 // H2,R(X)
J∗ // H2,R(X, X1)

∂̂v
2 // H1,R(X1)

I∗ // H1,R(X) // 0

0 // H2(X)

inj

OO

J∗ // H2(X, X1)

inj

OO

∂̂2 // H1(X1)

?

OO

I∗ // 0

,

where the surjectivity of ∂̂2 is given by H1(X) = 0 [1].
While these sequences belong to different categories, the first two vertical maps are

natural injections and relate simplicial and weighted homology modules.
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Indeed, the first vertical injection is induced by chain maps of the form θn : Cn(X) −→
Cn,R(X), θ(∑i niσi) = ∑i niv(σi)σi, which make the following diagram commutative:

· · · Cn(X) Cn−1(X) · · ·

· · · Cn,R(X) Cn−1,R(X) · · ·

∂n

θn θn−1

∂v
n

.

The second vertical injection is given by the fact that, since Z ⊂ R, C2(X) is an
R-submodule of C2,R(X) and, by construction, H2(X, X1) = C2(X) and H2,R(X, X1) =
C2,R(X).

This motivates us to ask if there exists a Z-linear map that makes the above diagram
commutative. It turns out that such a map exists and will prove useful for understanding
H1,R(X).

Lemma 3. The mapping

infl : H1(X1)→ H1,R(X1), infl(c) = ∂̂v
2

(
∑

i
∆i

)
,

where c = ∂̂2(∑i ∆i), is well defined and Z-linear; the following diagram is commutative:

H2,R(X, X1)
∂̂v

2 // H1,R(X1)

H2(X, X1)

inj

OO

∂̂2 // H1(X1).

infl

OO

Proof. By construction, it suffices to show that infl is well defined. Observe that, in view
of sequence (1), ∂̂2 is surjective. Hence, any c ∈ H1(X1) can be expressed as c = ∑i ∂̂2(∆i),
where ∑i ∆i is unique, modulo elements of Ker(∂̂2). Secondly, in [31], we showed that

Ker(∂̂2) =
⊕

β

Z∇β,

where ∇β = ∑j ∆j; ∆j is contained in the (S, T)-crossing component β and v(∆j) = 1.
Any face e contained in ∂̂2(∇β) appears with opposite signs in two distinct the 2-

simplices ∆e and ∆′e, where v(∆e) = v(∆′e) = 1. Therefore,

∂̂v
2(∇β) = ∑

e∈∂̂2(∇β)

(
v(e)

v(∆e)
· e− v(e)

v(∆′e)
· e
)
= 0,

i.e., inj(∇β) ∈ Ker(∂̂v
2); infl is well defined, and a lemma follows.

We next employ infl : H1(X1)→ H1,R(X1) to obtain information about H1,R(X1). X1

is connected, and for a spanning tree TX1 , the free generators of H1(X1) are in bijection
with κ’s mixed X1 cycle closing edges for TX1 . A generator cκ ∈ H1(X1) is a sum of edges
uj ∈ TX1 and the closing edge κ, with each such edge appearing exactly once. We fix
TX1 as follows: Consider the trees TS,TT of the sub-complexes for S and T, respectively,
and let TX1 be the tree obtained by connecting the TS,TT-roots with the mixed edge ω,
corresponding to the two rainbow loops.
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Lemma 4. The following sequence of R modules is exact:

0 // R⊗Z infl(H1(X1))
inj // H1,R(X1)

I∗ // H1,R(X) // 0.

Proof. With TX1 as above, consider a generator cκ = ∑j uj ∈ H1(X1) where, for 1 < j < n,
uj are pure S- or T-edges and u1 = ω while un = κ. Since ∂̂2 is surjective, we can also write

cκ = ∑
i

∂̂2(∆i) = ∑
i
(e0,i − e1,i + e2,i).

This involves additional mutually canceling edges, k, all of which are mixed and
appear as faces of pairs of 2-simplices, (∆k, ∆′k). Without loss of generality (w.l.o.g.),
we can traverse the cycle cκ beginning at ω via the pure S-edges until we arrive at κ,
after which we return back to ω via the pure T-edges. Any (∆k, ∆′k) pair satisfies either
v(∆k) = v(∆′k) or v(∆k) 6= v(∆′k), and we accordingly categorize the k edges into kα- and
kβ-edges, respectively. As a result, in

infl(cκ) = ∑
i

∂̂v
2(∆i) = ∑

i

(
v(e0,i)

v(∆i)
· e0,i −

v(e1,i)

v(∆i)
· e1,i +

v(e2,i)

v(∆i)
· e2,i

)
,

kβ-edges persist with the coefficient, say f (kβ) ∈ R, while all kα-edges cancel. Hence,

infl(cκ) = ∑
j

v(uj)

v(∆j)
· uj + ∑

kβ

f (kβ) · kβ,

where uj ∈ ∂̂2(∆j). Note that only κ and ω are mixed cκ-edges, and so {uj} ∩ {kβ} = ∅.
Any set M of cκ-cycles induces a set of distinct mixed faces ω, κ1, . . . , κh. In the two

sub-trees of S and T formed by the respective pure edges of the cκ-paths, these mixed
faces connect an S-leaf with a T-minimal vertex or a T-leaf with an S-minimal vertex. By
construction, these edges are distinct from any of the kβ produced by any M-cycle, and the
coefficients of any of these cκi 1 ≤ i ≤ h in a linear combination ∑cκ∈M rκ · infl(cκ) = 0 are
zero. Iterating this argument, we arrive at

∑
κ

rκ · infl(cκ) = 0 ⇒ rκ = 0.

Accordingly, {infl(cκ) | κ} freely generate 〈{infl(cκ) | κ}〉R, and the following diagram
is commutative:

H2,R(X, X1)
∂̂v

2 // H1,R(X1)
I∗ // H1,R(X) // 0

H2(X, X1)

inj

OO

∂̂2 // H1(X1)

infl

OO

I∗ // 0

0

OO

.

Since Im(∂̂v
2) = R⊗Z Im(infl), we have H1,R(X) ∼= H1,R(X1)/(R⊗Z Im(infl)), whence

0 // R⊗Z infl(H1(X1))
inj // H1,R(X1)

I∗ // H1,R(X) // 0.
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6. The Rank of H1,R(X1)

Next, we compute the rank of H1,R(X1) by constructing a basis. Note that an element
in H1(X1) is a sum of cycles, and it is natural to ask what the analogue of a cycle in
H1,R(X1) is.

Let c′ = ∑i ei ∈ H1(X1) be minimal in terms of the number of edges it contains. A
straightforward computation shows that there exist ri ∈ R with ∂v

1(∑i ri · ei) = 0, where the
multi-set (ri)i is unique up to a scalar factor. This shows that, except for a scalar multiple,
minimal H1(X1) cycles determine the distinguished H1,R(X1) cycles, and we shall call a
cycle c = ∑i riei ∈ H1,R(X1) elementary if gcd({ri}) = 1 and ∑i ei ∈ H1(X1) is a minimal
cycle. An elementary cycle is precisely the H1,R(X1)-analogue of a minimal H1(X1)-cycle.

In view of X1 being connected, a basis of H1(X1) can be comprised of all minimal
cycles derived from a fixed X1-spanning tree T: Any X1 non-tree edge added to this
tree results in a unique minimal cycle in the basis that is labeled by the edge. One key
observation here is that {∂1(e)|e ∈ T} generates ∂1(C1(X1)) for an arbitrary spanning tree
T of X1.

To derive a basis of H1,R(X1) in an analogous fashion, an arbitrary choice of an X1-
spanning tree is no longer sufficient because of the weights involved. However, in the
following, we construct a distinguished tree T#

X1 that is particularly well suited to the
understanding of the embedding of H1(X1) into H1,R(X1).

Lemma 5. There exists an X1-spanning tree, T#
X1 , such that the following sequence is exact:

0 // C1,R(T
#
X1)

∂v
1 // C0,R(X)

proj // H0,R(X) // 0.

Proof. It suffices to construct T#
X1 such that ∂v

1(〈T#
X1〉R) = ∂v

1(〈X1〉R). To this end, we fix
an arbitrary X1-spanning tree T0 and let M = X1 \ T0. We examine M-edges one by one,
yielding a chain of processed edges, ∅ = M0 ⊂, . . . ,⊂ Mk−1 ⊂ Mk, and a sequence of
trees, T0, . . . ,Tk−1,Tk. We claim that these have the property ∂v

1(〈Tk〉R) = ∂v
1(〈Mk ∪ T0〉R).

The above holds trivially for k = 0, and we assume that Mk−1 and Tk−1 are constructed
with ∂v

1(〈Tk−1〉R) = ∂v
1(〈Mk−1 ∪ T0〉R). Let ek ∈ M \ Mk−1 and set Mk = Mk−1

⋃{ek}.
Then, there exist re ∈ R such that ∑e∈{ek}∪Tk−1

re∂v
1(e) = 0. Letting r = gcd{re} and

re = rr′e leads to ∑e∈{ek}∪Tk−1
r′e∂v

1(e) = 0, where, by construction, at least one edge has a
coefficient of one. In case the r′ek

= 1, set Tk = Tk−1. Otherwise, remove a Tk−1-edge with
coefficient one, and add ek to Tk−1, obtaining Tk. Note then that

∂v
1(〈Tk〉R) = ∂v

1(〈{ek} ∪ Tk−1〉R) = ∂v
1(〈{ek}〉R) + ∂v

1(〈Mk−1 ∪ T0〉R) = ∂v
1(〈Mk ∪ T0〉R).

By induction, when the processes terminates, it yields the desired T#
X1 .

T#
X1 induces a new set of closing edges κ# and the associated minimal H1(X1)-cycles

cκ# . We shall show that the corresponding elementary cycles constitute a basis of H1,R(X1).

Proposition 3. There exists an isomorphism

H1,R(X1) ∼= R⊗Z H1(X1).

Furthermore, H1,R(X1) is freely generated by the set of elementary cycles cκ# and has rank
e− v + 1, where e and v are the numbers of 1- and 0-simplices in X1.

Proof. H1,R(X1) is free, as it is a sub-module of the finitely generated free module over the
PID R and C1,R(X1). By construction, to each cκ# ∈ H1(X1), there corresponds a unique
elementary H1,R(X1)-cycle cv

κ# , whose κ# coefficient is one. Furthermore, cv
κ# is non-torsion

in H1,R(X1); if r · cv
κ# = 0, R being an integral domain implies r = 0.
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Claim. Any c ∈ H1,R(X1) has the representation c = ∑κ rκ# cv
κ# with a unique rκ# ∈ R.

We proceed by induction on the number of T#
X1

-closing edges in c.
To establish the induction basis, let rκ# κ# be the unique term that contains κ# in c.

Using the fact that κ# appears with a coefficient of one in cv
κ# , we derive c = rκ# cv

κ# .
For the induction step, distinguishing rκ#

1
κ#

1 as a closing edge summand in c, we have

c− rκ#
1
· cv

κ#
1
= c̃ ∈ H1,R(X1) with κ#

1 6∈ c̃. By inductive hypothesis, c̃ = ∑κ#∈c̃ rκ# · cv
κ# with

unique coefficients rκ# , hence the claim.
From the claim and the fact that the cv

κ# are non-torsion, we conclude that

H1,R(X1) ∼=
⊕

κ

Rcv
κ#
∼= R⊗Z H1(X1),

hence the proposition.

7. The Modules of the Weighted Homology

By Lemma 5, we have

rnk(Im(∂v
1)) = rnk(∂v

1(〈T#
X1〉R)) = v− 1,

from which rnk(C0,R(X)/Im(∂v
1)) = 1.

Since C0,R(X)/Im(∂v
1) is a module over the PID R, we arrive at

H0,R(X) ∼= C0,R(X)/Im(∂v
1)
∼= Mπ ⊕ R,

where n1 ≥ . . . nv−1 ≥ 0, and Mπ =
⊕v−1

j=1 R/(πnj) is the π-torsion module of H0,R(X).

We shall proceed by computing Mπ . Note that the T#
X1-tree is a spanning tree of

X1, and {∂v
1(e)|e ∈ T#

X1} generates Im(∂v
1). Thus, we can compute H0,R(X) via T#

X1 . To
this end, we process T#

X1 as follows: We select a T#
X1-vertex ui and an incident edge

ei = (uj, ui) for which logπ
v(ui)
v(ei)

is minimal. We contract ei onto uj by removing ui and
replacing any edges of the form (uk, ui) with (uk, uj) while maintaining their original
weights v(uk, uj) := v(uk, ui). Recursively contracting all (v− 1) edges in T#

X1 produces a
sequence of trees T#

X1 = T0, . . . , Tv−1, where Tv−1 = uv is a single vertex at which point the
process terminates. Relabeling the T#

X1-vertices, we may assume that ui is removed at the
ith step of this process.

Theorem 1. There exists an isomorphism

H0,R(X) ∼=
(

v−1⊕
i=1

R/(πni )

)
⊕ R,

where ni = logπ
v(ui)
v(ei)

, as described above.

Proof. Let Em = {ei = (uai , ui) | 0 ≤ i ≤ m} denote the set of recursively contracted edges

up to and including the mth step. Set ei = (ui, uai ), xi = ui −
v(uai )

v(ui)
uai , and xv = uv, where

the formal fractions are well defined by the minimality of the denominator exponent. Note

then that ∂v
1(ei) =

v(ui)
v(ei)

ui −
v(uai )

v(ei)
uai =

v(ui)
v(ei)

xi := wixi.
Claim 1. ∂v

1(〈Ei ∪ Ti〉R) = Im(∂v
1) for any 0 ≤ i ≤ v− 1.
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We proceed by induction on i, where Lemma 5 implies the induction basis i = 0.
Consider the contraction at step i: Ei = Ei−1 ∪ {ei = (uai , ui)}. A Ti−1-edge of the form
fk = (uk, ui) induces the Ti-edge f ′k = (uk, uai ) with v( fk) = v( f ′k). Then,

∂v
1( f ′k)− ∂v

1( fk) =
v(uk)

v( f ′k)
uk −

v(uai )

v( f ′k)
uai −

[
v(uk)

v( fk)
uk −

v(ui)

v( fk)
ui

]
= ∂v

1(ei)

implies ∂v
1(〈Ei−1 ∪ Ti−1〉R) = ∂v

1(〈Ei ∪ Ti〉R), and Claim 1 follows by induction.
Claim 2. C0,R(X) =

⊕v
i=1 Rxi.

Let z = ∑v
j=1 r′juj ∈ C0,R(X), where ui is removed from Ti−1 at the ith contraction

step. We rewrite the z in terms of the xi. This is done recursively, starting with u1, as

follows: Let Cp(uq) be the coefficient of uq at step p. Then, xi = ui −
v(uai )

v(ui)
uai implies

Ci(ui)ui = Ci(ui)xi + Ci(ui)
v(uai )

v(ui)
uai , and we obtain the updated uai -coefficient

Ci+1(uai ) = Ci(uai ) + Ci(ui)
v(uai )

v(ui)
.

Processing all ui, we arrive at z = ∑v−1
=1 rixi + rvxv, and Claim 2 follows.

Claim 3. H0,R(X) ∼=
(⊕v−1

i=1 Rxi

)
⊕ Rxv with xi = xi + 〈∂v

1(ei)〉R.
By Claim 2, we have H0,R(X) = (

⊕v
i=1 Rxi)/Im(∂v

1), and we make the following ansatz:

ϕ : H0,R(X) −→
(

v⊕
i=1

Rxi

)
⊕ Rxv , ϕ

(
(

v−1

∑
i=1

rixi + rvxv) + Im(∂v
1)

)
=

v−1

∑
i=1

rixi + rvxv.

First, ϕ is a well-defined homomorphism: Suppose ∑i rixi −∑i r′i xi ∈ Im(∂v
1). Since xv

is linearly independent from xi, 1 ≤ i ≤ v− 1, this immediately implies that rv = r′v. Claim
1 guarantees that Im(∂v

1) = ∂v
1(〈Ev−1〉R), and consequently, there exist unique coefficients,

αi, such that
v−1

∑
i=1

rixi −
v−1

∑
i=1

r′i xi = ∂v
1(

v−1

∑
i=1

αiei).

In view of ∂v
1(ei) = nixi, we obtain

v−1

∑
i=1

rixi −
v−1

∑
i=1

r′i xi =
v−1

∑
i=1

αi∂
v
1(ei) =

v−1

∑
i=1

sinixi.

The linear independence of xi, in turn, implies that (ri − r′i) = sini for any i, from
which (ri − r′i)xi = si∂

v
1(ei), and thus, rixi = r′i xi.

ϕ is, by construction, surjective and does not have a nontrivial kernel from which
Claim 3 follows.

By construction, Rxv ∼= R, and as for the direct summands Rxk, for 1 ≤ k ≤ v− 1, we
consider the mapping h : Rxk → R/Rnk, h(rxk) = r mod nk. Suppose that (rk − r′k)xk =
sk∂v

1(ek); then, ∂v
1(ek) = nkxk implies that (rk − r′k) = sknk, so h is well defined. Clearly h

is surjective, and it remains to check the injectivity. h(rxk) = 0 implies that r = snk and
snkxk = s∂v

1(ek) implies that rxk = 0, hence the theorem.

We proceed by analyzing H1,R(X). We begin with the expression for infl(cκ#) in
Lemma 4:

infl(cκ#) = ∑
j

v(uj)

v(∆j)
· uj + ∑

kβ

f (kβ) · kβ,

where ∆j is the 2-simplex containing the edge uj, and kβ are mixed edges that appear when
transitioning between 2-simplices with different weights that share a kβ face.
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The “troublemakers” here are the off-diagonal terms of the embedding, kβ, which
stem from passing from trivial to nontrivial crossing components and vice versa. We shall
eliminate such transitions by appropriately deforming X without affecting its homology.
We then have to check that the deformation gives rise to an inflation map that is just a
restriction of the original inflation map for X. Let ∆ ∈ X be a 2-simplex corresponding
to a non-crossing arc, i.e., ∆ is maximal in X. W.l.o.g., we can assume that ∆ = [s1, s2, t]
with s1, s2 ∈ S, t ∈ T. Then, τ = [s1, s2] is ∆-free, and by construction, v(τ) = v(∆) = 2.
Removing τ and ∆ from X produces a sub-complex X′ with X ↘ X′. By Proposition 2, we
may remove all 2-simplices contained in X corresponding to non-crossing arcs together
with their pure faces without changing the homology. Accordingly, the resulting X̃ is an
X-sub-complex such that Hi,R(X̃) ∼= Hi,R(X). Note that X̃ is, in general, not a complex
induced by a bi-structure.

Lemma 6. There exists an X̃1-spanning tree, T#
X̃1 , with ∂v

1(〈T#
X̃1〉R) = ∂v

1(〈X1〉R).

Proof. Let T0 be a fixed X̃1-spanning tree. We then continue with X̃1 \ T0-edge replace-
ments, as in Lemma 5, and the process terminates with the X̃1-spanning tree Tk = T#

X̃1 ,
which has the property ∂v

1(〈T#
X̃1〉R) = ∂v

1(C1,R(X̃)).
Note that a pure edge e that is not in X̃ can be written as e = ∂v

2(∆e) + e− ∂v
2(∆e),

where ∆e ∈ X2 is the unique 2-simplex containing the pure edge e. Since v(e) = v(∆e),
we have (e− ∂v

2(∆e)) ∈ C1,R(X̃) or (∂v
2(∆e) + e) ∈ C1,R(X̃), depending on the sign of e in

∂v
2(∆e). Consequently, ∂v

1(C1,R(X̃)) = ∂v
1(C1,R(X)), and the lemma follows.

Note that H1,R(X̃) ∼= Ker(∂v
1(X̃))/Im(∂v

2(X̃)) and Ker(∂v
1(X̃)) = H1,R(X̃1). Further-

more, by Proposition 3, H1,R(X̃1) is generated by elementary cycles induced by T#
X̃1 . Hence,

we can exploit the structure of T#
X̃1 in order to compute H1,R(X̃) ∼= H1,R(X).

Theorem 2. H1,R(X) is an R-torsion module, and there exists an isomorphism

H1,R(X) ∼=
⊕
κ#

R/(π|κ
#|−1),

where κ# is a closing edge of a minimal cycle cκ# ∈ H1(X̃) with respect to T#
X̃1 .

Proof. We begin by establishing that the inflation map naturally restricts to X̃.
Claim 1. We have the commutative diagram

0 // H1(X1)
infl // H1,R(X1)

I∗ // H1,R(X) // 0

0 // H1(X̃1)

I∗

OO

infl|H1(X̃1) // H1,R(X̃1)
I∗ //

I∗

OO

H1,R(X̃) //

∼=

OO

0

.

Clearly, H2(X1, X̃1) = 0 and H2,R(X1, X̃1) = 0, and by the long homology sequences,
I∗ : H1(X̃1) → H1(X1) and I∗ : H1,R(X̃1) → H1,R(X1) are embeddings. Lemma 6 shows
that T#

X̃1 is also a T#
X1-tree, from which H1(X1) is obtained from H1(X̃1) by just adding all

elementary cycles induced by the pure edges that are not contained in X̃. Consequently,
removing these edges from X1 is equivalent to restricting the inflation map infl : H1(X1)→
H1,R(X1) to the sub-complex X̃1, and Claim 1 follows.

Claim 2. For infl|H1(X̃1) : H1(X̃1)→ H1,R(X̃1), we have infl|H1(X̃1)(cκ#) = π|κ
#|−1cv

κ# . As
in Lemma 4:

infl(cκ#) = ∑
j

v(uj)

v(∆j)
· uj + ∑

kβ

f (kβ) · kβ,
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where ∆j is the 2-simplex containing the edge uj, and kβ are mixed edges that appear when
transitioning between 2-simplices with different weights that share a kβ face. By construction,
for any ∆ ∈ X̃2, v(∆) = π1, and so no kβ edges emerge in the inflation images. In particular, κ#

has the coefficient v(κ#)/v(∆κ#) = π|κ
#|−1 in infl(cκ#). By Lemma 6 ∂v

1(〈T#
X̃1〉R) = ∂v

1(〈X̃〉R),
and so the corresponding elementary cycle cv

κ# has the coefficient 1 at κ#. Since H1,R(X̃1) is
freely generated by all elementary cycles, Claim 2 follows.

H1,R(X̃1) is freely generated by M = {cv
κ# | κ#} and is free of rank |M|. By Lemma 4,

|M| = rnk(infl(H1(X̃1))), from which H1,R(X̃) ∼= H1,R(X̃1)/(R ⊗Z infl(H1(X̃1))) is, by
the structure theorem of finitely generated modules over PIDs, a full-torsion module.
The exact sequence

0 // R⊗Z infl(H1(X̃1))
inj // H1,R(X̃1)

I∗ // H1,R(X̃) // 0

implies that R⊗Z infl(H1(X̃1)) = 〈{π|κ#|−1cv
κ# | κ#}〉R, and clearly,

H1,R(X) ∼= H1,R(X̃) ∼=
⊕
κ#

R/(π|κ
#|−1).

Theorem 3. The injection inj : H2(X)→ H2,R(X) induces an isomorphism of R-modules:

H2,R(X) ∼= R⊗Z H2(X).

Proof. The long homology sequence for the weighted homology induces the exact sequence

0 // H2,R(X)
J∗ // H2,R(X, X1)

∂̂v
2 // Im(∂̂v

2)
// 0 ,

where H2,R(X) ∼= Ker(∂v
2) and H2,R(X, X1) = C2,R(X). Hence, Im(J∗) = Ker(∂v

2) =
Ker(∂̂v

2), and the sequence is exact. In view of Im(∂̂v
2) ≤R H1,R(X1) and Proposition 3, all

modules in the sequence are free and, thus, projective; hence, rnk(H2,R(X))+ rnk(Im(∂̂v
2)) =

rnk(H2,R(X, X1)). Analogously, the exact sequence

0 // H2(X)
J∗ // H2(X, X1)

∂̂2 // H1(X1)
I∗ // 0

of free modules implies that rnk(H2(X)) + rnk(H1(X1)) = rnk(H2(X, X1)). Since

R⊗Z H2(X, X1)) ∼= H2,R(X, X1)

and rnk(Im(∂̂v
2)) = rnk(R⊗Z infl(H1(X1))) = rnk(H1(X1)), we can conclude that

rnk(H2,R(X)) = rnk(H2(X)).

Finally, since both H2,R(X) and R⊗Z H2(X) are free finitely generated modules over
the PID R, the theorem follows.

Remark 1. Since X2 = X, by construction, Ci>2,R(X) = 0. As such, Hi>2,R(X) = 0, and, in
view of Corollary 1, this holds for weighted complexes stemming from arbitrary bi-structures.

8. Conclusions and Future Work

In this paper, we introduced the weighted homology of the nerve complex X of
an RNA bi-structure. We demonstrated that the weighted homology of a bi-structure
distinctively augments the simplicial homology.
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In the simplicial homology, only the zeroth and second homology groups are nontriv-
ial [1]. Since the complex of a bi-structure is, by construction, connected, the simplicial
homology carries key information exclusively via H2(X).

The weighted homology not only conserves the information provided by the simplicial
homology, but it also supplies additional information. Specifically, connectivity is still
picked up by the free submodule of H0,R(X); however, additional torsion now emerges.
This torsion is given a concrete combinatorial interpretation via the compression algorithm
on the spanning tree T#

X1 . In fact, the compression procedure naturally generates the free
submodule of rank one at its final step.

In the case of H2,R(X), we consider H2(X) and observe that the nontrivial chain
maps θn : Cn(X) −→ Cn,R(X), θ(∑i niσi) = ∑i niv(σi)σi, produce an injection inj : H2(X)→
H2,R(X), in which all coefficients are one, since any 2-simplex contained in the expression
of an H2(X)-generator (i.e., appearing in a crossing component) has a weight of one. As a
result, passing to the ring R preserves the information present in H2(X).

In the computation of H1,R(X), we employed the simplicial homology in a different
way. Here, we consider the relative homology and transcend the information from the
1-skeleton, X1. While H1(X) is trivial [1], H1(X1) carries information, which we can utilize
by extracting from

0 // H2,R(X)
J∗ // H2,R(X, X1)

∂̂v
2 // H1,R(X1)

I∗ // H1,R(X) // 0

0 // H2(X)

inj

OO

J∗ // H2(X, X1)

inj

OO

∂̂2 // H1(X1)

infl

OO

I∗ // 0

0

OO

the embedded exact sequence of Lemma 4. After resolving some technicalities, this allows
us to compute H1,R(X). Note that passing to the deformation X̃ greatly simplifies the
inflation map, and we observe that it acts on X̃ as θ1 would on the 1-skeleton.

The structure theorems for the weighted homology enable the classification of bi-
structures by their R-modules. Such classifications can provide insights into the algo-
rithmic complexity of problems involving bi-structures. For instance, the problem of
computing thermodynamically stable sequences for a bi-structure can be efficiently solved
in polynomial time when the second homology R-module H2,R(X) is trivial [2].

As for future work, we shall extend the homological analysis to RNA–RNA interac-
tion structures [35]. An interaction structure can be represented as a diagram with two
backbones drawn horizontally on top of each other such that both intra-molecular and
inter-molecular bonds are non-crossing; see Figure 5.

The inter-molecular arcs naturally induce an equivalence relation φ on the vertices
of the two backbones. The intersection of two loops is accordingly defined to be the set
of φ-equivalence classes of vertices that they share. A bi-secondary structure can then be
viewed as a particular type of interaction structure—namely, an interaction structure with
two identical backbones, where interaction arcs connect any pair (i, i) for 0 ≤ i ≤ n + 1.
In contrast to a bi-structure, an interaction structure can exhibit nontrivial first-simplicial
homology and requires revisiting the notion of a crossing component for interaction
structures. The analysis involves many more topologies—in particular, surfaces and Mayer–
Vietoris sequences [34].

The framework of the weighted homology is by no means restricted to bi- or interaction
structures. It also gives rise to the consideration of the dissimilarity complex of a finite
set of genomic sequences, which we briefly discuss in the following. A multiple sequence
alignment W of genomic sequences is defined to be a finite set of words of equal length m
over the finite alphabet A = {a1, · · · , as}. For any k ∈ {1, · · · , m}, let fk : W −→ A be the map
that returns the symbol at position k of a word, namely, fk(w) = awk for w = aw1 . . . awm ∈W.
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A d + 1 subset σ ⊆ W forms a d-simplex if there exists at least one position j such that
|{ f j(w)|w ∈ σ}| = d + 1. In other words, all d + 1 sequences in σ contain mutually different
nucleotide types at the site j. For a fixed σ, the number of different positions j for which the
above holds is called the dissimilarity of σ. This leads to the aforementioned dissimilarity
complex for genomic sequences; see Figure 6. This complex is, by definition, low dimensional;
its highest dimension is s− 1. For d + 1 = 2, the 1-skeleton of the dissimilarity complex
captures the well-known Hamming distance—the number of positions in which two genetic
sequences differ. It may be worth pointing out that this framework integrates well-known
generalizations of distances, as these appear naturally as weights in the dissimilarity
complex. Triangle inequalities generalize to tetrahedron inequalities, etc., and this could
enhance our understanding of genetic sequences. This is because basic constructs—e.g.,
trees, such as the tree of life—that reflect the ancestral relations between sequences depend
on the notion of Hamming distance. Our preliminary investigations suggest that the
homology of the dissimilarity complex captures evolutionary events. For example, the free
rank of the first homology module gives bounds of the possible recombinations within the
sequence set.

b

d

a

c

a b

cd

x y

Figure 5. Left: an interaction structure with two interaction arcs, x and y. Right: the corresponding
interaction complex.

Seq X A A G A G G C T T
Seq Y A G G A G A C C T
Seq Z G T G G G T C C C

X Y
3

X Z6

Z Y
5

X

Y

2

Z

X
9

Y
9

Z
9

2
3 6

5

X
9

Y
9

Z
9

MULTIPLE SEQUENCE ALIGNMENT

0,1,2 - SIMPLICES

DISSIMILARITY COMPLEX

Figure 6. A multiple-sequence alignment of three sequences X, Y, Z, their corresponding weighted
simplices, and the associated dissimilarity complex.
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