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Abstract: In this work, our goal is to present and discuss similarity techniques for ordered observa-
tions between time series and non-time dependent data. The purpose of the study was to measure
whether ordered observations of data sets are displayed at or close to, the same time points for the
case of time series and with the same or similar frequencies for the case of non-time dependent data
sets. A simultaneous time pairing and comparison can be achieved effectively via indices, advanced
indices and the associated index matrices based on statistical functions of ordered observations.
Hence, in this work we review some previously defined standard indices and propose new advanced
dimensionless indices and the associated index matrices which are both easily interpreted and pro-
vide efficient comparison of the series involved. Furthermore, the proposed methodology allows
the analysis of data with different units of measurement as the indices presented are dimensionless.
The applicability of the proposed methodology is explored through an epidemiological data set on
influenza-like-illness (ILI). We finally provide a thorough discussion on all parameters involved in
the proposed indices for practical purposes along with examples.

Keywords: similarity measures; time series; dimensionless indices; index matrices; multivariate
indices

1. Introduction

In time series analysis, in addition to trend, seasonality, periodicity and stationarity,
another concept of great significance is the similarity between two or more time series.
The similarity between two or more time series focuses on the study of similarities and
common changes between the series. Different techniques have been proposed over the
years for measuring similarities like simple mathematical measures (see, e.g., ([1,2]), data
transformations (see, e.g., [3]), algorithmic methods (see, e.g., [4]) or measures of divergence
(see. e.g., [5–8]). Finally, measures of dissimilarity have been thoroughly studied (see,
e.g., [9–11]).

Data series and, in particular, time series analysis involve, among others, pattern
matching, anomaly identification and frequent pattern detection. All these tasks are directly
associated with time series similarity techniques, some of which are mentioned above. We
observe frequently that data series similarity is visualization-dependent. Indeed, it is quite
common, for instance, that neuroscientists manually inspect the electroengephalogram
(EEG) data of their patients, using visual analysis tools, so as to identify patterns of
interest (see, e.g., [12]). Surveillance systems also rely on visual tools to monitor incidence
data and compare the disease behavior in various regions for the purpose of predicting
or hopefully preventing an epidemic. Finally, physiologic time-series databases often
require finding similar temporal patterns of physiological responses resembling those of a
prototype case (see, e.g., [13]). Detection of these complex physiological patterns not only
enables demarcation of important clinical events but can also elucidate hidden dynamical
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structures that may be suggestive of disease processes. In all such cases, it is important
to have similarity techniques, which in conjunction with visual analysis tools will enable
analysts to complete their tasks quickly and accurately.

In this work, our goal is to present and discuss similarity techniques for ordered
observations between time series and non-time dependent data. The coupling analysis
can be obtained via a direct method ([1]) which is a simple squared measure of distance
between two series.

Since we are focusing on similarities between two series, the comparison can be
achieved more effectively via indices, advanced indices and the associated (index) matrices.
More specifically, as we can see below, the comparison concentrates on the extreme parts
of the series and the index quantifies the degree of similarity between these specific parts
of the series. In general, such indices referred in this work as MKN indices, compare the
simultaneous time pairing of the K maximum and/or minimum values (denoted by the
parameter M) between N time series based on some statistical function denoted by µ. A
standard MKN index was formally defined in [1]. Applications of such indices include the
measuring of displacements, rotations, moments and forces for two types of floating wind
turbines ([14]) and epidemiological data ([15]).

For details on the origin of these ideas, one may refer to a review paper by Makris et
al. ([16]).

In this work, we present the evolution of the idea of the similarity indices and propose
advanced dimensionless indices and the associated index matrices which are both easily
interpreted and provide more effective comparison of the series involved than the one
achieved by the standard indices previously proposed. The rest of the paper has been orga-
nized as follows. In Section 2, we present some preliminary definitions and review results
about standard indices illustrated by an example. A generalization to the multivariate case
is also presented. In Section 3, we propose new advanced dimensionless indices and index
matrices for efficient comparison of time series. A discussion on the related concept of
cointegration is also included. In Section 4, a dataset on influenza-like-illness (ILI) cases
in Greece is examined for illustrating the usefullness and the importance of the proposed
methodology. In Section 5, we discuss the parameter µ and present an application of the
indices in economics and marketing defining a novel elasticity. In Section 6, we study the
effect of the parameter M and in Section 7, the indices are defined for non-time depen-
dent data and a modified direct measure for this type of data is also discussed. Finally,
in Section 8, we discuss the parameter N and its possible reduction in size. The paper
concludes with some general comments and conclusions.

2. Preliminary Definitions

Most of the quantities defined in this work depend on three parameters which are
denoted by M, K and N where

• M takes two values M = Min ≡ 0 and M = Max ≡ 1 depending on whether we are
dealing with the maximum or the minimum values of a series or a data set,

• K represents the number of ordered observations used for the analysis, K ∈ {1, . . . , n}
where n is the sample size and

• N is the number of time series or data sets involved in the analysis with N ≥ 2.

A class of dimensionless indices was recently defined by Makris and Vonta [1] that
depends on a basic statistical characteristic µ like the mean (average), the variance, cor-
relation, etc. of K ordered (largest or smallest) observations of a series. More specifically,
a basic characteristic of K ordered observations is compared (through division) with a
basic characteristic of all (total) observations involved in the analysis, with the latter not
necessarily the same as the one used for the K ordered observations. The indices are
considered to be dimensionless since we divide the same type of quantities (the same
statistical characteristic). Even if two different characteristics are used, the index will
remain dimensionless as long as the characteristics are in the same unit of measurement
(e.g., mean for the numerator and standard deviation for the denominator or vice versa).
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For the definition, consider two time series i and j and let ti(k) the time point at which
the kth ordered observation of the series i has occurred. Having available K time points
corresponding to the K largest (or smallest) ordered observations of a time series i, which
plays the role of the basis for the index evaluation, we proceed and calculate the basic
statistical characteristic µ of the K observations of the second series j conditionally on the
time points that the baseline time series i displays its K largest (or smallest) values.

Definition 1 (see [1]). For two time series i and j, the µj|i index is defined by

µMK2
j|i =


µMaxK2

j|i =
µmaxK

j|i
µT

j|j
= µ(j|ti{n−K+1} )

µ(jTotal)

µMinK2
j|i =

µminK
j|i
µT

j|j
= µ(j|ti{K} )

µ(jTotal)

(1)

where the notation ti{K} denotes the K time points where the series i displays its K smaller values
and ti{n−K+1} the K time points where the series i displays its K larger values. In addition, jTotal is
the notation for all the observations of the time series j.

Observe that the above index can be obtained using as a basis the series j, resulting
in the index µMK2

i|j . Naturally the index is not symmetric since the time points of the K
ordered observations of one series do not necessarily occur at the exact same time points of
the other series. Extending the idea of the above index one could also evaluate the index
for the same series obtaining the indices µMK2

i|i and µMK2
j|j . The combination of the above

indices can be represented in a 2× 2 matrix which, in general, is denoted by [µ]MKN where
µ represents the statistical function (characteristic) to be used in the analysis. The matrix
created below refers to the case of the K smallest observations of the baseline series i when
the basic characteristic µ is the standard deviation (Std):

[Std]MinK2 =

StdMinK2
1|1 StdMinK2

2|1

StdMinK2
1|2 StdMinK2

2|2


From the matrix above, observe that the diagonal elements refer to the baseline time

series itself while the off-diagonal elements refer to one time series conditionally on the
ordered time points of the other. Thus, the evaluation of the statistical characteristic (the
standard deviation here) for each row k of the matrix is done conditionally on the time
series k.

Remark 1. Note that in some instances the numerator will be always smaller or larger than the
denominator. Indeed, if the mean (average) is used as the statistical characteristic then for the
diagonal elements, the numerator will be always smaller than the denominator if the K smallest
observations are used and larger if the K largest observations are used. In addition, in the case
where the maximum values are studied, it is valid that the values of the indices that appear in the
diagonal elements are most often larger than the off-diagonal elements in the same row and this
is because the values in the same row are calculated conditionally on the time points where the
diagonal elements are defined (see Example 1 below). In the case where the minimum values are
examined, the elements in the diagonal most often take the minimum values in each row due to the
same conditional argument.

The general form of the matrix for a general statistical characteristic µ for N time series
given in [1] is of dimension N × N and is presented as follows:
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[µ]MKN =

µMKN
1|1 µMKN

2|1 . . . µMKN
N|1

. . . . . . . . . . . .
µMKN

1|N µMKN
2|N . . . µMKN

N|N

 (2)

Remark 2. In the case where the maximum values are studied (M = Max) and there are ties, for
example when a value, say i(k), is tied with other values within the range under investigation, e.g.,
i(n), . . . , i(n−K+1), then we select among those time points the one that maximizes the index µMKN

in the remaining N − 1 time series because this way, we are being more conservative in terms of
the similarity between the N series. Notice that the time point that provides the maximum index
for each of the remaining N − 1 time series might be different for each series. This remark will be
become clear in the following example. Analogously, for M = Min we will be choosing each time
the time point that minimizes the index in the remaining N − 1 time series.

Example 1. For a better understanding of the previous Remarks, consider three time series A, B
and C consisting of 20 values (see Figure 1):
A = (8, 9, 7, 19, 6, 7, 4, 7, 5, 6, 19, 10, 9, 21, 8, 9, 5, 9, 11, 12),
B = (4, 5, 6, 11, 4, 5, 3, 4, 10, 4, 6, 5, 4, 12, 5, 4, 3, 6, 5, 7) and
C = (13, 14, 15, 12, 13, 14, 8, 13, 7, 13, 25, 14, 13, 30, 14, 13, 15, 15, 14, 16).

Figure 1. Time series A, B and C.

For the time series A, we observe that A(20) = 21 and occurs at tA(20) = 14 while

A(19) = 19 and appears twice in the series at time points 4 and 11, namely tA(19) = 4 & 11.
Obviously, for K = 1 and for the characteristic µ being the average (AV), µMax13

A|A = 2.20

while for K = 2, µMax23
A|A = 2.09. Observe now that for K = 2, µMax23

B|A = 2.04 if the 4th

observation of the series B is used and µMax23
B|A = 1.59 if the 11th observation of the series

B is used. Similarly, we get µMax23
C|A = 1.44 if the 4th observation of the series C is used.

Instead, if the 11th observation is used in the calculation then µMax23
C|A = 1.89. The results

are summarized in Table 1 for K = 1, 2, 3.

Table 1. The µMaxK3 indices for three time series A, B and C.

K t µMaxK3
A|A µMaxK3

B|A µMaxK3
C|A

1 tA(20) = 14 2.20 2.12 2.06

2 tA(20) = 14 & tA(19) = 4 2.09 2.04 1.44

2 tA(20) = 14 & tA(19) = 11 2.09 1.59 1.89

3 tA(20) = 14 & tA(19) = 4 & tA(18) = 11 2.06 1.71 1.53
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Based on Remark 2, the first row of the matrix [AV]Max23 is given as(
2.09 2.04 1.89

)
.

Analogously, we will deal now with the case of the minimum values of the time series.
For the time series A, we observe that A(1) = 4 and occurs at tA(1) = 7 while A(2) = 5 and

appears twice in the series at time points 9 and 17, namely tA(2) = 9 & 17. Obviously, for
K = 1 and for the characteristic µ being the average (AV), µMin13

A|A = 0.42 while for K = 2,

µMin23
A|A = 0.47. Observe now that for K = 2, µMin23

B|A = 1.15 if the 9th observation of the

series B is used and µMin23
B|A = 0.53 if the 17th observation of the series B is used. Similarly

we get µMin23
C|A = 0.52 if the 9th observation of the series C is used. Instead, if the 17th

observation is used in the calculation then µMin23
C|A = 0.79. The results are summarized in

Table 2 for K = 1, 2, 3.

Table 2. The µMinK3 indices for three time series A, B and C.

K t µMinK3
A|A µMinK3

B|A µMinK3
C|A

1 tA(1) = 7 0.42 0.53 0.55

2 tA(1) = 7 & tA(2) = 9 0.47 1.15 0.52

2 tA(1) = 7 & tA(2) = 17 0.47 0.53 0.79

3 tA(1) = 7 & tA(2) = 9 & tA(3) = 17 0.49 0.94 0.69

Based on Remark 2, the first row of the matrix [AV]Min23 is given as(
0.47 0.53 0.52

)
.

2.1. Multivariate Indices

For a better comparison between time series, a multivariate index could be used
based not on a single but rather on multiple statistical characteristics. Thus, µ could be
increased in dimension in order to include more than one statistical functions and be a
vector of higher dimension. For example, for the control of four statistical characteristics
simultaneously (i.e., average [AV], standard deviation [Std], coefficient of variation [CV]
and covariance [Cov], the index µ can have dimension four creating a generalized matrix
of dimension N × N × 4 defined in (3) with µ = [AV, Std, CV, Cov]:

[AV, Std, CV, Cov]MKN
1|1 [AV, Std, CV, Cov]MKN

2|1 ... [AV, Std, CV, Cov]MKN
N|1

... ... ... ...
[AV, Std, CV, Cov]MKN

1|N [AV, Std, CV, Cov]MKN
2|N ... [AV, Std, CV, Cov]MKN

N|N

. (3)

We should stress that each element of the matrix (3) is itself a vector of dimension
4, which contains the values of the four indices that correspond to the four statistical
measures, for the case under consideration.

Multivariate indices could become extremely useful in stochastic ordering and ma-
jorization both of which play a key role in many areas of statistics as for example, in relia-
bility theory and engineering. For instance, in regard to majorization, an n−dimensional

vector x is said to be majorized by another n−dimensional vector y, denoted by x
m
≤ y if

j

∑
i=1

x(i) ≤
j

∑
i=1

y(i), j = 1, . . . , n− 1 and
n

∑
i=1

x(i) =
n

∑
i=1

y(i).
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where x(i) and y(i) refer to the ordered elements of the two vectors. We use the term strict
majorization if in the above we use strict inequality. Furthermore, if the inequality holds
for all js including the case j = n, we are dealing with weak majorization. For details about
majorization please see [17].

Before closing the section and moving to the next one where some new advanced
indices will be proposed, it is important to mention that the indices discussed in this work
are applicable to both stationary and non-stationary processes. Although the series to be
compared are expected to be of the same nature and as such the comparison is meaningful,
in general, the use of stationary or non-stationary data and whether a differencing should
be applied, is a challenging problem within the framework of similarity measures, that goes
beyond the scope of the present work and is left as an open problem for a future project.

3. Advanced Dimensionless Indices

For better and efficient comparison between series, we propose in this section two
new advanced index matrices that depend on the same three parameters M, K and N as
the ones in Definition 1. The first index matrix is obtained when each element of each row
in matrix (2) is divided by the diagonal element of the same row. The resulting new index
matrix is denoted by [µ1]

MKN . As expected, this matrix has all its diagonal elements equal
to one while all off-diagonal elements take non-zero values.

In a similar way, we propose the 2nd index matrix [µ2]
MKN where each element of

each column in matrix (2) is divided by the diagonal element of the same column. Both
index matrices can be viewed as similarity measures between the series involved. The
proposed index matrix measures are given below:

[µ1]
MKN =


µMKN

1|1
µMKN

1|1

µMKN
2|1

µMKN
1|1

...
µMKN

N|1
µMKN

1|1
... ... ... ...

µMKN
1|N

µMKN
N|N

µMKN
2|N

µMKN
N|N

...
µMKN

N|N
µMKN

N|N

 (4)

and

[µ2]
MKN =


µMKN

1|1
µMKN

1|1

µMKN
2|1

µMKN
2|2

...
µMKN

N|1
µMKN

N|N
... ... ... ...

µMKN
1|N

µMKN
1|1

µMKN
2|N

µMKN
2|2

...
µMKN

N|N
µMKN

N|N

 (5)

The above proposed advanced MKN indices (index matrices) are dimensionless while
their interpretation is much more clear than that of the standard indices presented in
Definition 1 because they provide efficient pairwise comparison in pairs between series
and could be considered as the percentage of similarity between two time series i and j. For
instance, if for the matrix µ1 the value of the (1, 2)-element µ1(1,2)

= 0.75, this means that
the second time series is 75% similar as compared with the first series, or in other words,
the index of the second series is 75% the value of the corresponding index of the first series,
when the calculations are conditional on the time points where the first time series achieves
its K maximum or minimum values. The conclusion is the same if this index turns out to
be equal to 1.75.

The comparison through the matrix measure [µ1] is indirect and becomes more appar-
ent when the values of one time series are multiples of the values of the other, because the

element µMKN
1(i,j)

=
µMKN

j|i
µMKN

i|i
and therefore the statistical function µ based on the values of the

time series j in the numerator at the time points of maximum (or minimum) values of the
time series i is compared against the statistical function µ based on the values of the time
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series i in the denominator. That is, the closer the indices in value to the proportionality pa-
rameter (or its inverse depending on the case) between two time series, the more confident
we are about their similarity in terms of the occurrence of their maximum (or equivalently
minimum) values.

In the case of the matrix index [µ2], observe that the comparison is direct as the index

µMKN
2(i,j)

=
µMKN

j|i
µMKN

j|j
and therefore the statistical function µ of the time series j in the numerator

is based on the time points of maximum (or minimum) values of the time series i and
compared against the statistical function µ based on itself in the denominator.

Thus, if for two time series 1 and 2 the series 2 has an index value µMaxKN
2(1,2)

= 1, then
this means that the second time series presents its K maximum values at the exact same
time points as the first time series, and vice versa, if time series 1 has index µMaxKN

2(2,1)
= 1,

then the first series presents its maximum values at the same time points as the second
series. In fact, in general, we have:

µMaxKN
2(i,j)

= 1⇔µMaxKN
2(j,i)

= 1.

Although this work is devoted to similarity, we cannot overlook the fact that it is,
at the same time, interrelated to the concepts of causality and cointegration which are
briefly mentioned below for the sake of completeness. The notion of causality is rather
common in economic time series although causality issues could also be found in reliability
or engineering. The difficulties of establishing a causal relationship between economic
variables led Granger ([18]) to develop the economic concept of causality known as Granger
Causality. On the other hand, the concept of cointegration was established later and
discussed thoroughly in [19] where the associated statistical inference including tests used
to identify the long-term relationships between two or more series, was explored. The
phenomenon is also quite common since, in general, economic theory forces certain pairs
of series staying close to each other and moving alongside. For testing cointegration, one
could use the Engle–Granger Augmented Dickey–Fuller test for cointegration (EG-ADF
test, [19]) based on the classical Dickey–Fuller test, if two series are involved or the Johansen
test if more than two series are involved ([20]). For further reading, the interested reader is
referred to [21,22] and to the interesting review article by Hubrich et al. [23].

In Microeconomics, another concept closely related to the above is the concept of
elasticity which is a measure of the sensitivity of a variable to a change in another variable.
For instance, although the prices of some goods are inelastic, this is not always the case.
This issue, which is of great importance in marketing, is explored through an example in
the following section where a special price elasticity index is presented and discussed.

In the sections that follow, the quantities that play a key role in the analysis of the
proposed index matrices of this section, namely the function (or characteristic) µ and the
parameters M, K and N, will be thoroughly explored.

4. An Epidemiological Application

In this section, we examine time series on influenza-like-illness (ILI) rates for the
purpose of identifying differences between (geographical) regions as well as differences
between each region-rate and the country-rate. Usually, the purpose of such analyses is the
identification of areas for which further monitoring and actions for reducing the spread of
a disease are needed.

The data have been drawn from the Sentinel system of the Hellenic National Pub-
lic Health Organization (EODY) for the period 2004–2014. From the data entered into
the system by the physicians, the ILI rate is calculated weekly as the number of ILI
cases per 1000 visits (1000*cases/visits), a rate that displays the spread of the disease to
the community.

In this work, we will present and compare six time series which report the weekly
ILI-rate for the time period of the 28th week of 2004 up to and including the 39th week of
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2014 in four geographical regions in which Greece is divided. The time series which report
the ILI-rate for the four regions will be denoted by ILI-1 to ILI-4. For the entire country,
two series are available, the overall ILI-rate as a weighted average of ILI-1 through ILI-4
(based on appropriate weights depending on the population size per region), denoted by
ILI and the ILI-total that reports the total number of cases per 1000 visits (1000*cases/visits).
Through the matrix [µ]MKN given in (2), we compare the similarity of the six time series
based the µMKN indices where the parameter µ is the average, N = 6, M = Max and the
parameter K takes two values, K = 10 (Table 3) and K = 20 (Table 4).

The µMKN
(1|1) element of the matrix in Table 3 is equal to 8.6051 which means that the

average of the 10 largest observations of the series ILI is about 8.6 times bigger than the
average of all ILI observations. Observe that the average of the 10 observations of each of
the series ILI-1, ILI-2 and ILI-3 (8.2869, 8.4281, 8.4036) evaluated conditionally on the time
points where the country-rate displays its 10 largest observations, are very similar but the
same is not true for the 4th country region where a much lower similarity value is observed
(7.6249). This implies that the rate of the disease in that specific region (Aegean Sea islands
and Crete) is not as high as in all other regions. The time series ILI-total displays an even
smaller similarity (7.36) with the time series ILI, a fact that is probably attributed to the
better definition of the ILI-rate as a weighted average of ILI1−ILI4.

From the results of Table 4 (for K = 20), we observe that all diagonal elements as well
as almost all off-diagonal elements are reduced in size as compared to the elements of
Table 3. Observe that as K increases, the diagonal elements approach 1.

Table 3. Matrix [AV]Max,10,6.

ILI ILI-Total ILI-1 ILI-2 ILI-3 ILI-4

ILI 8.6051 7.3692 8.2869 8.4281 8.4036 7.6249

ILI-total 4.2769 4.8284 4.2289 4.4310 4.5389 3.9419

ILI-1 9.7851 7.2102 10.1454 9.1647 9.1323 7.6818

ILI-2 8.0030 7.3993 7.5104 8.5804 7.7295 6.7081

ILI-3 8.9237 7.2820 8.3950 8.5294 9.4920 7.2900

ILI-4 7.0564 6.3136 6.5287 6.3817 7.0027 8.3180

Table 4. Matrix [AV]Max,20,6.

ILI ILI-Total ILI-1 ILI-2 ILI-3 ILI-4

ILI 7.5738 7.2367 7.2424 7.1852 7.1960 6.6832

ILI-total 4.3343 4.4772 4.0483 4.2104 4.1190 3.7095

ILI-1 7.8491 7.4434 8.3022 7.2914 7.2111 6.6973

ILI-2 7.4669 7.1833 6.9574 7.7247 6.8522 6.1845

ILI-3 7.4722 7.4135 6.6209 7.0901 7.8949 5.9697

ILI-4 6.6155 6.0219 6.0356 5.9091 6.4685 7.3293

The matrix [µ1]
MKN given in (4) for µ1 being the average and K = 10 is presented in

Table 5. According to the definition of [µ1]
MKN , the diagonal elements are all equal to 1.

Observe that the first three geographical regions display very similar behavior as compared
with the country-rate (ILI) with values at least equal to 96%, while the fourth region is
much less similar (88% similarity). In Table 6 for K = 20, we observe that the differences
between all time series are alleviated and the indices approach 1. The fourth geographical
region constitutes an exception since it reaches about 88% similarity as compared with the
whole country and even less similarity as compared with the other three regions.
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Table 5. Matrix [µ1]
Max,10,6.

ILI ILI-Total ILI-1 ILI-2 ILI-3 ILI-4

ILI 1 0.8564 0.9630 0.9794 0.9766 0.8861

ILI-total 0.8858 1 0.8758 0.9177 0.9401 0.8164

ILI-1 0.9645 0.7107 1 0.9033 0.9001 0.7572

ILI-2 0.9327 0.8624 0.8753 1 0.9008 0.7818

ILI-3 0.9401 0.7672 0.8844 0.8986 1 0.7680

ILI-4 0.8483 0.7590 0.7849 0.7672 0.8419 1

Table 6. Matrix [µ1]
Max,20,6.

ILI ILI-Total ILI-1 ILI-2 ILI-3 ILI-4

ILI 1 0.9555 0.9562 0.9487 0.9501 0.8824

ILI-total 0.9681 1 0.9042 0.9404 0.9199 0.8285

ILI-1 0.9454 0.8966 1 0.8782 0.8686 0.8067

ILI-2 0.966 0.9299 0.9007 1 0.8871 0.8006

ILI-3 0.9465 0.9390 0.8386 0.8980 1 0.7561

ILI-4 0.9026 0.8216 0.8235 0.8063 0.8825 1

Epidemiological differences accurately identified among regional series are useful to
health officials since they provide a useful tool for identifying, as early as possible, disease
outbreaks in certain regions and is beneficial to the society in general, for early detection,
prevention and spread of extreme, possibly harmful, events.

5. The Function µ

The measure µ which refers to the ratio of the statistical functions considered is an
important factor in the analysis of the data through the indices.

In previous sections µ was chosen to be a basic statistical function like the average, the
standard deviation, the coefficient of variation, etc. In this section, we deal with the case
where µ is a differential (backshift) operator denoted by d referring to the first differences
of a time series. We denote by dK the differential based on first differences between the
K maximum (or minimum) values of a time series. Thus, dK is a K − 1 dimensional
vector defined by (i(n) − i(n−1), i(n−1) − i(n−2), . . . , i(n−K+2) − i(n−K+1)) while dT denotes
the operator applied to all (total) values of the time series and is of dimension n− 1. The
corresponding index is defined below.

dMKN =
dK

dT (6)

with an alternative version being defined as

µ ∗ dMKN =
dK

µT (7)

where the denominator relies on any statistical function including any ordered observation.
Indeed, in (7) with M = Max and K = 2, the operator d can be the classical first difference
between the two largest observations for the series i, namely i(n) − i(n−1) divided or
weighted by either the mean of all observations (see (8)) or the maximum of the two largest
values (see (9)) or the minimum among the two largest observations (see (10)). Observe
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that the last one is nothing but the well-known relative or percentage change. The relevant
expressions are provided below:

µ ∗ da,Max21 =
d2

µT =
i(n) − i(n−1)

AV(i1, . . . , in)
(8)

µ ∗ db,Max21 =
d2

max
=

i(n) − i(n−1)

i(n)
(9)

and

µ ∗ dc,Max21 =
d2

min
=

i(n) − i(n−1)

i(n−1)
(10)

In contrast to the above definitions, the index (11) calculates the ratio of two indices.
More specifically it calculates the ratio of the percentage change of the time series i to the
percentage change of the time series j conditionally on the time points the time series i
displays its K maximum (or minimum) values. A comment would be that the function
dT could be equal to 1 or any other constant. Its existence is to achieve weighting and to
ensure the dimensionless property of the indices.

We define the new index as

µ ∗ dp,Max22
ij =

µ
c,[Max22]
i|i

µ
c,[Max22]
j|i

=

i(n)−i(n−1)
i(n−1)

j(t
i(n) )−j(t

i(n−1) )

j(t
i(n−1) )

(11)

Example 2. For the case of the index defined in (11), and for the case of three maximum values of
the time series i, (i.e., K = 3) a vector of dimension 2 can be derived in the numerator of the index
and therefore the index is actually the 2-dimensional vector

µ ∗ dc,Max31 =
d3

min
=

(
i(n) − i(n−1)

i(n−1)
,

i(n−1) − i(n−2)

i(n−2)

)
(12)

while for M = Min and K = 4 we have

µ ∗ dc,Min41 =
d4

min
=

(
i(2) − i(1)

i(1)
,

i(3) − i(2)
i(2)

,
i(4) − i(3)

i(3)

)
. (13)

Example 3. (Price elasticity of demand). The index defined in (11) has many applications, mainly
in economics and marketing. For example, if the time series i in (11) is the demand for a good, say
A, measured in Q units and if the time series j reports the corresponding price values, say P, of the
good, then the resulting index is a measure of the response of the maximum (or minimum) quantity
demanded of a good, relative to the change in its price, with all other factors considered constant (see
index (15) below). In other words, the index expresses the percentage change of the maximum (or
minimum) quantity demanded of the good to the percentage change of its price, known as the price
elasticity of the maximum (or minimum) demand denoted by E(D,Q,Max), i.e., a novel form of the
known price elasticity of demand ED ([24]). For the classical case with K = 2 for two series, we
have

µ ∗ dp,Max22
ij =

Q(n)−Q(n−1)
Q(n−1)

P(t
Q(n) )−P(t

Q(n−1) )

P(t
Q(n−1) )

(14)

which can also be denoted by

µ ∗ dp,Max22
ij =

∆Q(n)

∆P|Q(n)
≡ E(P|Q)(n)

(15)
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where ∆Q(n) stands for the ratio
Q(n)−Q(n−1)

Q(n−1)
. Note that in the general K case we have

µ ∗ dp,MaxKN
PQ =

(
∆Q(n)

∆P|Q(n)
, . . . ,

∆Q(n−K+2)

∆P|Q(n−K+2)

)
≡
(

E(P|Q)(n)
, . . . , E(P|Q)(n−K+2)

)
(16)

It should be noted that if the price is replaced by income then the resulting index will be a novel
elasticity of demand for income while if the price is substituted by demand for a complementary
good (relative to good A) the resulting index will be a novel cross-elasticity of demand.

6. Parameter M and Cross-Correlation Indices

The values of the parameter M, one involving the minimum (M = 0) and one the
maximum (M = 1) values of a data set, can be used in combination, connecting maximum
and minimum values between time series simultaneously. This proposal, that is, to connect
the occurrence of maximum and minimum values between time series, is inspired by
variables that are complementary, such as the prices of two substitute goods (such as the
matches and the lighter), where, as it is well-known when the price of a good rises the price
of the substitute good goes down, with the result that at the time points one good receives
its maximum prices, the other (namely the substitute good) receives its minimum prices.

For two time series i and j, when we are interested in comparing the information from
the maximum and the minimum values simultaneously, we propose the definition below
with the notation µM[Cross]KN for the new index. More specifically this definition entails two
parts, one for the case i = j and one for the case i 6= j. In the first case, the K values of the
time series j used to calculate the function µ are the time points where the K maximum
values of the time series j are presented, whereas for the case i 6= j the K values of the time
series j used in order to calculate the function µ are the time points where the K minimum
values of the time series i are presented. In this way, a cross-coupling of the time points of
occurrence of the maximum and minimum values of the time series i and j is established.
Obviously, another definition arises when we replace in the above the maximum values
with the minimum values and vice versa.

µM[Cross]KN
j|i =


µM[Cross]KN

j|i =
µmaxKN

j|j
µT

j|j
= µ(j|tj{n−K+1} )

µ(jTotal)
f or i = j

µM[Cross]KN
j|i =

µminKN
j|i
µT

j|i
= µ(j|ti{K} )

µ(jTotal)
f or i 6= j

(17)

Based on the definition (17), a matrix defined in (18) can be created and denoted
by [µ]M

[Cross]KN . Through this matrix and based on the values of each of N time series in
general, it can be seen whether a cross relationship of maximum and minimum values
between them exists.

[µ]M
[Cross]KN =


µM[Cross]KN

1|1 µM[Cross]KN
2|1 ... µM[Cross]KN

N|1
... ... ... ...

µM[Cross]KN
1|N µM[Cross]KN

2|N ... µM[Cross]KN
N|N

 (18)

As an example, consider two time series 1 and 2. If the cell value µM[Cross]KN
1|1 (which

is calculated based on the K maximum values of the time series 1) is the same or close
to the value of the cell µM[Cross]KN

2|1 (which is calculated on the values of the time series 2
conditionally on the time points where the K minimum values of the time series 1 are
presented), then this means that wherever the time series 1 presents its K maximum values,
the time series 2 will present its K minimum values. Alternatively, if the value of the cell
µM[Cross]KN

1|2 is very close to the value of the cell µM[Cross]KN
2|2 , then this means that wherever

the time series 2 presents its maximum values, the time series 1 presents its minimum
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values. One of the aforementioned results does not imply the second and vice versa, but
when both are valid then there will be a time cross correlation between the two time series
in terms of their K maximum and minimum values.

Caution is required for the possibility of spurious correlation. Since the cross-correlation
mentioned earlier may be due to the presence of a hidden, confounding factor, certain
measures should be taken for investigating such a possibility. It should be noted that
spurious correlation is not uncommon and it is surfaced not only in economics and finance
but also in behavioral sciences.

7. Non-Time Dependent Data
7.1. Parameter K

The parameter K is the most important parameter for the indices µMKN , as it is the
one that affects the condition under which the calculations of the numerator of the indices
is being done. In this section, a change in the calculation condition will be presented and
various cases will be discussed through examples.

In the previous sections, the indices were defined for time-dependent data (time
series). In this section, the indices will be defined for data sets which are independent
of time. The parameters µ, M and N remain unchanged as in the previous sections in
terms of definitions, while the parameter K in the setting of this section corresponds to
the frequency of occurrence of K distinct maximum or minimum values (as opposed to
correspondence with the time points of occurrence of K maximum or minimum values).

Consider two random variables X and Y. A random sample (X1, . . . , Xn′ ) is drawn
from the same distribution as X and similarly a random sample (Y1, . . . , Yn′ ) is drawn from
the distribution of Y. The ordered realization samples are defined as (X(1), . . . , X(n′ )) and
(Y(1), . . . , Y(n′ )), respectively.

Furthermore, consider the ordered realizations of distinct values in each data set,
that is,

(x(1) < x(2) < . . . < x(n1)
) and (y(1) < y(2) < . . . < y(n2)

)

and let the corresponding frequencies of occurrence for each ordered distinct value of X
and Y be ( f X

(1), . . . , f X
(n1)

) and ( f Y
(1), . . . , f Y

(n2)
), respectively.

We define indices between the two variables X ≡ i and Y ≡ j as follows

µMK[ f ]2
j|i =


µMaxK[ f ]2

j|i =
µMaxK[ f ]2

j|i
µT

j|j
= µ(j| f

i{ni−K+1} )
µ(jTotal)

µMinK[ f ]2
j|i =

µMinK[ f ]2
j|i

µT
j|j

= µ(j| f i{K} )
µ(jTotal)

(19)

which for N series can be summarized in a N × N matrix as follows

[µ]MK[ f ]N =


µMK[ f ]N

1|1 µMK[ f ]N
2|1 ... µMK[ f ]N

N|1
... ... ... ...

µMK[ f ]N
1|N µMK[ f ]N

2|N ... µMK[ f ]N
N|N

 (20)

We should point out here based on the above, that

• The realizations of the random variables X = i and Y = j are of the same length but
not necessarily with the same number of distinct ordered values.

• f i{ni−K+1} = { f i
(ni)

, . . . , f i
(ni−K+1)} is the notation for the collection of frequencies with

which the K distinct maximum observations of the variable i occur and similarly
f i{K} = { f i

(1), . . . , f i
(K)} is the notation for the collection of frequencies with which the

K distinct minimum observations of the variable i occur.



Mathematics 2021, 9, 840 13 of 16

• If, for example, the function µ is the average, the index AVMaxK( f )N
(j/i) is calculated as a

ratio where in the numerator we have the average of so many maximum values of the
data set j as the sum of the frequencies in the set f i{ni−K+1} dictate. That is, we take the
average of f i

(ni)
+ . . . + f i

(ni−K+1) maximum values of the data set j, and we divide by
the average of all the values of the data set j.

• Through the indices AVMaxK( f )N
(j/i) , we evaluate whether two data sets have their K

maximum distinct values occurring with the same frequencies. A similar result holds
for M = Min.

• Let the notation X{n1−K+1} stand for the collection of distinct ordered times of the
data set X of the form {x(n1)

, . . . , x(n1−K+1)}. We consider a similar notation for the
data set Y.

An example will be presented below for a better understanding of the concepts.

Example 4. Let K = 2, M = Max and N = 2 and focus on the frequencies of occurrence of the
first two distinct maximum values of a realization of the random variable X. Let also a realization of
a random variable Y. Suppose that x(n1)

appears f X
(n1)

times and x(n1−1) appears f X
(n1−1) times, so

that the calculation of an index of X based on itself, with the parameter µ defined as the average
(AV), is as follows:

µMaxK[ f ]=2,2
X|X =

AVK[ f ]=2
X|X

AVT
X|X

=
AV(X{n1−1}| f

i{n1−1})

AV(XTotal)
=

f X
(n1)
·x(n1)

+ f X
(n1−1) ·x(n1−1)

f X
(n1)

+ f X
(n1−1)

X̄
.

For the evaluation of the index for Y calculated based on the frequencies of the K maximum
distinct observations of X, we have

µMaxK[ f ]=2,2
Y|X =

AVK[ f ]=2
Y|X

AVT
Y|X

=
AV(Y| f i{n1−1})

AV(YTotal)
=

∑n
′

k=n′ −( f X
(n1)

+ f X
(n1−1))+1

Y(k)

f X
(n1)

+ f X
(n1−1)

Ȳ
.

Observe that for K > 2 the above expressions take the form

µMaxK[ f ] ,2
X|X =

AVK[ f ]

X|X
AVT

X|X
=

AV(X{n1−K+1}| f
i{n1−K+1})

AV(XTotal)
=

∑
n1
k=n1−K+1 f X

(k) ·x(k)
∑

n1
k=n1−K+1 f X

(k)

X̄
.

and

µMaxK[ f ] ,2
Y|X =

AVK[ f ]

Y|X
AVT

Y|X
=

AV(Y| f i{n1−K+1})

AV(YTotal)
=

∑n
′

k=n′ −
(

∑
n1
l=n1−K+1 f X

(l)

)
+1

Y(k)

∑
n1
k=n1−K+1 f X

(k)

Ȳ
.

The above quantities are naturally rewritten in case the roles of X and Y are reversed so that
the indices are calculated conditionally on the frequencies of K distinct maximum values of the
random variable Y.

7.2. Direct Measure Based on Frequencies

In this subsection, we propose and briefly discuss a special measure V defined for
the purpose of comparing directly the frequencies of K distinct maximum (or minimum)
values of two data sets that do not depend on time. The definition of the V measure applied
to frequencies is based on the definition of the direct measure V of Makris and Vonta ([1])
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defined for time points. For two non-dependent data sets which are realizations of size n
of two random variables X and Y, we have

VMK[ f ]N
X,Y =


VMinK[ f ]N

X,Y = 1
K ∑K

r=1

(
f X
(r) − f Y

(r)

)2

VMaxK[ f ]N
X,Y = 1

K ∑n
r=n−K+1

(
f X
(r) − f Y

(r)

)2
(21)

where f Q
(k) is the frequency of the kth distinct ordered observation of the random variable

Q. Observe that
VMK[ f ]N

X,Y ≥ 0,

VMK[ f ]N
X,Y = 0, if X = Y

and
VMK[ f ]N

X,Y = VMK[ f ]N
Y,X .

The above properties imply that the measure VMK[ f ]N
X,Y is a proper statistical measure.

8. Parameter N

The parameter N stands for the number of data sets (which may be time dependent or
not) that are analyzed, thus creating in each case an index matrix of dimension N × N.

In case many data sets are to be analyzed, namely the value of N is large and therefore
the Matrix [µ] is difficult to deal with, there is a need to discard some data sets that are not
important to be present in the analysis (e.g., when the values of the µ indicators are very
small). We introduce therefore an additional parameter ν and we have a new notation N[ν]

which displays the dependence of N on ν. Our purpose for doing that is to discard from
the final analysis those data sets that are not significant based on a criterion.

The criterion for keeping a data set is its closeness to another data set which can be
measured by a typical distance, e.g., the Euclidean distance or the absolute value based on
the indices µMKN

(i,j) . The selection of the data sets that remain in the matrix is performed in
two steps. In the first step, the ν smallest absolute differences for j = 1, . . . , N,

dMKN
(i,j) = |µMKN

(i,i) − µMKN
(i,j) |

are kept in each row with the result being that the initial N × N matrix becomes an N × ν
matrix. Let us, for simplicity, denote these differences by {di1, di2, . . . , diν} for each row
i = 1, . . . , N. In the second stage, the absolute differences on each row are summed up as
si = ∑ν

λ=1 diλ, i = 1, . . . , N.
Finally, the ν smallest of those sums are selected and the corresponding rows are kept

into the matrix (so the N × ν matrix reduces to the final ν× ν matrix) and gives rise to a
matrix denoted by [µ]MKN[ν]

. To be more explicit, the resulting matrix contains the rows
with row sum

{s(1), s(2), . . . , s(ν)} (22)

9. Conclusions

In this work, a method of data analysis was presented based on the indices µMKN ,
which are calculated as a ratio of two statistical functions. We have studied the parameters
involved in the indices and how these parameters affect the indices. More specifically, we
examined the parameter (function) µ with various examples and an application to eco-
nomics and marketing on price elasticity of demands. We have also studied the parameter
M and how we can use the maximum and minimum values simultaneously to perform
a cross-correlation of times. Furthermore, we examined the reduction of the size of the
parameter N by discussing how some data sets that are not significant (important) to be
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present in the analysis, can be discarded (e.g., when the values of their indices are very big),
namely, we reduce the size of the parameter N and thus the number of the data sets kept in
the analysis. Finally, the indices for data independent of time (namely random variables)
are discussed through explanatory examples.

The proposed indices can be used as powerful statistical tools in similarity matching
problems involving pattern matching, anomaly identification and/or frequent pattern
detection. The applicability of the proposed methodology goes beyond neuroscience or
physiology and epidemiology all of which have been mentioned in this work. Indeed,
such techniques can play a vital role in various scientific fields like financial mathematics,
economics, management, geosciences, stylometry or music retreaval. Such examples
include among many others, the identification of companies with similar growth patterns,
products with similar selling patterns and seismic waves not similar in spotting geological
irregularities. Finally, music retreaval and plagiarism in literature and music will greatly
benefit from the implementation of the proposed methodology.
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