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Abstract

:

Let G be a group.    D p   ( G )  =  ⋂  H ≤ G    N G   (  H ′   ( p )  )    is defined and, the properties of    D p   ( G )    are investigated. It is proved that    D p   ( G )  = P  [ A ]   , where   P = D ( P )   is the Sylow p-subgroup and   A = N ( A )   is a Hall   p ′  -subgroup of    D p   ( G )   , respectively. Furthermore, it is proved in a group G that (1)    D p   ( G )  = 1   if and only if    C G   (  G ′   ( p )  )  = 1  ; (2)    O  p ′    (  D p   ( G )  )  ≤  Z ∞   (  O p   ( G )  )    and (3) if   Z (  G ′   ( p )  ) = 1  , then    C G   (  G ′   ( p )  )  =  D p   ( G )   .
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1. Introduction


All groups considered in this paper are finite. The reader is referred to [1] for notation and terminology. Recall that the norm   N ( G )   of a group G, introduced by Baer in [2], is the intersection of the normalizers of all subgroups of G (cf. [2]). A closely related subgroup was introduced and studied by Wielandt in [3]. It is defined as the intersection of the normalizers of all subnormal subgroups of G and called the Wielandt subgroup of G (see [4]).



Some generalisations of Baer and Wielandt’s subgroups were considered and a lot of interesting results have been obtained (see [5,6,7,8,9]). The idea behind these investigations is to consider a set S of subgroups of G and consider the intersection of the normalizers of all subgroups in S.



If S is the set of the commutators of all subgroups of a group G, the intersection   D ( G )   of their normalisers was studied in [5].



Our main goal in this paper is to study a local version of   D ( G )  : the intersection of the normalizers of the residuals of all subgroups of G with respect to the class of all abelian p-groups, p a prime.



Given a prime p and a group G, let    G ′   ( p )    denote the residual of G with respect to the class of all abelian p-groups; it is know that    G ′   ( p )    is the unique smallest normal subgroup of G for which the corresponding factor group is an abelian p-group. There is, of course, a relationship between    G ′   ( p )    and    O p   ( G )    which is the unique smallest normal subgroup of G whose factor group is a (not necessarily abelian) p-group. In fact,    O p   ( G )  ≤  G ′   ( p )    and    G ′   ( p )  /  O p   ( G )    is the commutator subgroup of   G /  O p   ( G )   . Therefore    G ′   ( p )  =  O p   ( G )   G ′   . This subgroup plays an important role in group theory because it is the kernel of the transfer homomorphism from G to   P /  P ′   , where P is a Sylow p-subgroup of G ([10], 10.1.5).



Definition 1.

Let p a prime. The norm    D p   ( G )    of the abelian p-group-residuals is the subgroup


    D p   ( G )  =  ⋂  H ≤ G    N G   (  H ′   ( p )  )  .   













Note that    D p   ( G )  ≠ D  ( G )    in general (it is enough to consider the alternating group of deree 4).



We prove:



Theorem 1.

Let G be a group. Then    D p   ( G )  = P  [ A ]   , where P is the Sylow p-subgroup and A is a Hall   p ′  -subgroup of    D p   ( G )   . Moreover,   P = D ( P )   and   A = N ( A )  . In particular,    ∩  p | | G |    D p   ( G )  = N  ( G )   .





Theorem 2.

Let G be a group. Then




	(1) 

	
   D p   ( G )  = 1   if and only if    C G   (  G ′   ( p )  )  = 1  ;




	(2) 

	
   O  p ′    (  D p   ( G )  )  ≤  Z ∞   (  O p   ( G )  )   ;




	(3) 

	
if   Z (  G ′   ( p )  ) = 1  , then    C G   (  G ′   ( p )  )  =  D p   ( G )   .












2. Elementary Properties on    D p   ( G )   


In this section, we list some elementary properties of    D p   ( G )    that will be used in the proofs of the main results.



Lemma 1.

Let G be a group. Then




	 (1)

	
If   H ≤ G  , then    H ′   ( p )  ≤  G ′   ( p )   ;




	 (2)

	
if   N ⊴ G   and   N ≤ H ≤ G  , then     ( H / N )  ′   ( p )  =  H ′   ( p )  N / N  ;




	 (3)

	
   G ′   ( p )    is nilpotent if and only if     ( G / Φ  ( G )  )  ′   ( p )    is nilpotent;




	 (4)

	
if   G = M N  , where   M ≤ G   and   N ⊴ G  , then    G ′   ( p )  ≤  M ′   ( p )  N  . In particular,     ( M × N )  ′   ( p )  =  M ′   ( p )  ×  N ′   ( p )   .











Proof. 






	(1)

	
Let   H ≤ G  . Since   H /  ( H ∩  O p   ( G )  )  ≅ H  O p   ( G )  /  O p   ( G )  ≤ G /  O p   ( G )   ,   H / ( H ∩  O p   ( G )  )   is a p-group and so    H ′   ( p )  =  H ′   O p   ( H )  ≤  H ′   ( H ∩  O p   ( G )  )  ≤  G ′   O p   ( G )  =  G ′   ( p )   .




	(2)

	
Let    O p   ( H / N )  = R / N  .    O p   ( H )  N ≤ R   Since    ( H / N )  /  O p   ( H / N )  =  ( H / N )  /  ( R / N )  ≅ H / R  . Conversely,   H /  O p    ( H )  N ≅ ( H /   O p   ( H )  /  (  O p   ( H )  N /  O p   ( H )  )    and   H /  O p   ( H )  N ≅  ( H / N )  /  (  O p   ( H )  N / N )   , so   R / N ≤  O p   ( H )  N / N  . Hence    O p   ( H / N )  =  O p   ( H )  N / N  . Then     ( H / N )  ′   ( p )  =   ( H / N )  ′   O p   ( H / N )   



  =  (  H ′  N / N )   (  O p   ( H )  N / N )  =  H ′   O p   ( H )  N / N =  H ′   ( p )  N / N  .




	(3)

	
Clearly,    G ′   ( p )    is nilpotent if and only if    G ′   ( p )  Φ  ( G )  / Φ  ( G )  ≅  G ′   ( p )  /  G ′   ( p )  ∩ Φ  ( G )    is nilpotent. So (3) follows from (2).




	(4)

	
By    G ′  ≤  M ′  N   and    O p   ( G )  ≤  O p   ( M )  N  , we get    G ′   ( p )  ≤  M ′   ( p )  N  . If   M ⊴ G  , then    G ′   ( p )  ≤  N ′   ( p )  M  . Thus    G ′   ( p )  ≤  M ′   ( p )  N ∩  N ′   ( p )  M =  M ′   ( p )   ( N ∩  N ′   ( p )  M )  =  M ′   ( p )   N ′   ( p )   ( M ∩ N )   . Hence, if   G = M × N  , then    G ′   ( p )  =  M ′   ( p )  ×  N ′   ( p )    by (1).









□





Proposition 1.

Let G be a group. Then




	 (1)

	
  N  ( G )   C G   (  G ′   ( p )  )  ≤  D p   ( G )  ≤ D  ( G )   ;




	 (2)

	
   D p   ( G )    is soluble;




	 (3)

	
if   M ≤ G  , then   M ∩  D p   ( G )  ≤  D p   ( M )   ;




	 (4)

	
if   N ⊴ G  , then    D p   ( G )  N / N ≤  D p   ( G / N )   ;




	 (5)

	
if   G = A × B  , where   A , B ≤ G   and   ( | A | , | B | ) = 1  , then    D p   ( G )  =  D p   ( A )  ×  D p   ( B )   .











Proof. 






	(1)

	
Since    H ′  ≤  H ′   ( p )  ≤ H   and    H ′  ,  H ′   ( p )    are characteristic subgroups of H, we have    N G   (  H ′  )  ≥  N G   (  H ′   ( p )  )  ≥  N G   ( H )   , that is,   N  ( G )  ≤  D p   ( G )  ≤ D  ( G )   .



If   x ∈  C G   (  G ′   ( p )  )   , then x is a normalizer of    H ′   ( p )    for all   H ≤ G   by Lemma 1 (1). Hence   x ∈  D p   ( G )    and so,    C G   (   G ′   ( p )  ≤  D p   ( G )   .




	(2)

	
It follows from (1) and   D ( G )   is soluble in ([9], Proposition 2.4).




	(3)

	
It is easy to see that   M ∩  D p   ( G )  ≤  ⋂  H ≤ M    N M   (  H ′   ( p )  )  =  D p   ( M )   .




	(4)

	
If   x ∈  D p   ( G )   , then   x N   normalizes     ( H / N )  ′   ( p )    for all   H / N ≤ G / N   by Lemma 1 (2). Hence    D p   ( G )  N / N ≤  D p   ( G / N )   .




	(5)

	
  H = ( H ∩ A ) × ( H ∩ B )   for all   H ≤ G   by the hypotheses. It follows from Lemma 1 (4) that    H ′   ( p )  =   ( H ∩ A )  ′   ( p )  ×   ( H ∩ B )  ′   ( p )   . Hence


      N G   (  H ′   ( p )  )     =     N G   (   ( H ∩ A )  ′   ( p )  )  ∩  N G   (   ( H ∩ B )  ′   ( p )  )        =     (  N A   (   ( H ∩ A )  ′   ( p )  )  × B )  ∩  ( A ×  N B   (   ( H ∩ B )  ′   ( p )  )  )        =     N A   (   ( H ∩ A )  ′   ( p )  )  ×  N B   (   ( H ∩ B )  ′   ( p )  )  ,     








which implies that    D p   ( G )  =  D p   ( A )  ×  D p   ( B )   .









□





Proposition 2.

Let   G ≠ 1   be a group. Then




	 (1)

	
If    G ′   ( p )    is nilpotent, then    D p   ( G )  > 1  .




	 (2)

	
If    G ′   ( p )    is a minimal normal subgroup of G and    D p   ( G )    is nilpotent, then    C G   (  G ′   ( p )  )  =  D p   ( G )   .











Proof. 






	(1)

	
If    G ′   ( p )  = 1  , then G is abelian p-group and   G =  D p   ( G )  > 1  . If    G ′   ( p )  ≠ 1  , then    D p   ( G )  ≥  C G   (  G ′   ( p )  )  ≥ Z  (  G ′   ( p )  )  > 1   by Proposition 1 (1).




	(2)

	
Since    G ′   ( p )    is a minimal normal subgroup of G,    G ′   ( p )  ∩ F  ( G )  =  G ′   ( p )    or 1. If    G ′   ( p )   ∩  F ( G ) = 1  , then    G ′   ( p )  F  ( G )  =  [  G ′   ( p )  × F  ( G )  ]    and so,   F  ( G )  ≤  C G   (  G ′   ( p )  )   . If    G ′   ( p )   ∩  F ( G ) ≠ 1  , then    G ′   ( p )  ≤ F  ( G )    and    [  G ′   ( p )  , F  ( G )  ]  ≤  G ′   ( p )   . However,   F ( G )   is nilpotent and hence    [  G ′   ( p )  , F  ( G )  ]  <  G ′   ( p )   . Thus,   [  G ′   ( p )  , F  ( G )  ] = 1   and we have   F  ( G )  ≤  C G   (  G ′   ( p )  )   .



By Proposition 1 (1),   F  ( G )  ≤  C G   (  G ′   ( p )  )  ≤  D p   ( G )   . The nilpotency of    D p   ( G )    implies that   F  ( G )  =  C G   (  G ′   ( p )  )  =  D p   ( G )   .









□






3. Proofs of Theorems 1 and 2


Proof of Theorem 1. 

(1) By Proposition 1 (2),    D p   ( G )    is soluble. Then    D p   ( G )    has a Hall   p ′  -subgroup, denoted by A. Let P be a Sylow p-subgroup of    D p   ( G )   . Then    D p   ( G )  = P A  .



Firstly, A is a Dedekind group. Case 1. A is a q-group.



For a subgroup H of A. Since   A ≤  D p   ( G )   , we have A normalizes    H ′   ( p )   . It follows from    H ′   ( p )  = H   that H is normal in A, that is,   A = N ( A )   is a Dedekind group.



Case 2. A is not a q-group.



Let   A q   and   A r   be any Sylow q-subgroup and Sylow r-subgroup of A, respectively,   q ≠ r  . Since   A q   and   A r   are subgroups of    D p   ( G )   ,   A q   normalizes    A r ′   ( p )    and   A r   normalizes    A q ′   ( p )   . Then it follows from    A r ′   ( p )  =  A r    and    A q  =  A q ′   ( p )    that   [  A q  ,  A r  ] = 1  , that is, A is nilpotent. For a subgroup H of   A q  , by the same argument above,   A q   is Dedekind group, hence A is Dedekind group.



Secondly,   P = D ( P )   is a D-group.



For a subgroup K of P. Since   P ≤  D p   ( G )   , we have P normalizes    K ′   ( p )   . It follows from    K ′   ( p )  =  K ′    that   K ′   is normal in P, that is,   P = D ( P )   is a D-group.



Finally,    D p   ( G )  = P  [ A ]   .



Since P normalizes    A ′   ( p )    and    A ′   ( p )  = A  , we have    D p   ( G )  = P  [ A ]   .



(2) By (1), the Hall   p ′  -subgroup of    D p   ( G )    is Dedekind group for any prime   p ∈ π ( G )  , then    ∩  p | | G |    D p   ( G )  ≤ N  ( G )   . Hence    ∩  p | | G |    D p   ( G )  = N  ( G )    by Proportion 1 (1). □





Suppose that a group H acts on a group G. We say that H acts hypercentrally on N if N has a subnormal series   1 =  N 0  ≤  N 1  ≤ ⋯ ≤  N s  = N   such that    [ H ,  N i  ]  ≤  N  i − 1    , for all   i = 1 , 2 , ⋯ , s   (cf. [11]). Clearly, if N is a normal subgroup of H then H acts hypercentrally on N if and only if   N ≤  Z ∞   ( H )   .



Lemma 2.

Let G be a   { p , q }  -group. Assume that N is a normal q-subgroup of G and H is a subgroup of G with   H =  O p   ( H )   . If   N ≤  D p   ( G )   , then H acts hypercentrally on N.





Proof. 

Suppose that the lemma is not true. Let G be a counterexample of minimal order. Then



(1)   G = N H  .



If   N H < G  , then   N H   satisfies the condition of the lemma by Proposition 1 (3) and the choice of G shows that H acts hypercentrally on N, a contradiction.



(2) Let T be a minimal supplement of    C G   ( N )    in G, then    O p   ( T )  = T  .



Since   H =  O p   ( H )    and N is a normal q-subgroup, we have   G = H N =  O p   ( H )  N =  O p   ( G )   . Let T be a minimal supplement of    C G   ( N )    in G. Then   G =  C G   ( N )  T  . Assume that    O p   ( T )  < T  . Then    C G   ( N )   O p   ( T )  < G   by the minimality of T. It is easy to see that   G /  C G   ( N )   O p   ( T )  =  C G   ( N )  T /  C G   ( N )   O p   ( T )  ≅ T /  C T   ( N )   O p   ( T )    is a p-group, and then    O p   ( G )  ≤  C G   ( N )   O p   ( T )  < G  , a contradiction.



(3)   G = N T  , and   T ⊴ G  .



If   N T < G  , then   N T   satisfies the condition of the lemma by Proposition 1 (3). By the choice of G, T acts hypercentrally on N. Let   T p   and    C G    ( N )  p    be Sylow p-subgroup of T and    C G   ( N )   , respectively. Then   T p   acts trivially on N, and then    G p  =  C G    ( N )  p   T p    acts trivially on N. Since G is a   { p , q }  -group,   G /  C G   (  N i  /  N  i − 1   )    is a q-group for each G-chief factor    N i  /  N  i − 1     of N. However,    O q   ( G /  C G   (  N i  /  N  i − 1   )  )  = 1   by ([12], Lemma 1.7.11). It follows that   G /  C G   (  N i  /  N  i − 1   )  = 1  . This shows that G acts hypercentrally on N, and so does H, a contradiction. Thus,   G = N T  



Since N normalizes    T ′   ( p )    and   T =  T ′   ( p )   , we have   T ⊴ G = N T  .



(4)   G = R T  , where R is a nontrivial normal subgroup in G with   R ≤ N  .



If   R T < G  , then one can see that   R T   satisfies the condition by Proposition 1 (3). Hence T acts hypercentrally on R by the choice of G. Since   N / R ≤  D p   ( R T / R )    and    O p   ( R T / R )  = R T / R  , then, by the choice of G,   R T / R   acts hypercentrally on   N / R  . Then T acts hypercentrally on N, that is,   G = N T   acts hypercentrally on N by ([12], Lemma 1.7.11), so does H, a contradiction.



(5) Final contradiction.



Since   G / R = T R / R   acts hypercentrally on   N / R  , without generality, we can assume   R = N   is minimal normal in G. Then, by the minimality of N and the normality of T, we have that   G = N × T   or   G = T  .



If   G = N × T  , then   N ≤ Z ( G )  , a contradiction.



Let   G = T  . Since T is the minimal supplement of    C G   ( N )    in G, we have that   T ∩  C G   ( N )  ≤ Φ  ( T )    by ([12], Lemma 2.3.4). Thus,    C G   ( N )  ≤ Φ  ( G )   . By the minimality of N and N,    O q   ( G )  ≤  C G   ( N )  ≤ Φ  ( T )  = Φ  ( G )   . It follows that    O  q , p    ( G )    is p-closed. Choose P to be a Sylow p-subgroup in    O  q , p    ( G )   . Then   P ⊴ G   and so,   P ≤  C G   ( N )  ≤ Φ  ( G )   . Therefore    O  q , p    ( G )  ≤ Φ  ( G )   , a contradiction. □





Proof of Theorem 2. 

(1) Since    C G   (  G ′   ( p )  )  ≤  D p   ( G )   , the necessity is clear.



Conversely, assume that    C G   (  G ′   ( p )  )  = 1   and    D p   ( G )  > 1  . It implies that    G ′   ( p )  ∩  D p   ( G )  > 1  . Otherwise,    D p   ( G )  ≤  C G   (  G ′   ( p )  )    and    C G   (  G ′   ( p )  )  ≠ 1  . By Proposition 1 (2),    D p   ( G )    is soluble. So G has a minimal normal subgroup N such that   N ≤  G ′   ( p )  ∩  D p   ( G )   . Then N is elementary abelian.



  N ≤ Z (  G ′  )  .



Assume    G ′  ∩  D p   ( G )  = 1  . Since    [ G ,  D p   ( G )  ]  ≤  [ G , G ]  =  G ′    and    [ G ,  D p   ( G )  ]  ≤  D p   ( G )   ,    [ G ,  D p   ( G )  ]  ≤  G ′  ∩  D p   ( G )  = 1  . It follows that    D p   ( G )  ≤ Z  ( G )   , a contradiction and thus    G ′  ∩  D p   ( G )  ≠ 1  . Since    G ′   ( p )  ∩  D p   ( G )  ≥  G ′  ∩  D p   ( G )   , we can assume that   N ≤  G ′  ∩  D p   ( G )   .



Now, by the ([13], Theorem 2.3 (1)), we have   N ≤  G ′  ∩ D  ( G )  ≤  Z ∞   (  G ′  )   . It follows from the minimality of N that   N ≤ Z (  G ′  )  .



  N ≤  C G   (  O p   ( G )  )   .



Let N be q-group for some prime q and r a prime divisor of   | G |   different to p and q. If R is a r-group. Then   N ≤  N G   ( R )    by   N ≤  D p   ( G )    and hence   [ N , R ] ≤ N ∩ R = 1  . Thus,   R ≤  C G   ( N )    and it follows from the choice of r that   G /  C G   ( N )    is a   { p , q }  -group. Therefore, without generality, we can assume that G is a   { p , q }  -group.



If   q ≠ p  , then, by Lemma 2,   N ≤  Z ∞   (  O p   ( G )  )   . It follows from the minimality of N that   N ≤ Z (  O p   ( G )  )  .



If N is a p-group, then    [ N , Q ]  = [ N ,  Q ′   O p   ( Q )  ] = 1   for any Sylow r-subgroup of G with   r ≠ p  . Then   [ N ,  O p   ( G )  ] = 1  , and   N ≤  C G   (  O p   ( G )  )   .



Hence, one can see that   N ≤  C G   (  G ′   ( p )  )   , a contradiction.



(2) If    O  p ′    (  D p   ( G )  )  = 1  , the result is clear.



If    O  p ′    (  D p   ( G )  )  ≠ 1  , then G has a minimal normal subgroup N with   N ≤  O  p ′    (  D p   ( G )  )   .



For any Sylow r-subgroup R of G, we have   [ N , R ] = 1  . Then   G /  C G   ( N )    is a   { p , q }  -group, hence, without loss of generality, we assume that G is a   { p , q }  -group.



If N is a q-group, then, by Lemma 2,   N ≤  Z ∞   (  O p   ( G )  )   . It follows from the minimality of N that   N ≤ Z (  O p   ( G )  )  .



If N is a p-group, then    [ N , Q ]  = [ N ,  Q ′   O p   ( Q )  ] = 1   for any Sylow q-subgroup of G. Then   [ N ,  O p   ( G )  ] = 1  , and   N ≤ Z (  O p   ( G )  )  .



By induction,    O  p ′    (  D p   ( G )  / N )  ≤  Z ∞   (  O p   ( G )  / N )   , then    O  p ′    (  D p   ( G )  )  ≤  Z ∞   (  O p   ( G )  )   .



(3) Note that   Z (  G ′   ( p )  ) = 1   if and only if    D p   ( G )  ∩  G ′   ( p )  = 1   by (1). Then    [  D p   ( G )  ,  G ′   ( p )  ]  ≤  D p   ( G )  ∩  G ′   ( p )  = 1  , therefore    D p   ( G )  =  C G   (  G ′   ( p )  )    by Proposition 1 (1). □






4. Minimal Subgroups and    D p   ( G )   


The main aim of this section is to to prove the following theorem.



Theorem 3.

Let q be a prime. Assume that every element of order q lies in    D p   ( G )   , and in addition, if   q = 2   and the Sylow q-subgroup of G is nonabelian, then every element of order 4 lies in    D p   ( G )   . Then G is q-soluble and    l q   ( G )  ≤ 1  .





Proof. 

Let   Ω = 〈 x ∈  O p   ( G )  ∣  x q  = 1 〉  , if   q ≠ 2   or the Sylow q-subgroup of G is abelian;   Ω = 〈 x ∈  O p   ( G )  ∣  x 4  = 1 〉  , if   q = 2   and the Sylow q-subgroup of G is nonabelian. Then   Ω ≤  O p   ( G )  ∩  D p   ( G )    by hypothesis.



Assume   p ≠ q  . By Theorem 1.3,  Ω  is a   p ′  -group and by Theorem 1.4,   Ω ≤  Z ∞   (  O p   ( G )  )   . If    O p   ( G )    is not q-nilpotent, then there exists a minimal non-q-nilpotent subgroup H of    O p   ( G )   . By the structure of the minimal non-q-nilpotent groups, we have that   H = [ Q ] R  , where   Q =  O q   ( H )    and exp  ( Q ) = q   or 4 (if q = 2 and Q is non-abelian) and R is a cyclic r-group with   r ≠ q  . However,   Q ≤ Ω ≤  Z ∞   (   O p   ( G )   , so   Q ≤ H ∩  Z ∞   (   O p   ( G )  ≤  Z ∞   ( H )   . It follows that H is nilpotent, a contradiction. This contradiction shows that    O p   ( G )    is q-nilpotent. Thus, G is q-soluble and    l q   ( G )  ≤ 1   since   G /  O p   ( G )    is a p-group.



Assume   p = q  . If    O p   ( G )    is of order   p ′   then G is   p ′  -closed and so is p-nilpotent. In particular, G is p-soluble with    l p   ( G )  ≤ 1  . If    O p   ( G )    is not a   p ′  -group, then   Ω ≠ Ø   and by Theorem 1.3,    O  p ′    ( Ω )    is the Hall   p ′  -subgroup of  Ω . Let T be any   p ′  -subgroup of G. Then   Ω ≤  N G   ( R )   . Since, clearly,  Ω  is normal in G, we see that    [ Ω , T ]  ≤ Ω ∩ T ≤  O  p ′    ( Ω )   . Since    O p   ( G )  =  〈 T ≤ G ∣ p ∤ | T | 〉   ,    [ Ω ,  O p   ( G )  ]  ≤  O  p ′    ( Ω )   . Now, considering on the quotient    O p   ( G )  /  O  p ′    ( Ω )   , we have that   Ω /  O  p ′    ( Ω )  ≤ Z  (  O p   ( G )  /  O  p ′    ( Ω )  )   . By a same argument as above (or by Ito’s theorem), it can be obtained that    O p   ( G )  /  O  p ′    ( Ω )    is p-nilpotent. Therefore,    O p   ( G )    is p-nilpotent and so is G. Thus, is p-soluble with    l p   ( G )  ≤ 1  . The proof is completed. □
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