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Abstract: The existing spatial panel structural vector auto-regressive model can effectively capture
the time and spatial dynamic dependence of endogenous variables. However, the hypothesis that the
common factors have the same effect for all spatial units is unreasonable. Therefore, incorporating
time effects, spatial effects, and time-individual effects, this paper develops a more general spatial
panel structural vector autoregressive model with interactive effects (ISpSVAR) that can reflect the
different effects of common factors on different spatial units. Additionally, based on whether or not
the common factors can be observed, this paper proposes procedures to estimate ISpSVAR separately
and studies the finite sample properties of estimators by Monte Carlo simulation. The simulation
results show the effectiveness of the proposed ISpSVAR model and its estimation procedures.

Keywords: spatial panel data; structural vector autoregressive model; interactive effects

1. Introduction

The structural vector autoregressive (SVAR) model can reflect the contemporaneous
relationship and dynamic effects of endogenous variables, and has been widely used in
the dynamic analysis of economic relationships [1]. However, the drawbacks of SVAR
analyses have become increasingly apparent in the application of regional science and
spatial econometrics, since the spatial relationship of endogenous variables among spa-
tial neighboring areas cannot be described in these models. Anselin and Getis [2] and
Elhorst [3], for example, have noted that there is an obvious spatial dependence for spatial
data. For this reason, Di Giacinto [4] and Beenstock and Felsenstein [5] constructed the
spatial panel structural vector auto regressive (SpSVAR) model to overcome the shortcom-
ings of SVAR in analyzing regional macro-economic problems. Essentially, they introduced
spatial dependence into the SVAR model.

SpSVAR contains time and spatial dynamic relations of endogenous variables simul-
taneously. It plays an important role in many fields, including the studies of regional
economic growth and environmental pollution. For instance, Monteiro [6] analyzes a
hypothesis known as “pollution heaven” using the spatial panel vector autoregression
(SpVAR) approach, and demonstrates that spatial spillovers seem to play a key role in FDI,
openness, and environmental regulation. Marquez et al. [7] provide a SpVAR analysis of
growth spillovers for Spanish regions, and suggest the existence of strong spatiotemporal
regional growth spillovers.

However, SpSVAR still has flaws that cannot be ignored. Obviously, the hypothesis
that exogenous variables have the same effect for all spatial units is unreasonable. Bai [8]
attempts to introduce interactive effects into the panel data model to reflect unobservable
common shocks and their heterogeneous impacts on different individuals. Yang et al. [9]
assert that individual common factors in a fixed-effect panel data model generate the
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same effect for different individuals, and is not consistent with the economic theory and
empirical intuition.

The existing literature on SpSVAR rarely involves these interactive effects. For instance,
Di Giacinto [10] considers the spatial effects of economic variables, but the interactive effect
of variables is ignored. Lee and Yu [11] discuss the interactive effects between time and
space, but they use a data transformation method to eliminate these effects.

This paper suggests the incorporation of spatial effects, time effects and time-individual
interactive effects, and develops a more general SpSVAR model based on interactive effects
(ISpSVAR hereafter). Not only is the establishment of ISpSVAR an important extension of
the spatial panel structural vector auto-regression model, it also provides a powerful tool
for the study of regional economic issues.

The organization of the paper is structured as follows: Section 2 proposes ISpSVAR,
Section 3 provides the estimation method of the model, Section 4 studies the finite sample
properties of estimators on the basis of the Monte Carlo simulation, Section 5 serves as
the conclusion.

2. The Model

The contemporaneous relations between endogenous variables in VAR have never
been modeled explicitly, and they can only be reflected by the instantaneous covariance of
the error term. A limitation of the model is that it is almost useless for structural analysis,
such as impulse response and decomposition of prediction error. Thus, the following form
of SVAR is proposed by Amisano and Giannini [12]

C0yt = C1yt−1 + . . . + Cpyt−p + ΛFt + αi + εt (1)

where yt = [y11t, . . . , yN1t, . . . , y1Kt, . . . , yNKt]′ is NK× 1 dimensional endogenous variables,
N is the number of spatial units, K is the number of endogenous variables, Ft denotes
exogenous variables, C0 is NK × NK dimensional instantaneous structural parameter,
reflecting instantaneous structure relations of variables, Ci is the NK × NK dimensional
coefficients matrix that reflects long-term variable relationships, Λ reflects the effects of
common factors on individuals, suggesting that they affect different individuals identically,
αi represents the spatial fixed effects that reflect a fixed space and do not vary with time.
εt (εt = [ε11t, . . . , εN1t, . . . , ε1Kt, . . . , εNKt]′) is assumed to follow a normal distribution with
zero mean and variance matrix Ω, and Ω is a diagonal matrix, that is

E(εt) = 0
E(εtε

′
t) = Ω = diag{[ω11, . . . , ωN1, . . . , ω1K, . . . , ωNK]}

E(εtε
′
t−h) = 0, h = 1, 2, . . .

Equation (1) is unidentified since its parameter matrix is unconditional. To solve this
problem, the basic idea is to impose reasonable limitations on parameters. Following Di
Giacinto [4] and Beenstock and Felsenstein [5], we can restrict the parameter matrix on the
basis of spatial structure directly by setting

Ch =


A(h)

11 A(h)
12 . . . A(h)

1k
A(h)

21 A(h)
22 . . . A(h)

2k
. . . . . . . . . . . .

A(h)
k1 A(h)

k2 . . . A(h)
kk

 (2)

with

A(h)
kr =

s

∑
l=0

Φ(hl)
kr W(l)

kr , Φ(hl)
kr = ϕkr IN (3)

where k, r = 1, 2 . . . K, h = 1, 2 . . . p. K is the number of endogenous variables, p is time
lag orders, IN denotes a N×N unit matrix, W(l)

kr is the N × N spatial weight matrix of order
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l, whose elements w(l)
kr (i, j) are known and positive if locations i and j are neighbors of

order l.
Obviously, the influence of exogenous variable Ft on different individuals is not

distinguished in Equation (1). To reflect the different influence of common factors on indi-
viduals in processing panel data with unobservable common factors [8], we can establish
an ISpSVAR model, which can be written as

C0yt = δ + C1yt−1 + . . . + Cpyt−p + ΛiFt + αi + εt (4)

where δ is a constant term, and Λi reflects that common factors Ft affect individuals
in different ways. Hence, Equation (4) contains time effects, spatial effects, and time-
individual interactive effects.

However, observation of common factors differs according to different economic
problems or areas of concern. For example, in the study of regional economic growth,
regional units are not only affected by their own consumption, investment, and government
expenditure, but also by some common factors like monetary and fiscal policy. In these
cases, common factors like monetary and fiscal policy can be observed or quantized.
However, in the study of environment pollution, regional units are not only affected by
their own energy consumption, industrial structure, economic growth and other factors,
but also by national environmental management policy, which is difficult to measure.

Therefore, according to whether or not common factors Ft can be observed, the
estimation of ISpSVAR should be considered separately.

3. Estimation of ISpSVAR

Equation (4) cannot be estimated directly, so the most appropriate method is to first
estimate its corresponding reduced form, and then calculate the parameters of structural
form. The reduced form can be written as

yt = B1yt−1 + . . . + Bpyt−p + ΨiFt + δi + ηt (5)

where Bh = C−1
0 Ch, (h = 1, 2, . . . , p), Ψi = C−1

0 Λi, δi = C−1
0 αi, ηt = C−1

0 εt. Factor loadings
Ψi reflect the contemporaneous impact of common factors on the endogenous variable y.
The shocks ηt in reduced form is the linear combination of shocks εt in structural form,
representing composite impact. As shown below, we can obtain the relation between the
variance–covariance matrix of structural residuals (Σε) and variance–covariance matrix of
the reduced form’s residuals through Choleski decomposition. Formally:

Σ = C0
−1Σε(C0

−1)′ (6)

In this way, the estimation of ISpSVAR is converted into the estimation of ISpVAR.
However, there is still some difference in the estimation of Equation (5) according to
whether or not common factors can be observed, and different estimation procedures are
necessary. Therefore, we can estimate ISpSVAR using two steps: first, the estimation of
ISpVAR, second, the estimation of ISpSVAR based on ISpVAR.

3.1. Estimation of ISpVAR with Common Factors Known

Assuming that common factors can be observed, the estimation procedures of Equa-
tion (5) can be established as follows.

(1) To facilitate the estimation, individual effects can be eliminated by the within-group
transformation [13]. Therefore, model (5) can be written as

ỹt = B1ỹt−1 + . . . + Bpỹt−p + ΨiFt + ηt (7)

where ỹit = yit −
−
y .t.
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(2) Eliminate the interactive term in model (7) through orthogonal transformation.

Firstly, standardize common factor Ft, that is,
−
F = 0, F′F/(T − 1) = I. Then, define projec-

tion matrix Q = IT−1 − F′F/(T − 1). Lastly, premultiply Q for all variables in Equation (7)
so as to eliminate common factors Ft [14]. Then, Equation (7) can be expressed as

Zt = B1Zt−1 + . . . + BpZt−p + ξt (8)

where Zt = Qỹt. Thus, the estimation of interactive effects SpVAR with known common
factors is converted into the estimation of SpVAR.

(3) Estimate SpVAR and factor loadings, Ψi. According to Beenstock and Felsen-
stein [5], we estimate SpVAR by estimating the dynamic spatial panel model, and transform
Equation (8) as follows

Zt = B1Zt−1 + . . . + BpZt−p + B̂1Z∗t−1 + . . . + B̂pZ∗t−p + ξt (9)

where Z∗kt−1 = Q(WZkt−1). W, as above, is the spatial weight matrix. Quasi-maximum
likelihood can be applied to the estimate dynamic spatial panel model [15] to obtain the
parameter estimation of B1, . . . , Bp; B̂1, . . . , B̂p.

Finally, the value of factor loadings can be expressed as

Ψi = (T − 1)−1F′
(
yt − B1yt−1 − . . .− Bpyt−p

)
(10)

3.2. Estimation of ISpVAR with Common Factors Unknown

We can only attain the empirical distribution of residuals for the estimation of SpVAR
when common factors are unknown, and the parameter method cannot be used for statisti-
cal interference. Therefore, in this paper, we construct a bootstrap method based on the
orthogonal nonlinear tool variable method to estimate the ISpVAR model with common
factors unknown. The procedures are as follows:

(1) Estimate SpVAR that doesn’t include interactive effects. Model (7) can be written as

ỹt = B1ỹt−1 + . . . + Bpỹt−p + ξt (11)

where ξt = ΨiFt + ηt. Using QML, we can obtain the value of B̃1, . . . B̃p, ξ̃t in Equation (11).
(2) Using the method of random sampling, we can generate the residuals ξ∗1 , . . . , ξ∗T

used in the bootstrap from estimated residuals
{

ξ1 −
−
ξ , . . . , ξT −

−
ξ

}
, where ξ∗i = ξi −

−
ξ

(i=1, 2 . . . T), ξt = yt − B̃1yt−1 − . . .− B̃pyt−p,
−
ξ = T−1 ∑ ξt.

(3) Factor loadings Ψi and the initial estimated value of common factors Ft can be
obtained through principal component analysis of residuals ξ∗1 , . . . , ξ∗T . Standardize Ft in
accordance with Section 3.1, and then construct projection matrix Q using the standardized
common factor.

(4) Eliminate common factor Ft by transforming Equation (5) as

yt = B1yt−1 + . . . + Bpyt−p + εt (12)

where
−
y t = Qỹt. Repeating the estimation method of SpVAR in step (1) we can obtain the

estimation of B1 . . . Bp, εt.
(5) The parameters, common factors and factor loadings in model (5) can be obtained

by iterating (2) to (4) until the estimated parameters are converged.

3.3. Estimation of ISpSVAR

There is no difference in the estimation of ISpSVAR regarding whether the common
factors are known or unknown when the parameter and variance–covariance matrix of the
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corresponding ISpVAR has been estimated. Therefore, the most critical thing is to estimate
the corresponding structural form of Equation (7) as

C0ỹt = C1ỹt−1 + . . . + Cpỹt−p + ΛiFt + εt (13)

where Bh = C0
−1Ch, h = 1, 2, . . . p; Ψi = C0

−1Λi; ηt = C0
−1εt. Using the variance–

covariance relationship between reduced form and structural form, as shown in Equation (6),
we can estimate C̃0 and Σε, and other paraeters can be expressed as

C̃h = C̃0B̃h, h = 1, . . . p; Λ̃i = C̃0Ψ̃i (14)

Following Di Giacinto [10], we restrict C0 to the following structure of block triangular
matrix to avoid the identification problem

C0 =


A(0)

11 0 . . . 0
A(0)

21 A(0)
22 . . . 0

. . . . . . . . . . . .
A(0)

K1 A(0)
K2 . . . A(0)

KK

 (15)

where

A(0)
kr =


IN −

s
∑

l=1
Φ(0l)

kr W(l)
kr r = k

−
s
∑

l=0
Φ(0l)

kr W(l)
kr r < k

, Φ(0l)
kr = φ

(0l)
kr IN (16)

Based on the above constraints, we can estimate the parameters of Equation (13).
However, the contemporaneous relations and spatial dependence between endogenous
variables are included in Equation (13). Considering the feasibility and simplicity of
the estimation program, we provide a practical way to deal with Equation (13). That is,
bringing the contemporaneous relationship and spatial dependence between endogenous
variables into the model using the following two steps.

(1) Considering contemporaneous relations of endogenous variables y, the structural
form of Equation (7) can be written as

C01ỹt = C10ỹt−1 + . . . + Cp0ỹt−p + Λi0Ft + εt0 (17)

where C01 =


Φ11 0 . . . 0
Φ21 Φ22 . . . 0
. . . . . . . . . . . .

ΦK1 ΦK2 . . . ΦKN

; Φkr = φkr IN . The parameters in model (7)

have been estimated; thus, we can adopt full information maximum likelihood (FIML) to
estimate C̃01, C̃10, . . . C̃p0, Λ̃ i0, ∑ εt0 [12].

(2) Furthermore, we consider the spatial dependence of endogenous variables. Equa-
tion (17) can be written in tis reduced form

ỹt = C10ỹt−1 + . . . + Cp0ỹt−p + Λi0Ft − C̃01yt + εt0 (18)

where C̃01 =


Φ11 − IN 0 . . . 0

Φ21 Φ22 − IN . . . 0
. . . . . . . . . . . .

ΦK1 ΦK2 . . . ΦKN − IN .

 Bringing contemporaneous spa-

tial correlation item into Equation (18), we have

C02ỹt = C11ỹt−1 + . . . + Cp1ỹt−p + Λi1Ft − C̃011ỹt + εt1 (19)
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where C02 =


Ã(0)

11 0 . . . 0
Ã(0)

21 Ã(0)
22 . . . 0

. . . . . . . . . . . .
Ã(0)

K1 Ã(0)
K2 . . . Ã(0)

KK

, Ã(0)
kr = −∑s

l=1 Φ(0l)
kr W(l)

kr , Φ(0l)
kr = φ

(0l)
kr IN . IN

denotes a N × N unit matrix, W denotes the spatial weight matrix.
Then, parameters C02, C11, . . . Cp1, Λi1, C̃011 in Equation (19) can be estimated by FIML.

So far, we have completed the estimation of the structural form of Equation (13).

4. Monte Carlo Simulation

This part uses the interactive effects spatial panel structural vector auto regression
model of one-period-lagged time and space (assuming there is only one common factor) as
an example to study the finite sample properties of estimators.

4.1. Data Generation

Set the model of generating data as follows

C0yt = C1yt−1 + ΛiFt + εt (20)

Without loss of generality, we set the parameters of Equation (20) as follows

C0 =

[
IN + θ11W 0

θ
(00)
21 IN + θ

(01)
21 W IN + θ22W

]
, C1 =

[
ϕ
(00)
11 IN + ϕ

(01)
11 W ϕ

(00)
12 IN + ϕ

(01)
12 W

ϕ
(00)
21 IN + ϕ

(01)
21 W ϕ

(00)
22 IN + ϕ

(01)
22 W

]
,

where
θ11 = −0.23, θ

(00)
21 = −0.45, θ

(01)
21 = 0.16, θ22 = −0.32

ϕ
(00)
11 = 0.41, ϕ

(01)
11 = −0.37, ϕ

(00)
12 = 0.53, ϕ

(01)
12 = 0.28

ϕ
(00)
21 = −0.52, ϕ

(01)
12 = 0.19, ϕ

(00)
22 = 0.21, ϕ

(01)
22 = 0.36

, This paper uses a first-

order Rook matrix, assuming factor loadings, Λi is a uniform distribution of intervals
[−1, 1], setting y1 ∼ 2 + N(0, 1), supposing common factor Ft obeys standard normal
distribution, setting random error term εt follows a normal distribution, εt ∼ i.i.d N(0, Ω),

Ω =

[
0.2 0
0 1.1

]
.

We set a different cross-section (N = 10, 20, 30) and time (T = 5, 10, 30) in order to
study the influence of sample sizes on estimators and simulate 500 times.

4.2. Finite Sample Properties of Estimators

We can measure the estimators from the perspective of unbiasedness and stability by
using bias and Root Mean Square Error (RMSE) [16]. The formulas are listed as follows

Bias =
1
n

n

∑
i=1

(β̂i − β) (21)

RMSE =
1
n

√
n

∑
i=1

(β̂i − β)
2

(22)

where β̂i denotes the estimated values of every simulation, β is initial values. The result of
simulation is shown in Table 1.

The performance of estimation procedures depends on the RMSE value, and the
general value of RMSE is 0.05 [17]. As shown in Table 1, the value of Bias and RMSE for
most estimators is relatively small and reasonable. This demonstrates the rationality of the
procedures for estimating interactive effects SpSVAR. Additionally, when cross-section N
(or time T) is the same, the absolute value of Bias and RMSE will decrease with the increase
in time T (or cross-section N) for most parameter estimations. This shows that the accuracy
of the estimation will significantly improve with an increase in sample sizes.
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Table 1. Simulation results of parameter estimation.

N = 10
T = 5

N = 10
T =10

N = 10
T =30

N = 20
T =5

N = 20
T =10

N = 20
T =30

N = 30
T =5

N = 30
T =10

N = 30
T =30

θ11
Bias 0.0911 0.0201 0.0126 0.0325 0.0213 0.0074 0.0574 0.0271 0.0234

RMSE 0.0186 0.0109 0.0050 0.0143 0.0084 0.0046 0.0133 0.0069 0.0045

θ
(00)
21

Bias 0.2207 0.1658 0.2125 0.0996 0.1792 0.1645 −0.2216 −0.1839 −0.2716

RMSE 0.0528 0.0307 0.0245 0.0352 0.0266 0.0200 0.0301 0.0223 0.0221

θ
(01)
21

Bias −0.1419 −0.1185 −0.1293 −0.1137 −0.1266 −0.1191 −0.0601 −0.0521 −0.0427

RMSE 0.0162 0.0135 0.0132 0.0136 0.0134 0.0122 0.0237 0.0068 0.005

θ22
Bias 0.0658 0.0274 0.0208 0.048 0.0443 0.0313 0.0655 0.0588 0.034

RMSE 0.0175 0.0094 0.0057 0.0144 0.0109 0.0052 0.0622 0.0097 0.0054

ϕ
(00)
11

Bias −0.0518 −0.0169 −0.0063 −0.0282 −0.0188 −0.0046 −0.0237 −0.0088 −0.0043

RMSE 0.0092 0.004 0.0021 0.0067 0.0034 0.0019 0.0051 0.0024 0.0013

ϕ
(01)
11

Bias 0.0437 0.0188 0.0096 0.0148 0.019 0.019 0.0216 0.0166 0.0062

RMSE 0.0107 0.0047 0.0027 0.0083 0.0045 0.0061 0.0065 0.0037 0.0019

ϕ
(00)
12

Bias 0.0223 0.0047 0.0017 0.0036 0.0014 0.0042 0.0127 0.0032 0.0037

RMSE 0.0078 0.0042 0.0022 0.0048 0.0026 0.0015 0.0033 0.0022 0.0011

ϕ
(01)
12

Bias 0.0811 0.0134 0.0094 0.0386 0.013 0.0048 0.0505 0.0175 0.0186

RMSE 0.0162 0.0096 0.0046 0.0135 0.0075 0.004 0.0113 0.0058 0.0039

ϕ
(00)
21

Bias 0.0376 0.051 0.0891 −0.0126 0.0499 0.062 0.1009 −0.0945 −0.0917

RMSE 0.0287 0.0181 0.0117 0.0227 0.0142 0.0093 0.0123 0.0125 0.0103

ϕ
(01)
21

Bias −0.0252 −0.0499 −0.1060 0.0135 −0.0593 −0.0786 0.113 0.0494 0.0514

RMSE 0.0246 0.017 0.013 0.024 0.0146 0.0105 0.022 0.0199 0.0075

ϕ
(00)
22

Bias −0.0187 0.0282 0.0983 −0.0544 0.0438 0.0668 −0.2105 −0.1329 −0.1272

RMSE 0.0294 0.0173 0.0127 0.0238 0.0132 0.0094 0.0268 0.0162 0.0135

ϕ
(01)
22

Bias 0.0962 0.0205 0.0214 0.0387 0.0336 0.0115 −0.0805 −0.0642 −0.1054

RMSE 0.0311 0.0158 0.0096 0.0199 0.0124 0.0067 0.0183 0.013 0.012

Λ
Bias 0.0067 0.0065 0.0116 −0.0093 −0.0075 −0.0102 −0.0076 −0.0004 −0.0001

RMSE 0.0419 0.0308 0.0196 0.0342 0.0264 0.0161 0.0478 0.0341 0.022

Notes. To save space, we list the average results of factor loadings Λi.

5. Conclusions

This paper constructs an interactive effects SpSVAR (ISpSVAR) which includes time
effects, spatial effects, and time-individual interactive effects. Based on whether or not the
common factors can be observed, we propose procedures to estimate ISpSVAR separately.
ISpSVAR brings time and spatial dynamic relations of endogenous variables into the model,
which plays an important role in many areas, such as regional macro-economic growth,
environmental pollution, etc. Finally, this paper studies the finite sample properties of
estimators by Monte Carlo simulation—the results demonstrate the effectiveness of the
estimation procedures.
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