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Abstract: In this paper, we consider boundary stabilization problem of heat equation with multi-point
heat source. Firstly, a state feedback controller is designed mainly by backstepping approach. Under
the designed state controller, the exponential stability of closed-loop system is guaranteed. Then,
an observer-based output feedback controller is proposed. We prove the exponential stability of
resulting closed-loop system using operator semigroup theory. Finally, the designed state and output
feedback controllers are effective via some numerical simulations.
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1. Introduction

The parabolic partial differential equations (PDEs) have played a crucial role in the real-
world practice over the past several decades. At early stages, Masi et al. [1] investigated
the microscopic fluctuations of interacting particle systems on a lattice by the nonlinear
parabolic PDE. In [2], Price et al. showed the analysis and enhancement on special types of
images based on parabolic PDEs. Afterwards, under measuring the temperature changes
of ovens’ processing area on different points, the heating capability of forced convection
reflow ovens and the effect of the ovens’ construction on it, were considered in [3]. By the
experimental data, the parabolic PDE was used to describe the specific characteristics.
Besides, Pardo et al. [4] applied the three-dimensional parabolic PDE to the non-destructive
evaluation of minefields. Recently, Gao et al. [5] proposed a method of parabolic equation
modeling to address the problem of predicting electromagnetic wave propagation caused
by atmospheric dust and rough sea surfaces in the maritime environment. Regarding the
study of the parabolic PDEs, there are some other results and references [6–10] therein.

In the control engineering filed, many scholars have been keen on boundary stabiliza-
tion problems of parabolic PDEs during the past decades. For boundary control problem of
a class of unstable scalar parabolic PDEs, ref. [11] employed a gradient-based optimization
method to parameterize the feedback kernel as a second-order polynomial, and made the
optimized kernel generate closed-loop stability with restricting on the kernel coefficients.
Liu [12] proposed the successive approximation to address the boundary stabilization prob-
lem of unstable parabolic PDE. Wu et al. [13] made use of fuzzy control approach to solve
the stabilization problem of nonlinear parabolic PDEs. Vazquez and Krstic [14] adopted
finite-dimension feedback linearization method to transform parabolic PDEs with Volterra
nonlinearities into a stable system by the Volterra series nonlinear operators. Actually,
the proposed finite-dimension feedback linearization method was infinite dimensional
extension of the backstepping approach. It is well known that backstepping transformation
is mainstream method to deal with boundary stabilization problems of parabolic PDEs,
such as, linear parabolic PDEs [15–19], nonlinear parabolic PDEs [20–22], quasi-linear
parabolic PDEs [23], coupled parabolic PDEs and ODE [24–27].
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To the best of our knowledge, heat equation is an extremely classic class of parabolic
PDEs. The boundary control results of heat equation with unstable term or source term
have been proposed and references [19,28–34] therein. Krstic first proposed a separation
principle result based on the passive and swapping identifiers and combined backstepping
method to solve adaptive boundary control problem for heat equation with term λu(x, t)
in [33], where λ is unknown parameter. Afterward, based on expressly parametrized
control formula, adaptive controllers for parabolic PDEs with the term λu(x, t) were de-
signed in [31], where λ is an unknown constant parameter. Additionally, Baccoli et al. [28]
employed backstepping method to represent boundary stabilization result of the coupled
reaction-diffusion processes with term ΛQ(x, t), where Λ ∈ Rn×n is a real-valued square
matrix. In [19], heat equation system is considered by

Γt(ξ, t) = Γξξ(ξ, t) + τ0Γ(ξ0, t), 0 < ξ < 1, t ∈ (0,+∞),
Γξ(0, t) = 0, t ≥ 0,
Γ(1, t) = Û(t), t ≥ 0,
Γ(ξ, 0) = Γ0(ξ), 0 ≤ ξ ≤ 1,

(1)

where Û(t) is boundary control, Γ0 is initial value, τ0 is a constant, ξ0 ∈ (0, 1). Zhou and
Guo designed a state feedback controller based on backstepping approach for problem (1).
Motivated by [19], we consider extension of heat system (1)

Γt(ξ, t) = Γξξ(ξ, t) +
Z
∑

i=1
τiΓ(ξi, t), 0 < ξ < 1, t ∈ (0,+∞),

Γξ(0, t) = 0, t ≥ 0,
Γ(1, t) = Û(t), t ≥ 0,
Y = {Γ(ξ1, t), Γ(ξ2, t), ..., Γ(ξZ, t)},
Γ(ξ, 0) = Γ0(ξ), 0 ≤ ξ ≤ 1,

(2)

where 0 < ξi < 1, i = 1, 2, ..., Z, Z ∈ [2,+∞) is a positive integer, τi (i = 1, 2, ..., Z) is a
constant parameter, Û(t) is control, Γ0 is initial value, ∑Z

i=1 τiΓ(ξi, t) is non-local term. As a
matter of convenience, let τ = ∑Z

i=1 τi. In our paper, owing to the existence of our multi-
term τ, normal backstepping transformation is no longer applicable. A new backstepping
transformation is constructed in our paper. Unlike the unstable terms mentioned above,
term ∑Z

i=1 τiΓ(ξi, t) in system (1) is intermediate points related. In addition, ∑Z
i=1 τiΓ(ξi, t)

can be seen as
∫ 1

0 τiδ(s− ξi)Γ(s, t)ds (a nice explanation in [19]). When i = 1, system (2)
becomes system (1). Actually, [35] adopted backstepping method to solve the output
feedback problem of transport equation with non-local term µu(x0). Besides that there
are other results about hyperbolic PDEs with integral term by backstepping approach
in [36,37].

The rest of paper is organized as follows. In Section 2, we design a state feedback
controller by backstepping approach to stabilize system (2). In Section 3, an output feedback
controller is constructed. The resulting closed-loop system is proved to be exponentially
stable. Section 4 illustrates the effectiveness of the proposed controller on the basis of some
simulations. Finally, the concluding remarks are introduced in Section 5.

2. The State Feedback Controller Design by Backstepping

In this section, we introduce the backstepping transformation as below

P(ξ, t) = Γ(ξ, t)−
Z
∑

i=1
ai(ξ)

∫ ξi

0
bi(s)Γ(s, t)ds−

∫ ξ

0
c(ξ, s)Γ(s, t)ds, (3)

where ai, bi(i = 1, 2, ..., Z) and c are kernels and to be determined later.
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Under transformation (3), we convert system (2) into the following target system
Pt(ξ, t) = Pξξ(ξ, t) + σP(ξ, t), 0 < ξ < 1, t ∈ (0,+∞),
Pξ(0, t) = 0, t ≥ 0,
P(1, t) = 0, t ≥ 0,

(4)

where σ ∈ (−∞, 0] is any given number.
Now, we prove the kernels are unique. Firstly, define the triangular domain Λ

Λ :=
{
(ξ, s) ∈ R2|(ξ, s) ∈ [0, 1]× [0, ξ]

}
.

For transformation (3), we take derivative of it with regard to ξ, there is

Pξ(ξ, t) = Γξ(ξ, t)−
Z
∑

i=1
a′i(ξ)

∫ ξi

0
bi(s)Γ(s, t)ds− c(ξ, ξ)Γ(s, t)−

∫ ξ

0
cξ(ξ, t)Γ(s, t)ds.

(5)
Take derivative of Equation (5) with regard to ξ

Pξξ(ξ, t) = Γξξ(ξ, t)−
Z
∑

i=1
a′′i (ξ)

∫ ξi

0
bi(s)Γ(s, t)ds− dc(ξ, ξ)

dξ
Γ(ξ, t)

−c(ξ, s)Γξξ(ξ, t)− cξ(ξ, ξ)Γ(ξ, t)−
∫ ξ

0
c′′(ξ, s)Γ(s, t)ds.

(6)

Next, we calculate the derivation of (3) with regard to t

Pt(ξ, t) = Γt(ξ, t)−
Z
∑

i=1
ai(ξ)

∫ ξi

0
bi(s)Γt(s, t)ds−

∫ ξ

0
c(ξ, s)Γt(s, t)ds

= Γξξ(ξ, t) +
Z
∑

i=1
τiΓ(ξi, t)−

Z
∑

i=1
ai(ξ)

[
bi(ξi)Γξ(ξi, t)− bi(0)Γξ(0, t)

−b′i(ξi)Γ(ξi, t) + b′i(0)Γ(0, t) +
∫ ξi

0
b′′(s)Γ(s, t)ds +

∫ ξi

0
bi(s)ds

Z
∑

j=1
τjΓ(ξ j, t)

]
−c(ξ, ξ)Γξ(ξ, t) + cs(ξ, ξ)Γ(ξ, t)− cs(ξ, 0)Γ(0, t)−

∫ ξ

0
css(ξ, s)Γ(s, t)ds

−
∫ ξ

0
c(ξ, s)ds

Z
∑

i=1
τiΓ(ξi, t).

(7)

According to Pt(ξ, t) = Pξξ(ξ, t) + σP(ξ, t) in (4), one has

Z
∑

i=1

[∫ ξi

0
(a′′i (ξ)bi(s)− ai(ξ)b′′i (s) + σai(ξ)bi(s))Γ(s, t)ds

]
+
∫ ξ

0
(cξξ(ξ, s)− css(ξ, s) + σc(ξ, s))Γ(s, t)ds + (2

d
dξ

c(ξ, ξ)− σ)Γ(ξ, t)

+
Z
∑

i=1
Γ(ξi)

[
τi + ai(ξ)b′i(ξi)− τi

Z
∑

j=1

∫ ξ j

0
aj(ξ)bj(s)ds− τi

∫ ξ

0
c(ξ, s)ds

]
−

Z
∑

i=1
ai(ξ)bi(ξi)Γξ(ξi)−

[
Z
∑

i=1
ai(ξ)b′i(0) + css(ξ, 0)

]
Γ(0, t) = 0.

(8)

In addition, by Pξ(0, t) = 0 and Γξ(0, t) = 0,we get

Pξ(0, t) = Γξ(0, t)−
Z
∑

i=1
a′i(0)

∫ ξi

0
bi(s)Γ(s, t)ds− c(0, 0)Γ(0, t). (9)



Mathematics 2021, 9, 834 4 of 20

By the (8) and (9), there is

a′′i (ξ)bi(s)− ai(ξ)b′′i (s) + σai(ξ)bi(s) = 0,

2
d

dξ
c(ξ, ξ)− σ = 0,

cξξ(ξ, s)− css(ξ, s) + σc(ξ, s) = 0,
Z
∑

i=1
ai(ξ)b′i(0) + cs(ξ, 0) = 0,

τi + ai(ξ)b′i(ξi)− τi
Z
∑

j=1

∫ ξ j

0
aj(ξ)bj(s)ds− τi

∫ ξ

0
c(ξ, s)ds = 0,

bi(ξi) = a′i(0) = 0.

(10)

For our main result, the following assumption is given by

S1 = 2 +
Z
∑

i=1
τiξ

2
i 6= 0, if τ = 0;

S2 =
Z
∑

i=1
τi cosh(

√
τξi) 6= 0, if τ > 0;

S3 =
Z
∑

i=1
τi cos(

√
−τξi) 6= 0, if τ < 0.

(11)

Lemma 1. Under assumption (11), for (10), there exist classical solutions ai(·) ∈ C2([0, 1]),
bi(·) ∈ C2([0, ξi]), and c(·, ·) ∈ C2(Λ).

Proof of Lemma 1. For convenience, we split (10) into

a′′i (ξ)bi(s)− ai(ξ)b′′i (s) + σai(ξ)bi(s) = 0,

τi + ai(ξ)b′i(ξi)− τi
Z
∑

j=1

∫ ξi

0
aj(ξ)bj(s)ds

−τi

∫ ξ

0
c(ξ, s)ds = 0,

bi(xi) = a′i(0) = 0,

(12)

and 
2

d
dξ

c(ξ, ξ)− σ = 0,

cξξ(ξ, s)− css(ξ, s) + σc(ξ, s) = 0,
Z
∑

i=1
ai(ξ)b′i(0) + cs(ξ, 0) = 0.

(13)

Firstly, we prove that for (12), there exist classical solutions ai(·) ∈ C2([0, 1]),
bi(·) ∈ C2([0, ξi]). According to the first equation of (12), one has

a
′′
i (ξ) + σai(ξ)

ai(ξ)
=

a
′′
i (ξ)− β2ai(ξ)

ai(ξ)
=

b
′′
i (ξ)

bi(ξ)
= τ, (14)

where σ = −β2. For computing (12) conveniently, we make |τ| = λ2. The proof is split the
following three steps.

Step 1: τ = 0.
There are the following solutions for Equation (14){

ai(ξ) = ηichβξ,
bi(s) = ζi(s− ξi).

(15)
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From the second of (12), one gives

ai(ξ)b′i(ξi)

τi
=

a1(ξ)b′1(ξ1)

τ1
, (16)

where i = 2, 3, ..., Z. Combining (15) and (16), we have

ηiζi =
η1ζ1τi

τ1
. (17)

From (13), one has

d2

dξ2

∫ ξ

0
c(ξ, s)ds =

d
dξ

[ ∫ ξ
0 cξ(ξ, s)ds + c(ξ, ξ)

]
=
∫ ξ

0
cξ(ξ, s)ds + cξ(ξ, ξ) +

d
dξ

c(ξ, ξ)

=
Z
∑

i=1
ai(ξ)b′i(0)− σ

∫ ξ

0
c(ξ, s)ds + σ.

(18)

By (15) and (17), there is

Z
∑

i=1
ai(ξ)b′i(0) =

η1ζ1

τ1

Z
∑

i=1
τichβξ = 0. (19)

Then,
d2

dξ2

∫ ξ

0
c(ξ, s)ds = −α

∫ ξ

0
c(ξ, s)ds + σ. (20)

For Equation (20), we obtain∫ ξ

0
c(ξ, s)ds− 1 = − cosh βξ. (21)

Now, let

Fi(ξ) = τi + ai(ξ)b′i(ξi)− τi
Z
∑

j=1

∫ ξ j

0
aj(ξ)bj(s)ds− τi

∫ ξ

0
c(ξ, s)ds. (22)

By simple calculation, we can get

F ′i (ξ) = a′i(ξ)b
′
i(ξi)− τi

Z
∑

j=1

∫ ξ j

0
a′j(ξ)bj(s)ds− τi

∫ ξ

0
cξ(ξ, s)ds− σ

2
τiξ, (23)

and

F ′′i (ξ) = a′′i (ξ)b
′
i(ξi)− τi

Z
∑

j=1

∫ ξ j

0
a′′j (ξ)bj(s)ds− τi

∫ ξ

0
cξξ(ξ, s)ds− τicξ(ξ, s)− α

2
τi. (24)

According to (14), (15), (17) and (24), one has F ′′i (ξ) = 0. That means F ′i (ξ) is
constant. Since a′i(0) = 0, there is F ′i (0) = 0, which means Fi(ξ) is constant. Suppose that
Fi(ξ) = 0, when ξ = 0, we get

Fi(0) = τi + ai(0)b′i(ξi)− τi
Z
∑

j=1

∫ ξi

0
aj(0)bj(s)ds = 0. (25)
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From (15), (17) ,(25), and the first equation of assumption (11), one has

ηiζi =
−2τ1

2 +
Z
∑

j=1
τjξ

2
j

=
−2τ1

S1
.

(26)

Hence,

ai(ξ)bi(s) = −
2τ1(s− ξi) cosh βξ

2 +
Z
∑

j=1
τjξ

2
j

=
2τ1(ξi − s) cosh βξ

S1
.

(27)

Step 2: τ > 0.
By (14), one has {

ai(ξ) = ηi cosh(
√

λ2 + β2ξ),
bi(s) = ζi(sinh(λs)− tanh(λξi) cosh(λs)).

(28)

Similar calculation to step 1, we get

ηiζi =
η1ζ1τi cosh(λξi)

τ1 cosh(λξ1)
, (29)

and

∫ ξ

0
c(ξ, s)ds− 1 =

Z
∑

i=1
ai(ξ)b′i(0)

λ2 .
(30)

Substituting (14), (28), (29), (30) into (24), similarly, there is F ′′i (ξ) = 0. By the same
some steps as step 1, we can also deduce Fi(ξ) is constant. Supposed that Fi(ξ) = 0, when
ξ = 0, it gives

Fi(0) = τi + ai(0)b′i(ξi)− τi
Z
∑

j=1

∫ ξ j

0
aj(0)bj(y)dy

= τi +
4η1ζ1τiλ

τ1 cosh(λξ1)
− τi

Z
∑

j=1

η1ζ1τj cosh(λξ j)

τ1 cosh(λξ1)
(

4
cosh(λξ j)

− 1)

= τi + τi
Z
∑

j=1

η1ζ1τj cosh(λξ j)

τ1 cosh(λξ1)

= 0.

(31)

From (31) and the second equation of assumption (11), one has

η1ζ1 = − λτ1 cosh(λξ1)
N
∑

j=1
τj cosh(λξ j)

=
−λτ1 cosh(λξ1)

S2
.

(32)

By (29) and (32), it can be obtained that

ηiζi = −
λτi cosh(λξi)

S2
. (33)

Hence,

ai(ξ)bi(s) = −
1

S2
λτi cosh(λξi) cosh(

√
λ2 + β2ξ)

(sinh(λs)− tanh(λξi) cosh(λs)).
(34)

Step 3: τ < 0.
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There is
a′′i (ξ) + σai(ξ)

ai(ξ)
=

a′′i (ξ)− β2ai(ξ)

ai(ξ)
=

b′′i (ξ)
bi(ξ)

= −λ2. (35)

By (35), one has

ai(ξ) = ηi cos(
√

λ2 − β2ξ), if λ2 − β2 > 0,

ai(ξ) = ηi, if λ2 − β2 = 0,

ai(ξ) = ηi cosh β(
√

β2 − λ2ξ), if λ2 − β2 < 0,

bi(s) = ζi sin(λ(ξi − s)).

(36)

Similar to step 1, we can get

ηiζi =
η1ζ1τi

τ1
, (37)

and

∫ ξ

0
c(ξ, s)ds− 1 = −

Z
∑

i=1
ai(ξ)b′i(0)

λ2 .
(38)

Substituting (14), (36), (37), (38) into (24), we can still ensure F ′′i (ξ) = 0 and Fi(ξ) is
constant. Supposed that Fi(ξ) = 0, when ξ = 0, it gives

Fi(0) = τi + ai(0)b′i(ξi)− τi
Z
∑

j=1

∫ ξi

0
aj(0)bj(s)ds

= τi +
η1ζ1τiλ

τ1
+ τi

Z
∑

j=1

η1ζ1τj

λτ1
(1− cos(λξ j))

= 0.

(39)

From (39) and the last equation of assumption (11), there is

η1ζ1 = − λτ1
Z
∑

j=1
τj cos(λξ j)

= −λτ1

S3
,

(40)

which means
ηiζi = −

λτi
S3

. (41)

Hence , we have

ai(ξ)bi(s) = −
λτi cos(

√
λ2 − β2ξ) sin(λ(ξi − s))

S3
, if λ2 − β2 > 0,

ai(ξ)bi(s) = −
λτi sin(λ(ξi − s))

S3
, if λ2 − β2 = 0,

ai(ξ)bi(s) = −
λτi cosh(

√
β2 − λ2ξ) sin(λ(ξi − s))

S3
, if λ2 − β2 < 0.

(42)

Now, we show that for (13), there exists classical solution c(·, ·) ∈ C2(Λ). Let
H(ξ) = ∑Z

i=1 ai(ξ)b′i(0), and

G(x̂, ŷ) = c(ξ, s), govern by x̂ = ξ + s, ŷ = ξ − s. (43)
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After a simple calculation, G(x̂, ŷ) can be written as

G(x̂, ŷ) =
σ(x̂ + ŷ)

4
−
∫ ŷ

0
H(s)ds− σ

4

∫ ŷ

0

∫ α

0
G(α, s)dsdα− σ

4

∫ ŷ

0

∫ x̂

s
G(α, s)dαds. (44)

Next, we only need to show that there exists a unique solution G(·, ·) ∈ C([0, 2]× [0, 1])
for (44) under assumption (11). Define norm

‖G‖ = max
(x̂,ŷ)∈[0,2]×[0,1]

e−âx̂e−b̂ŷ|G(x̂, ŷ)|, (45)

where σ
2âb̂
≤ 1. It is easy to see that norm ‖G‖ is completed normed space. Let

TG =
σ(x̂ + ŷ)

4
−
∫ ŷ

0
H(s)ds− σ

4

∫ ŷ

0

∫ α

0
G(τ, s)dsdα− σ

4

∫ ŷ

0

∫ x̂

s
G(τ, s)dαds. (46)

Thus,

|TG1(x̂, ŷ)−TG2(x̂, ŷ)| =
∣∣∣∣− σ

4

∫ ŷ

0

∫ α

0
|G1(α, s)− G2(α, s)|dsdα

− σ

4

∫ ŷ

0

∫ x̂

s
|G1(α, s)− G2(α, s)|dαds

∣∣∣∣
≤ σ

2

∫ ŷ

0

∫ x̂

0
|G1(τ, s)− G2(α, s)|dsdα

=
σ

2

∫ ŷ

0

∫ x̂

0
|G1(τ, s)− G2(α, s)|dsdα

=
σ

2

∫ ŷ

0

∫ x̂

0
eâseb̂τe−âse−b̂τ |G1(τ, s)− G2(α, s)|dsdα

≤ σ

2

∫ ŷ

0

∫ x̂

0
eâseb̂αe−âse−b̂αdsdα‖G1(x̂, ŷ)− G1(x̂, ŷ)‖

≤ σ

2âb̂
eâseb̂α‖G1(x̂, ŷ)− G1(x̂, ŷ)‖.

(47)

Hence, we have e−âx̂e−b̂ŷ|TG1(x̂, ŷ)−TG2(x̂, ŷ)| ≤ σ
2âb̂
‖G1(x̂, ŷ)− G1(x̂, ŷ)‖, then

‖TG1(x̂, ŷ)−TG2(x̂, ŷ)‖ ≤ σ

2âb̂
‖G1(x̂, ŷ)− G1(x̂, ŷ)‖.

By contraction mapping principle, unique solution G(·, ·) ∈ C([0, 2]× [0, 1]) for (44)
holds.

Remark 1. From the above proof, we cannot explain that there are unique solutions ai(·) ∈
C2([0, 1]), bi(·) ∈ C2([0, ξi]) for Equation (12). However, ai(ξ)bi(s) is unique, which indicates
transformation (3) is unique.

Next, we show that transformation (3) is reversible. Assume that inverse backstepping
transformation is governed by

Γ(ξ, t) = P(ξ, t) +
Z
∑

i=1
di(ξ)

∫ ξi

0
hi(s)P(s, t)ds +

∫ ξ

0
k(ξ, s)P(s, t)ds. (48)

Analogously, from (6) to (7), we get

Γξξ(ξ, t) = Pξξ(ξ, t) +
Z
∑

i=1
d′′i (ξ)

∫ ξi

0
hi(s)Γ(s, t)ds− d

dξ
(k(ξ, ξ))Γ(ξ, t)

+k(ξ, ξ)Γξ(ξ, t)− kξ(ξ, ξ)Γξ(ξ, t)−
∫ ξ

0
kξξ(ξ, s)Γ(s, t)ds,

(49)
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and

Γt(ξ, t) = Pt(ξ, t) + σP(ξ, t) +
Z
∑

i=1
di(ξ)

∫ ξi

0
hi(s)(Pss(s, t) + σP(s, t))ds

−
∫ ξ

0
k(ξ, s)(Pss(s, t) + σP(s, t))ds

= Pt(ξ, t) + σP(ξ, t) +
Z
∑

i=1
di(ξ)

[
hi(ξi)Pξ(ξi, t)− h′i(ξi)Pξ(ξi, t)

−h′i(0)Pξ(0, t) +
∫ ξi

0
h′′i (s)P(s, t)ds + σ

∫ ξi

0
hi(s)P(s, t)ds

]
+k(ξ, ξ)Pξ(ξ, t)− ks(ξ, ξ)P(ξ, t) + ks(ξ, 0)P(0, t)

+
∫ ξ

0
kss(ξ, s)P(s, t)ds + σ

∫ ξ

0
k(ξ, s)P(s, t)ds.

(50)

Owing to Γt(ξ, t) = Γξξ(ξ, t) + ∑Z
i=1 τiΓ(ξi, t), one has

Z
∑

i=1

[∫ ξi

0
(−d′′i (ξ)hi(s) + di(ξ)h′′i (s) + σdi(ξ)hi(s)−

Z
∑

j=1
τidj(ξi)hj(s)

−τik(ξi, s))P(s, t)ds
]
+
∫ ξ

0
(kss(ξ, s)− kξξ(ξ, s) + σk(ξ, s))P(s, t)ds

−(2 d
dξ

k(ξ, ξ)− σ)P(ξ, t) +
Z
∑

i=1
P(ξi)(τi + di(ξ)h′i(ξi)) + (

Z
∑

i=1
di(ξ)h′i(0)

+ks(ξ, 0))P(0, t) +
Z
∑

i=1
di(ξ)hi(ξi)Pξ(ξi, t) = 0.

(51)

Additionally,

Γξ(0, t) = Pξ(0, t)−
Z
∑

i=1
d′(0)

∫ ξi

0
hi(s)P(s, t)ds− k(0, 0)P(0, t). (52)

By (51) and (52) , we get

kss(ξ, s)− kξξ(ξ, s) + σk(ξ, s) = 0,

2
d

dξ
k(ξ, ξ)− σ = 0,

Z
∑

i=1
di(ξ)h′i(0) + ks(ξ, 0) = 0,

τi + di(ξ)h′i(ξi) = 0,
−d′′i (ξ)hi(s) + di(ξ)h′′i (s) + σdi(ξ)hi(s)

−τik(ξi, s)−
Z
∑

j=1
τidj(ξi)hj(s) = 0,

hi(ξi) = d′(0) = 0.

(53)

Lemma 2. Under assumption (11), for (53), there exist classical solutions di(·) ∈ C2([0, 1]),
hi(·) ∈ C2([0, ξi]), and k(·, ·) ∈ C2(Λ) .

Proof of Lemma 2. Similarly, let (53) split into the following

τi + di(ξ)h′i(ξi) = 0,
−d′′i (ξ)hi(s) + di(ξ)h′′i (s) + σdi(ξ)hi(s)

−τik(ξi, s)−
Z
∑

j=1
τidj(ξi)hj(s) = 0,

hi(ξi) = d′(0) = 0,

(54)
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and 
kss(ξ, s)− kξξ(ξ, s) + σk(ξ, s) = 0,

2
d

dξ
k(ξ, ξ)− σ = 0,

Z
∑

i=1
di(ξ)h′i(0) + ks(ξ, 0) = 0.

(55)

Firstly, we prove that for (54), there exist classical solutions di(·) ∈ C2([0, 1]),
hi(·) ∈ C2([0, ξi]). By τi + di(ξ)h′i(ξi) = 0 in (54), one has

di(ξ) = −
τi

h′i(ξi)
. (56)

Combining the first equation of (54) and (56), we have{
h′′i (s) + (σ− τ)hi(s) + h′i(ξi)k(ξi, s) = 0,
hi(ξi) = 0.

(57)

We discuss (57) by the following three cases.
Case 1: τ > σ
By (57), we have

hi(s) =h′i(ξi)

[
1

2
√

τ − σ
(e
√

τ−σs−
√

τ−σξi − e−
√

τ−σs+
√

τ−σξi )

− e
√

τ−σs

2
√

τ − σ

∫ s

ξi

e−
√

τ−σsk(ξi, s)ds

+
e−
√

τ−σs

2
√

τ − σ

∫ s

ξi

e
√

τ−σsk(ξi, s)ds
]

.

(58)

Then, it gives

hi(s)di(ξ) =− τi

[
1

2
√

τ − σ
(e
√

τ−σs−
√

τ−σξi − e−
√

τ−σs+
√

τ−σξi )

− e
√

τ−σs

2
√

τ − σ

∫ s

ξi

e−
√

τ−σsk(ξi, s)ds

+
e−
√

τ−σs

2
√

τ − σ

∫ s

ξi

e
√

τ−σsk(ξi, s)ds
]

.

(59)

Case 2: τ = σ
According to (57), we obtain

hi(s) = h′i(ξi)(s− ξi)− h′i(ξi)
∫ s

ξi

∫ y

ξi

k(ξi, x)dxdy. (60)

So we have

hi(s)di(ξ) = −τi(s− ξi) + τi

∫ s

ξi

∫ y

ξi

k(ξi, x)dxdy. (61)

Case 3: τ < σ
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Similarly, by (57), one has

hi(s) =h′i(ξi)
1√

σ− τ

[
(− sin(

√
σ− τξi) cos(

√
σ− τs)

+ sin(
√

σ− τs) cos(
√

σ− τξi))

+ cos(
√

σ− τs)
∫ s

xi

sin(
√

σ− τx)k(ξi, x)dx

− sin(
√

σ− τs)
∫ s

xi

cos(
√

σ− τx)k(ξi, x)dx
]

.

(62)

Then,

hi(s)di(ξ) =− τi
1√

σ− τ

[
(− sin(

√
σ− τξi) cos(

√
σ− τs)

+ sin(
√

σ− τs) cos(
√

σ− τξi))

+ cos(
√

σ− τs)
∫ s

xi

sin(
√

σ− τx)k(ξi, x)dx

− sin(
√

σ− τs)
∫ s

xi

cos(
√

σ− τx)k(ξi, x)dx
]

.

(63)

Now, we prove that there exists classical solution k(·, ·) ∈ C2(Λ) for (55). We firstly
show that kernel k(ξ, s) is independent of hi(s). In fact, we obtain h′i(xi) = h′i(0) from Case

1–Case 3. For convenience, let A =
h′i(0)
h′i(ξi)

. By (58), we get

h′i(0) =h′i(ξi)

[
1
2
(e−
√

τ−σξi + e
√

τ−σξi )

+
1
2

∫ ξi

0
e−
√

τ−σxk(ξi, x)dx

+
1
2

∫ xi

0
e
√

τ−σxk(ξi, x)dx
]

.

(64)

Define 
f (ξ) =

∫ ξi

0
e−
√

τ−σxk(ξi, x)dx,

g(ξ) =
∫ ξi

0
e
√

τ−σxk(ξi, x)dx.
(65)

Then, combining (55), we obtain{
f ′′(x)− τ f (ξ) = αe−

√
τ−σx − ks(ξ, 0)−

√
τ − σk(ξ, 0),

f (0) = 0, f ′(0) = 0,
(66)

and {
g′′(x)− τg(ξ) = αe−

√
τ−σξ − ks(ξ, 0) +

√
τ − σk(ξ, 0),

g(0) = 0, g′(0) = 0.
(67)

Let F(ξ) = f (ξ) + g(ξ), one has

F(ξ) =
2ks(ξ, 0)

τ
k(ξ, s)− e

√
τ−σξi − e−

√
τ−σξi . (68)

Then,

A =
ks(ξ, 0)

τ
. (69)
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Hence, A is any constant in this case, moreover, ks(ξ, 0) = Aτ. By (60), we have

h′i(0) = h′i(ξi) + h′i(ξi)
∫ ξi

0
k(ξi, x)dx. (70)

By (66) with τ = σ, we can get
∫ ξi

0 k(ξi, x)dx = 0. So A = 1 holds by (66). By
Equation (63), there is

h′i(0) = h′i(ξi)

[
cos(
√

σ− τξi) +
1

σ− τ

∫ ξi

0
cos(
√

σ− τx)k(ξi, x)dx
]

. (71)

Let

γ(ξ) =
∫ ξ

0
cos(
√

σ− τx)k(ξ, x)dx. (72)

From (72), one has{
γ′′(ξ)− τγ(ξ) = σ cos(

√
σ− τξ)− ks(ξ, 0),

γ(0) = 0, γ′(0) = 0.
(73)

There is a unique solution in (73), which is written by

γ(ξ) = − cos(
√

σ− τξ) +
ks(ξ, 0)

τ
. (74)

Combining (72) and (74) at ξ = ξi, i = 1, 2, ..., Z, we obtain

γ(ξi) =
∫ ξi

0
cos(
√

σ− τx)k(ξi, x)dx = − cos(
√

σ− τξi) +
ks(ξi, 0)

τ
. (75)

Then, substituting (75) into (71), we have

A =
ks(ξ, 0)

τ
. (76)

We can see A is also any constant in this case.
Next, we prove that A = 1. Substituting (48) into (3), we make the kernels satisfying

ai(ξ)

[
bi(s) +

∫ ξi

s
bi(x)k(x, s)dx

]
= hi(s)

[
di(ξ)−

Z

∑
j=1

aj(ξ)
∫ ξi

0
bj(s)dj(s)ds−

∫ ξ

0
c(ξ, x)dj(s)dx

]
,

(77)

and

k(ξ, s) = c(ξ, s) +
∫ ξ

s
c(ξ, x)k(x, s)dx. (78)

From (77), we have

h′i(0)
h′i(ξi)

=
1

b′i(ξi)
(b′i(0) +

∫ ξi

0
bi(x)ks(x, 0)dx). (79)

For simplifying calculation, we only give the result under case τ > 0. In fact, case
τ > 0 is the same as τ < 0. Substituting bi(s) = ζi(sinh(λs)− tanh(λξi) cosh(λs)) of (28)
into (79), one has A = 1.

Finally, we can see that (55) is the same as (13) except for the last equations. However,
it can be transformed into form “H(ξ)” for the last of Equation (55). So the remaining steps
are similar from (43) to (47).
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Remark 2. Similar to Lemma 1, from the above proof, we cannot explain that there are unique
solutions di(·) ∈ C2([0, 1]), hi(·) ∈ C2([0, ξi]) for Equation (54). However, di(ξ)hi(s) is unique,
which indicates transformation (48) is unique.

We design the state feedback controller

Û(t) =
Z
∑

i=1
ai(1)

∫ ξi

0
bi(s)Γ(s, t)ds +

∫ 1

0
c(1, s)Γ(s, t)ds. (80)

The closed-loop system (2) corresponding with controller (80) is described by

Γt(ξ, t) = Γξξ(ξ, t) +
Z
∑

i=1
τiΓ(ξi, t), 0 < ξ < 1, t ∈ (0,+∞),

Γξ(0, t) = 0, t ≥ 0,

Γ(1, t) =
Z
∑

i=1
ai(1)

∫ ξi

0
bi(s)Γ(s, t)ds +

∫ 1

0
c(1, s)Γ(s, t)ds, t ≥ 0,

Γ(ξ, 0) = Γ0(ξ), 0 ≤ ξ ≤ 1.

(81)

The system (81) is considered in the state space H = L2(0, 1). We define system
operator A : D(A )→H for closed-loop system (81)

A φ = φ′′ +
Z
∑

i=1
τiφ(ξi, t), ∀φ ∈ A ,

A = {φ ∈H 2(0, 1) | A φ ∈H , φ(1) =
Z
∑

i=1
ai(1)

∫ ξi

0
bi(s)Γ(s, t)ds

+
∫ 1

0
c(1, s)Γ(s, t)ds}.

(82)

Theorem 1. Under assumption (11), for each initial value Γ0(·) ∈H , the closed-loop system (81)
admits a unique solution Γ(·, t) ∈ C([0,+∞); H ). Moreover, the closed-loop system generates an
exponentially stable C0-semigroup such that

‖eA t‖ ≤ LA e−ρt, t ≥ 0, (83)

where LA and ρ two positive constants.

Proof. Define linear operator A0: D(A0)→H for the target system (4){
A0 ϕ = ϕ′′ + σϕ; ∀ϕ ∈ D(A0),
D(A0) = {ϕ ∈H 2(0, 1) | ϕ′(0) = 0, ϕ(1) = 0}. (84)

For any ω ∈ D(A0),

Re〈A0 ϕ, ϕ〉 = Re〈ϕ′′ + σϕ, ϕ〉 ≤ −‖ϕ′‖2 + σ‖ϕ‖2 ≤ 0,

which means A0 is dissipative on H . On the other hand, for any ϕ̂ ∈H , A0(ϕ) = ϕ̂, by
ϕ̂ = ϕ′′ + σϕ, we have

ϕ(ξ) =
−1
σ

[
coth(

√
−σ)

∫ 1

0
cosh(

√
−σs)ϕ̂(s)ds−

∫ 1

0
sinh(

√
−σs)ϕ̂(s)ds

]
cosh(

√
−σξ) +

1√
−σ

sinh(
√
−σξ)

∫ ξ

0
cosh(

√
−σs)ϕ̂(s)ds

− 1√
−σ

cosh(
√
−σξ)

∫ ξ

0
sinh(

√
−σs)ϕ̂(s)ds,
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which shows that A −1
0 ∈ L (H ) is compact on H . By the Lumer Phillips theorem [38],

A0 generates a compressed C0-semigroup eA0 on H . That is to say,

||eA0t|| ≤ LA0 e−δt,

where LA0 are δ two positive constants. Define Lyapunov function

E(t) =
1
2

∫ 1

0
P2(ξ, t)dξ. (85)

Find the derivative of (85), and the calculus of the derivatives gives as the following
quantity

Ė(t) = −
∫ 1

0
P2

ξ dt + 2σE(t) ≤ 2σE(t),

which means
E(t) ≤ e2σtE(0).

Thus, the target system (4) is exponentially stable. Based on the transformation (3)
and reversible transformation (48), we define the following bounded invertible operator
K : H →H

K φ = ϕ,

ϕ = φ−
Z
∑

i=1
ai(1)

∫ ξi

0
bi(s)Γ(s, t)ds−

∫ 1

0
c(1, s)Γ(s, t)ds,

K −1 ϕ = φ,

φ = ϕ +
Z
∑

i=1
di(1)

∫ ξi

0
hi(s)P(s, t)ds +

∫ 1

0
k(1, s)P(s, t)ds.

(86)

So there exists a bounded reversible operator K satisfying A = K −1A0K . Hence,
the operator A yields an exponentially stable C0-semigroup on H , that is,

eA t = K −1eA0tK .

The Theorem 1 holds by the exponential stability of eA0t.

3. Output Feedback Controller Design

In this section, an observer-based output feedback control for system (2) is designed
as follows 

Γ̂t(ξ, t) = Γ̂ξξ(ξ, t) +
Z
∑

i=1
τiΓ(ξi, t), 0 < ξ < 1, t ∈ (0,+∞),

Γ̂(1, t) = Û(t), t ≥ 0,
Γ̂ξ(0, t) = 0, t ≥ 0,
Γ̂(ξ, 0) = Γ̂0(ξ), 0 ≤ ξ ≤ 1.

(87)

Let Γ̄ = Γ̂− Γ. Error system Γ̄ is given by
Γ̄t(ξ, t) = Γ̄ξξ(ξ, t), 0 < ξ < 1, t ∈ (0,+∞),
Γ̄(1, t) = 0, t ≥ 0,
Γ̄ξ(0, t) = 0, t ≥ 0,
Γ̄(ξ, 0) = Γ̄0.

(88)

It is well known that system (88) yields a unique exponentially stable solution in state
space H . We propose the following output feedback controller

Û(t) =
Z
∑

i=1
ai(1)

∫ xi

0
bi(s)Γ̂(s, t)ds +

∫ 1

0
c(1, s)Γ̂(s, t)ds, (89)
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where ai, bi and c are determined by (10).
The closed-loop system composed of system (2) and system (87) under observer (89),

is governed by

Γt(ξ, t) = Γξξ(ξ, t) +
Z
∑

i=1
τiΓ(ξi, t), 0 < ξ < 1, t ∈ (0,+∞),

Γ(1, t) =
Z
∑

i=1
ai(1)

∫ xi

0
bi(s)Γ̂(s, t)ds +

∫ 1

0
c(1, s)Γ̂(s, t)ds, t ≥ 0,

Γξ(0, t) = 0, t ≥ 0,

Γ̂t(ξ, t) = Γ̂ξξ(ξ, t) +
Z
∑

i=1
τiΓ(ξi, t), 0 < ξ < 1, t ∈ (0,+∞),

Γ̂(1, t) =
Z
∑

i=1
ai(1)

∫ ξi

0
bi(s)Γ̂(s, t)ds +

∫ 1

0
c(1, s)Γ̂(s, t)ds, t ≥ 0,

Γ̂ξ(0, t) = 0, t ≥ 0,
Γ(ξ, 0) = Γ0(ξ), Γ̂(ξ, 0) = Γ̂0(ξ), 0 ≤ ξ ≤ 1.

(90)

Theorem 2. Under assumption (11), for any initial datum (Γ(·, 0), Γ̂(·, 0))> ∈ H ×H , the
closed-loop system (90) admits a unique solution (Γ(·, t), Γ̂(·, t))> ∈ C([0,+∞); H ×H ).
Moreover, the closed-loop system (90) is exponentially stable, that is, for any t > 0, there exist
L ˆA > 0, δ̂ > 0 such that

‖(Γ(·, t), Γ̂(·, t))‖H ≤ L ˆA e−δ̂t‖(Γ(·, 0), Γ̂(·, 0))‖H . (91)

Proof. To prove our result, we aim to transform system (90) into an equivalent one. Then,
we divide the equivalent system into two sub-systems which are proved to be well-posed
and exponentially stable.

Owing to [
Γ̂
Γ̄

]
=

[
0 1
−1 1

][
Γ
Γ̂

]
, (92)

the closed-loop system (90) is equivalent to PDEs as follows

Γ̂t(ξ, t) = Γ̂ξξ(ξ, t) +
Z
∑

i=1
τiΓ(ξi, t), x ∈ (0, 1), t ∈ (0,+∞),

Γ̂(1, t) =
Z
∑

i=1
ai(1)

∫ ξi

0
bi(s)Γ̂(s, t)ds +

∫ 1

0
c(1, s)Γ̂(s, t)ds, t ≥ 0,

Γ̂ξ(0, t) = 0, t ≥ 0,
Γ̄t(ξ, t) = Γ̄ξξ(ξ, t), ξ ∈ (0, 1), t ∈ (0,+∞),
Γ̄(1, t) = 0, t ≥ 0,
Γ̄ξ(0, t) = 0, t ≥ 0,
Γ̂(ξ, 0) = Γ̂0(ξ), Γ̄(ξ, 0) = Γ̄0, 0 ≤ ξ ≤ 1.

(93)

Next, we prove that system(93) is exponentially stable. Notice that “Γ̄-part” of
system (93) is special case at σ = 0 for system (4), so “Γ̄-part” has a unique solution
which is exponentially stable. Now, we only need to prove that “Γ̂-part” of system (93) has
a unique solution and is exponentially stable. Similar to transformation (3), we give the
following transformation

p(ξ, t) = Γ̂(ξ, t)−
Z
∑

i=1
ai(ξ)

∫ ξi

0
bi(s)Γ̂(s, t)ds−

∫ ξ

0
c(ξ, s)Γ̂(s, t)ds, (94)
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under which “Γ̂-part” of system (93) is mapped to

pt(ξ, t) = pξξ(ξ, t) + σp(ξ, t) +
Z
∑

i=1
Γ̄(ξi, t)

[
− 1

+
Z
∑

j=1
aj(ξ)

∫ ξ j

0
bj(s)ds +

∫ 1

0
c(ξ, s)ds

]
, ξ ∈ (0, 1), t ∈ (0,+∞),

p(1, t) = 0, t ≥ 0,
pξ(0, t) = 0, t ≥ 0.

(95)

Now, we are in a position to prove that system (95) admits a unique solution and is
exponentially stable. Based on (84), the solution of system (95) can be obtained as

p(·, t) = eA0t p(·, 0) +
∫ t

0
eA0(t−s)Fp(ξ)

Z
∑

i=1
Γ̄(ξi, s)ds, (96)

where Fp(ξ) = −1 + ∑Z
j=1 aj(ξ)

∫ ξ j
0 bj(s)ds +

∫ 1
0 c(ξ, s)ds. Define the following energy

function E1(t) of system (88)

E1(t) =
1
2

∫ 1

0
(Γ̄(ξ, t))2dξ. (97)

A simple computation of derivative of (97) with respect to t shows that

Ė1(t) = −
∫ 1

0
(Γ̄ξ(ξ, t))2dξ ≤ −

∫ 1

0
(Γ̄(ξ, t))2dξ = −2E1(t), (98)

which means
E1(t) ≤ e−2tE1(0).

For any t2 > t1 > 0, one has∫ t2

t1

| − Γ̄ξ(ξ, s)|2ds =
∫ t2

t1

|
∫ 1

ξ
Γ̄ξ(ξ, s)dξ|2ds

≤
∫ t2

t1

|
∫ 1

0
Γ̄ξ(ξ, s)dξ|2ds

≤
∫ t2

t1

∫ 1

0
|Γ̄ξ(ξ, s)|2dξds

= −
∫ t2

t1

Ė1(s)ds

= E1(t1)− E1(t2)

≤ E1(0)(e−2δ1t1 + e−2δ1t2).

(99)

Owing to the proof process of Theorem 1, there is

‖eA0t p(·, 0)‖ ≤ ‖eA0t‖‖p(·, 0)‖ ≤ LA0 e−δt‖p(·, 0)‖. (100)

Simultaneously,

‖
∫ t

0
eA0(t−s)Fp(ξ)

Z
∑

i=1
Γ̄(ξi, s)ds‖ ≤

∫ t

0
‖eA0(t−s)‖‖Fp(ξ)‖‖

Z
∑

i=1
Γ̄(ξi, s)ds‖. (101)
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Additionally, from (99), for any i = 1, 2, ..., Z, we obtain(see [39])

∫ t

0
eδ1(t−s)|Γ̄(ξi, s)|ds =

∫ t
2

0
e−δ1(t−s)|Γ̄(ξi, s)|ds +

∫ t

t
2

e−δ1(t−s)|Γ̄(ξi, s)|ds

=
∫ t

2
0 e−δ1ε|Γ̄(ξi, t− ε)|dε +

∫ t

t
2

e−δ1(t−s)|Γ̄(ξi, s)|ds

≤ [
∫ t

2

0
e−2δ1εdε]

1
2 [
∫ t

2

0
|Γ̄(ξi, t− ε)|2dε]

1
2

+[
∫ t

t
2

e−2δ1(t−s)ds]
1
2 [
∫ t

t
2

|Γ̄(ξi, s)|2ds]
1
2

≤ 1
2δ1

e−2δ1t[
∫ ∞

0
|Γ̄(ξi, ε)|2dε] +

1
2δ1

√
E1(0)e

−δ1t
4 .

(102)

Then, it can be obtained that∫ t

0
eδ1(t−s)|

Z
∑

i=1
Γ̄(ξi, s)|ds ≤ Ze−2δ1t

2δ1
[
∫ ∞

0
|Γ̄(ξi, ε)|2dε] +

Z
2δ1

e
−δ1t

4
√

E1(0). (103)

Therefore, system (95) is exponentially stable, which means Theorem 2 holds.

4. Simulation Results

In this section, some simulation results are presented to explain the effectiveness of
proposed controller by the finite element method. For the open-loop system of (2) and the
closed-loop system (90), we choose parameters

τ1 = 1, τ2 = −1, τ3 = 3;
ξ1 = 0.3, ξ2 = 0.4, ξ3 = 0.5;
σ = 0,

and initial values Γ0 = 6 sin(πξ), Γ̂0 = 4 cos(πξ).
Figure 1 displays the solution of open-loop system (2). We can see that the solution of

open-loop system (2) is growing fast and is unstable. Figure 2a,b display the solutions of “Γ-
part” and “Γ̂-part” of closed-loop system (90), respectively. Trajectory of the controller (89)
is displayed in Figure 3. So it is clearly seen that the solution of closed-loop system (90)
decays to zero and is stable under controller (89).

Figure 1. Solution of open-loop system (2).
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(a) (b)

Figure 2. Solution of closed-loop system (90): (a) “Γ-part” of system (90); (b) “Γ̂-part” of system (90).
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(t
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Figure 3. Trajectory of the controller (89).

5. Concluding Remarks

The paper is presented the boundary output feedback stabilization of a heat equa-
tion with multi-point heat source mainly by backstepping approach. We first design the
state feedback controller based on backstepping transformation. The exponential stabil-
ity of closed-loop system is guaranteed. Secondly, the observer-based output feedback
controller is constructed for infinite-dimensional systems. Furthermore, we prove that
closed-loop system is exponentially stable. In the future, we will consider the result without
assumption (11) and the case that τi is a variable function or a more general continuous
function hold.
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