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Abstract: Let G be a graph on n vertices. The Estrada index of G is an invariant that is calculated
from the eigenvalues of the adjacency matrix of a graph. V. Nikiforov studied hybrids of A(G) and
D(G) and defined the Aα-matrix for every real α ∈ [0, 1] as: Aα(G) = αD(G) + (1− α)A(G). In this
paper, using a different demonstration technique, we present a way to compare the Estrada index of
the Aα-matrix with the Estrada index of the adjacency matrix of the graph G. Furthermore, lower
bounds for the Estrada index are established.
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1. Introduction

Throughout the paper, we consider G an arbitrary connected graph with the edge set
denoted by E(G) and its vertex set V(G) = {1, . . . , n} with cardinality m and n (order of
G), respectively. We say that G is an (n, m)-graph. If e ∈ E(G) has end vertices i and j, then
we say that i and j are adjacent, and this edge is denoted by ij. For a finite set U, |U| denotes
its cardinality. Let Kn be the complete graph with n vertices and Kn its complement.

The adjacency matrix A(G) of the graph G is a symmetric matrix of order n with
entries aij, such that aij = 1 if ij ∈ E(G) and aij = 0 otherwise. Denote by λ1 ≥ . . . ≥ λn
the eigenvalues of A(G); see [1,2].

The matrix L(G) = D(G)− A(G) is called the Laplacian matrix of G (see [3]), where
D(G) is the diagonal matrix of vertex degrees of G. We denote the eigenvalues of the
Laplacian matrix by µ1 ≥ µ2 ≥ . . . ≥ µn−1 ≥ µn = 0. A matrix is singular if it has zero as
an eigenvalue; otherwise, it is called non-singular. A graph G is said to be non-singular if
its adjacency matrix is non-singular.

The Estrada index of the graph G is defined as:

EE(G) =
n

∑
i=1

eλi .

This spectral quantity was put forward by E. Estrada [4] in the year 2000. Many chemical
and physical applications have been found, including quantifying the degree of folding of
long-chain proteins [5–7] and complex networks [8–11]. The mathematical properties of
this invariant can be found in, e.g., [12–16].

De la Peña et al. in [17], with respect to Estrada index, showed the following.

Theorem 1 ([17]). Let G be an (n, m)-graph. Then, the Estrada index of G is bounded as:√
n2 + 4m ≤ EE(G) ≤ n− 1 + e

√
2m. (1)

Equality on both sides of (1) is attained if and only if G is isomorphic to Kn.
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In [18], Bamdad proved the following result.

Theorem 2 ([18]). Let G be an (n, m)-graph with t triangles. Then:

EE(G) ≥
√

n2 + 2mn + 2nt. (2)

Equality holds if and only if G is the empty graph Kn.

Denote by Mk = Mk(G) the k-th spectral moment of the graph G, i.e.,

Mk =
n

∑
i=1

(λi)
k,

then, we can write the Estrada index as:

EE(G) =
∞

∑
k=0

Mk
k!

. (3)

In [1], for an (n, m)-graph G, the authors proved that:

M0 = n, M1 = 0, M2 = 2m, M3 = 6t, (4)

where t is the number of triangles in G.

Remark 1. Notice that we can obtain a lower bound for the Estrada index considering (3) and
(4) by:

EE(G) =
∞

∑
k=0

Mk
k!

= M0 + M1 +
M2

2!
+

M3

3!
+

∞

∑
k=4

Mk
k!

≥ M0 + M1 +
M2

2!
+

M3

3!
= n + m + t.

Therefore, we demonstrate the following result.

Theorem 3. Let G be an (n, m)-graph with t-triangles. Then:

EE(G) ≥ n + m + t.

Equality holds if and only and G is isomorphic to Kn.

Remark 2. Here, we show that the bound in Theorem 3 improves the bounds in Theorems 1 and 2.
Suffice it to show that:√

n2 + 4m ≤ n + m + t ⇒ 4m ≤ m2 + t2 + 2(nm + nt + mt).

and: √
n2 + 2nm + 2nt ≤ n + m + t ⇒ 0 ≤ m2 + t2 + 2mn.

In [19], V. Nikiforov studied hybrids of A(G) and D(G) and defined the Aα-matrix
for every real α ∈ [0, 1] as:

Aα(G) = αD(G) + (1− α)A(G),
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with ρ1, ρ2, . . . , ρn the eigenvalues of Aα.
The Estrada index of the Aα-matrix of graph G is defined as

EEα(G) =
n

∑
i=1

eρi .

Note that the Aα-matrix can be written as follows:

Aα(G) = α(L(G)) + A(G). (5)

Given a matrix M, we denote by ∂i(M) the i-th eigenvalue in descending order of
matrix M. The following result, due to Weyl, can be found in [20].

Theorem 4 ([20]). Let A and B be two Hermitian matrices of order n, and let 1 ≤ i, j ≤ n.
If C = A + B is a matrix, then,

(i) ∂i(A) + ∂j(B) ≤ ∂i+j−n(C), if i + j ≥ n + 1;

(ii) ∂i(A) + ∂j(B) ≥ ∂i+j−1(C), if i + j ≤ n + 1.

Equality holds if and only if there exists a unit vector that is an eigenvector of each of the three
eigenvalues involved.

Notice that if j = n and j = 1 in Weyl’s inequality; we can write:

∂i(A) + ∂n(B) ≤ ∂i(A + B) ≤ ∂i(A) + ∂1(B). (6)

Applying the inequality (6) to the matrix in (5), i.e., considering A = A(G) and
B = αL(G), we have the following inequalities.

∂i(A(G)) + α∂n(L(G)) ≤ ∂i(Aα(G)) ≤ ∂i(A(G)) + α∂1(L(G)). (7)

In 1985, Anderson et al. [3] obtained the following upper bound for the Laplacian matrix.

Lemma 1. [3] If G is a graph of order n, then:

µ1(L(G)) ≤ n. (8)

Equality holds if and only if G is disconnected.

Considering the above Lemma 1, the inequality (7), and ∂n(L(G)) = µn = 0, we have:

∂i(A(G)) ≤ ∂i(Aα(G)) ≤ ∂i(A(G)) + nα. (9)

Applying the exponent function and sum over i = 1, . . . , n; we have:

n

∑
i=1

e∂i(A(G)) ≤
n

∑
i=1

e∂i(Aα(G)) ≤ enα
n

∑
i=1

e∂i(A(G)).

Hence, we get the following results.

EE(G) ≤ EE(Aα(G)) ≤ enαEE(G). (10)

As a consequence of the inequality (10), Lemma 3, and Theorem 1, we have the
following result.
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Theorem 5. Let G be an (n, m)-graph. Then, the Estrada index of Aα is bounded as:√
n2 + 4m ≤ EE(Aα(G)) ≤ enα(n− 1 + e

√
2m) (11)

and:
EE(Aα(G)) ≥ n + m + t. (12)

The equality case on both inequalities is attained if and only if α = 0 and G is isomorphic to Kn.

In this paper, new lower bounds for the Estrada index are established. Considering
Theorem 3 and the results previously shown, we allow obtaining new lower bounds for
the Estrada index of the Aα-matrix.

2. Estrada Index and Energy

In this section, in order to obtain new lower bounds to approximate the value of the
Estrada index of the Aα-matrix, new lower bounds are established for the Estrada index in
relation to the energy of the G graph.

The energy of a graph G was defined by Ivan Gutman in 1978 [21] as:

E(G) =
n

∑
i=1
|λi|.

The energy of a graph G is studied in mathematical chemistry and used to approximate
the total π-electron energy of a molecule. Eventually, it was recognized that the interest
in this graph invariant goes far beyond chemistry; see the recent papers [22–26] and the
references cited therein.

In [27], Koolen and Moulton showed that the following relation holds for all graphs G

E(G) ≤ λ1 +
√
(n− 1)(2m− λ2

1). (13)

For all (n, m)-graphs G connected and nonsingular, Das et al. in [28] proved the
following relation holds:

E(G) ≥ λ1 + (n− 1) + ln(detA) + ln(λ1), (14)

then using the inequality 2m/n ≤ λ1 in (13) and (14), they obtained the following upper
and lower bounds, respectively:

E(G) ≤ 2m
n

+

√√√√(n− 1)

(
2m−

(
2m
n

)2
)

and:

E(G) ≥ 2m
n

+ (n− 1) + ln |det(A)|+ ln
(

2m
n

)
.

Theorem 6. Let G be an (n, m)-graph with k non-negative eigenvalues. Then:

EE(G) ≥ E(G)

2
+ e(

2m
n ) + (k− 1)− 2m

n
. (15)

Equality holds in (15) if and only if G is isomorphic to Kn.

Proof. Let x ≥ 0, and consider the following function:

g(x) = −1− x + ex; (16)
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the equality holds if and only if x = 0. It is straightforward to show that function g(x) is
increasing in [0,+∞). Then, g(x) ≥ g(0), implying that:

x ≤ ex − 1, x ≥ 0. (17)

Note that, as A(G) is a symmetric matrix with zero trace, these eigenvalues are real
with the sum equal to zero, i.e.,

λ1 ≥ · · · ≥ λn (18)

and:
λ1 + · · ·+ λn = 0. (19)

Then, by the definition of the energy join to (18) and (19), we have:

E(G)

2
= ∑

λi>0
λ+

i = − ∑
λi<0

λ−i . (20)

Suppose that A(G) have k non-negative eigenvalues, then using (20) and (17), we obtain:

E(G)

2
=

k

∑
i=1,λi≥0

λi

= λ1 +
k

∑
i=2,λi≥0

λi

≤ λ1 +
k

∑
i=2,λi≥0

(
eλi − 1

)
= λ1 − (k− 1) +

k

∑
i=1,λi≥0

eλi − (eλ1)

≤ λ1 − (k− 1) +
k

∑
i=1,λi≥0

eλi +
n

∑
i=k+1,λi<0

eλi − eλ1

= λ1 − (k− 1) +
n

∑
i=1

eλi − eλ1 .

Thereby, considering λ1 ≥ 2m
n , we obtain the first result.

Suppose now that the equality holds. From the equality in (16), we get λ1 = . . . =
λn = 0. Then, k = n. Therefore, G is isomorphic to Kn. Note that if G is equal to Kn, it is
easy to check that the equality in (15) holds.

As a consequence of the above theorem and the lower bound due to Das et al. in (14),
we obtain the following result.

Corollary 1. Let G be a connected non-singular graph of order n with k strictly positive eigenval-
ues. Then:

EE(G) ≥ 1
2
(n− 1 + ln(det(A(G))) + ln(λ1)) + eλ1 + (k− 1)− λ1

2
.

3. Comparison and Conclusions

In this section, in order to show that our results improve the existing results in the liter-
ature, we present some computational experiments to compare our new lower bounds with
the lower bounds existing in the literature for connected graphs. For comparison reasons,
we consider the explicit values of the eigenvalues of the mentioned graphs. In the following
table, the real value of the Estrada index of some graphs is compared with the approximate
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values obtained by applying Theorem 3 (Thm.3) and Theorem 6 (Thm.6) obtained in this
paper together with some existing results in the literature, for example Theorem 1 (Thm.1)
in [17], Theorem 13 in [23] (Thm.13), and Theorem 2 (Thm.2) in [18].

Graph EE(G) Thm 1 Thm 2 Thm 13 Thm 3 Thm 6

Herschel 45.195 22.738 13.892 26.5084 29.000 32.988

Heawood 46.176 28.000 16.733 30.1952 35.000 34.571

Petersen 34.218 20.000 12.649 21.2832 25.000 30.086

Grötzsch 55.619 23.685 14.177 29.0915 33.000 48.019

K4 21.189 9.7980 6.3246 10.6829 14.000 20.086

K5 56.070 15.000 8.0623 22.8344 25.000 54.598

S5 10.524 8.0623 6.4031 8.0103 9.000 8.3530

S6 13.463 9.7980 7.4833 9.7098 11.000 9.8639

C4 9.5244 6.9282 5.6569 7.2896 8.000 9.3891

C5 11.503 8.6603 6.7082 8.7768 10.000 10.625

P4 7.6479 6.3246 5.2915 6.3059 7.000 6.2217

P5 9.941 8.0620 6.4031 7.9106 9.000 8.083

K2,3 14.669 9.2195 7.000 9.9628 11.000 14.073

Analyzing the above examples, we observe the following:

• In all our test cases, our lower bounds are better than existing bounds in the literature.
Furthermore, we confirm Remark 2.

• Considering the results obtained in this paper, a possible way is to apply them to
digraphs, which have seen relevant interest recently among researchers.

Author Contributions: Conceptualization, J.R. and H.N.; methodology, J.R.; software, J.R.; vali-
dation, J.R. and H.N.; formal analysis, H.N.; investigation, J.R.; resources, J.R and H.N.; writing—
original draft preparation, J.R.; writing—review and editing, J.R.; visualization, H.N.; supervision,
J.R. All authors have read and agreed to the published version of the manuscript.

Funding: J. Rodríguez Z. was supported by the MINEDUC-UA project, code ANT-1899, funded by
the Initiation Program in Research - Universidad de Antofagasta, INI-19-06, and MATHAMSUD-
FLN-CheGraTA, código 21-MATH-05. Hans Nina was partially supported by Comisión Nacional
de Investigación Científica y Tecnológica, Grant FONDECYT 11170389, Chile, and Universidad de
Antofagasta, Antofagasta, Chile, Grant UA INI-17-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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