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Abstract: The nonhomogeneous Poisson process model with power law intensity, also known as the
Army Materiel Systems Analysis Activity (AMSAA) model, is commonly used to model the reliability
growth process of many repairable systems. In practice, it is necessary to test the reliability of the
product under different operational environments. In this paper we introduce an AMSA A-based
model considering the covariate effects to measure the influence of the time-varying environmental
condition. The parameter estimation of the model is typically performed using maximum likelihood
on the failure data. The statistical properties of the estimation in the model are comprehensively
derived by the martingale theory. Further inferences including confidence interval estimation and
hypothesis tests are designed for the model. The performance and properties of the method are
verified in a simulation study, compared with the classical AMSAA model. A case study is used to
illustrate the practical use of the model. The proposed approach can be adapted for a wide class of
nonhomogeneous Poisson process based models.

AMSAA model;
statistical inference

Keywords: reliability growth; covariate effects; maximum likelihood;

1. Introduction

A repairable system is a system that can undergo reparation by mending or replacing
some system components rather than re-establishing the entire system after failing. Most of
the contemporary complex systems are repairable—for instance, communication systems,
software systems, automobile engines, helicopters, and aircraft generators all belong
to the repairable category. The reliability of some repairable systems can be improved
by a test, analyze, and fix process, where system failures are identified and corrective
actions are implemented until the reliability reaches a prespecified level. This procedure of
improvement is called the reliability growth process, or the reliability growth test.

The reliability growth test is a powerful tool to improve repairable system’s reliability
by identifying and repairing failure units, which has been widely used in many indus-
tries [1]. In the testing, data of failure times are collected to assess the changing trend of
the product’s reliability growth. A variety of reliability models have been developed to
study these testing data. Duane [2] first introduced the reliability growth model for aircraft
engines by using the learning curve to describe the relationship between the cumulative
failure rate and the cumulative testing time. Crow [3] further delved into the stochastic ex-
tension of Duane’s model, where failures can be represented as a nonhomogeneous Poisson
process (NHPP) with Weibull intensity, which is also called a power law process [4]. The
developed model is now known as the Army Materiel Systems Analysis Activity (AMSAA)
model and has been popular, with multiple applications in industrial areas including
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automobiles [5], health care [6], power systems [7], and coal mining [8]. Subsequently,
more forms of the NHPP model have been introduced to characterize the time-varying
rates, such as the log-linear intensity model [9] and the exponential-trigonometric intensity
model [10]. The statistical theory of the classical AMSAA model has been intensively
studied as well. Some of these efforts focused on confidence interval estimation [11,12],
future reliability estimation [13], first passage time problem [14], model selection [15] and
goodness-of-fit test [16].

More recently, an increasing number of extensions of the AMSAA model have been
proposed to foster product development. For instance, Somboonsavatdee et al. [17] investi-
gated the statistical inference of the AMSAA model under competing risks; Peng et al. [18]
proposed a novel method to evaluate and predict the dynamic reliability of a repairable sys-
tem subjected to the interval-censoring problem based on the AMSAA model; Hu et al. [19]
designed a robust decision method for the planning of reliability growth testing by integrat-
ing information gap decision theory and the AMSAA model. A compelling improvement
to the AMSAA model is the incorporation of heterogeneity—an inclusion of individual-
specific factors or covariates that may affect the reliability growth process. To measure the
impact of operational and environmental factors, it is essential to take covariate effects into
consideration, and several studies have already displayed this awareness. Van Dyck and
Verdonck [20] extended the AMSAA model by introducing a multiplicative covariate factor
with the interpretation of a known scaling of the system’s failure character. Similarly,
Slimacek and Lindqvist [21] introduced a novel approach for the statistical modeling of
failures where nonparametric frailty and covariates were considered in the NHPP model.
In addition to the NHPP-based models, proportional hazard models are also able to de-
lineate the covariate effects; however, they make no distributional assumptions about the
failure process [22].

Among all the contemporary analyses of repairable systems with covariates or en-
vironmental effects, the majority are conducted over reliability growth tests for multiple
experimental individuals, machines, or systems. However, with the present rising reliabil-
ity requirements and the increasing product useful life, the cost of conducting reliability
growth tests often becomes exorbitant. Because test costs and the availability of test subjects
can sometimes be a barrier to the progression of reliability growth tests, it is more practical
and economical to conduct tests with a single test subject under different experimental con-
ditions; in other words, it would be more desirable if the covariates were time-dependent
and the data were collected from one sample path. These time-varying covariates can
include local climatic conditions like temperature and humidity or operational factors like
current intensity and rotating speed, which can all be dynamically monitored during the
test. To our best knowledge, there have been few comprehensive investigations on the
AMSAA model with such test settings. In this paper, we model the data of a reliability
growth test in a time-varying environment through an extended AMSAA model.

In a classical AMSAA model, the parameters can be estimated by using maximum
likelihood estimation (MLE) with analytic forms, whose exact distributions can be derived
as chi-square distributions [3]. However, since there is no analytic form for MLE in the
extension, it is challenging to discuss the properties of MLE. Moreover, most NHPP-based
works on repairable systems develop estimations and inferences from the classical MLE
theory, which is not readily applicable to small sample data with dependence. With these
previous limitations in mind, the statistical properties of MLE and further inferences of
the model are derived comprehensively from the martingale theory in the present study.
The rest of this paper is organized as follows. In Section 2, we establish the AMSAA model
with time-varying covariates of environmental effects. The method and property of the
parameter estimation are discussed in Section 3. More statistical inference paradigms are
developed in Section 4. A comprehensive simulation study and a case study are described
in Sections 5 and 6. A final discussion and an overview of the study are presented in
Section 7.
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2. AMSAA Model with Time-Varying Covariates

When evaluating the reliability of complex repairable systems with counting process
models, each event in the process represents one instance of a failure of the system. The
counting process {N(t),t > 0} is said to be a nonhomogeneous Poisson process with
intensity function A(t), t > 0 if it satisfies:

1. N(0)=0;

2. N(t) has independent increments;

3. P(N(t+h)—N(t) >2)=o(h);

4. P(N(t+h)—N(t) =1) = A(t)h+o(h).

Under the conditions in the definition of NHPP, the distribution of the number of
events that occurred in (s, t], N(t) — N(s), can be obtained from:

P(N(t) — N(s) = k) = —[A(t) — A(s)]fe~ (A -AG) )

where A(t) = E[N(t)] = fot A(u)du. Let N(t~) denote the number of events that occurred
before time t. If we observe n events in the interval [0, T] and the events occurred at times
t1,t2, - -+, tn, the desired joint probability density function with ty = 0 takes the form,

) = HP(N(t;) —N(ti—1) =0,N(t;) = N(t;) = 1)P(N(T) — N(t,) = 0)

= [TA(t)e 2D, )

Several forms of the intensity function have been used in modeling the process of
reliability growth. In the present study, we considered the celebrated power law intensity
adopted in AMSAA model, that is, A(t) = yat*~!. The expected event number up to
time ¢ is yt*.

When operating the testing machine in environmental or operational conditions that
are dynamic, external factors (e.g., temperature and stress) and internal factors (e.g., speed)
will influence the reliability growth process of the machine. Now suppose that for the
system there is a d-dimensional time-dependent covariate vector X(t) that affects the
intensity of events’ occurrence. Note that X (t) may be deterministic or random, continuous
or discrete about testing time. A deterministic and discrete situation is the most common
due to the multi-stage experiment design, where the experimental conditions are changed
in each stage. To quantify the reliability growth process with time-dependent covariate
effects, some assumptions are made for the model.

Assumption 1. X(t) is right-continuous with limits from the left and bounded almost surely.

Assumption 2. The base reliability growth process under a standard condition evolves as a power
law process.

Assumption 3. X(t) impacts the failure intensity by a multiplicative factor B X() where Bisa
d-dimensional constant vector.

Assumption 1 is satisfied in most cases in reality. Usually, X () is the monitoring data,
which can be observed up to time ¢. The bounding condition restricts the covariate effect
within a reasonable range so that the expected failure will tend to infinity as the operational
time tends to infinity. Assumption 2 is also a common assumption that characterizes
evolving pattern of a product’s reliability with normal use. In Assumption 3, the model we
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consider for the inclusion of X(t) is of the Cox type. This gives us the intensity and the
expectation function with covariate effects respectively:
A(t) = yatr—1eP X(1),
®)
A(t) = fot yaut—1eB X dy.

In the model, «, 7, and  are unknown parameters, with « and -y being positive. As a
well-known property of the counting process, we have the following martingale property
for the model.

Property 1. N(t) — A(t) is a square integrable martingale with respect to the filtration F; =
0{N(s),s < t}, and its predictable variation process is A(t).

Further properties and theories of the counting process and martingale can be found
in [23].

3. Maximum Likelihood Estimation

The maximum likelihood method is considered for estimating the unknown parame-
ters 7, a, and B. The log-likelihood of (2) is given by

n n T
Ir(ty, ta, - t; v, &, B) = nlogy +nloga + BT YO X(t) 4+ (a—1) ) log(t;) — / 'yvct“_le/gTX(t)dt. 4)
j i=1 0

i=1

Then, the estimation values can be obtained by the optimization problem,

(’?,&,B) = arg max Ir(ty, to, -+, tu; 7,0, B). (5)
(v B)

The first-order partial derivatives of the log-likelihood are

Ir [Tt X0y, (6)
ay v Jo

n T
ol _ Y X (k) —/ X(£)yat* LB X(gy, @)
B = 0
L T a1 BTX(1) T a1 TX(1)
o at i;log(tl) —/0 Yt e dt _/0 log(t)yat" e dt. 8)

The parameter estimation can be computed by setting the partial derivatives equal to
zero and solving the equations. However, there is one key problem that requires discussion
before the computation—the existence and uniqueness of the solution. We will prove the
property by constructing conditional likelihood.

Consider the conditional distribution of t1, t5, - - - , t, given N(T) = n. The conditional
distribution is given by the distribution of the order statistics of the random variable ¢

A(t)

whose density function is INGE Note that the distribution function does not contain the

parameter . As a result, the conditional log-likelihood function is given by

n n

T
Ut by, ta|N(T) =m0, B) = a ) log(t;) + BT ) X(t) —nlog /0 (1P Xdr (9)
i=1 i=1

We have the following lemma for the conditional log-likelihood.

Lemma 1. The maximum likelihood estimator for the log-likelihood (9) exists and is unigue with
probability 1 as the time tends to infinity. Moreover, the estimator is strongly consistent.
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Proof. The problem is equal to discussing the existence and uniqueness of the maximum
likelihood estimation of the parameters for 7 independent and identically distributed ran-
dom variables with density function % Furthermore, % is an exponential distribution
family with natural parameter « and B. Note that N(T) — co with probability 1 as T — co.
Then, the property in the lemma is derived by the theory of classical repeated sampling

from an exponential family [24]. O

The estimator in the lemma gives the same solution with that of (5) for « and B. We
will prove the existence, uniqueness and consistency for the estimator of full log-likelihood
in the following theorem.

Theorem 1. The maximum likelihood estimator from (5) exists and is unique with probability 1 as
the time tends to infinity. Moreover, the estimator is strongly consistent.

Proof. The estimation for & and f in optimization (5) is equal to maximizing the conditional
likelihood (9), which derives from the direct calculations shown in Appendix A . Due to
the analytic form of § with & and B given by (10), the existence and uniqueness are held
for (5). The strong consistency of & and f is given by Lemma 1.

n
[ ati-1eP X(0dt

As shown in Property 1, N(T) — A(T) is a square integrable martingale, whose pre-
dictable variation process is A(T). By Liptser’s law of large numbers for martingales [25],
we have

7= (10)

N(T) = A(T)

AT —0,T — oo (11)

almost surely on {A(o0) = co}. With the discussion on Assumption 1, we know that
A(c0) = oo holds almost surely. Then, with the consistency of & and B,

. _ . N() ~
§ = ’YA(T; 5B —7,T— (12)

almost surely, where A(T; &, B) denotes the expectation function with parameters v, &, and

PN

B. Hence, 4 is strongly consistent. [

With all the proofs above, the full log-likelihood function of the observations can be
factorized as follows:

lT(tl/tZ/ e /tn}'Y/“/ﬁ) = l(tll t2/ e /tl’l; |N<T) = n;ﬂ(,ﬁ) + l(?’l,"y,a,ﬁ), (13)

where, [(t1,ty,- -+ ,t; IN(T) = n;a, B) is given by (9) and

T T
I(n;y,a,B) = _/0 'yt“_leﬁTX(t)dt + nlog/O 'yt"‘_leﬁTX(t)dt. (14)

Then, the optimization (5) can be factorized as follows, which may help to simplify
the numerical calculation in practice.

&,ﬁ = argm%xl(tl,tz, <o t|N(T) = n;a, B), (15)
9

7,

4 = argmax!(n; v, &, ,3) (16)
¥
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4. Statistical Inference

In this section, we will discuss the distribution of the maximum likelihood estimation,
which is expected to be asymptotically normal in most cases, as well as some inferences for
the proposed model.

4.1. Asymptotic Normality of the Parameter Estimation
Before discussing normality, we present the martingale property of the score function.

Property 2. Denote (y,a, B)T by 6. The score function aa[—g denoted by I7(6) is a square integrable
martingale with mean zero with respect to the filtration Fr = c{N(s),s < T}.

The property follows from the fact that i7(8) can be formulated as fOT H(t)(dN(t) —
dA(t)). The specific form of H(t) can be extracted from (6), (7), and (8). With this property,
the asymptotic normality of the maximum likelihood estimator can now be deduced by
standard arguments.

Theorem 2. Suppose 8 is the maximum likelihood estimator given by (5). Then,

Ir(6)2(0 — 0) -5 N(0,1) (17)
as T — oo, where IT(0) = —Eg {%} and 1 is the identity matrix.

Proof. On series expansion, we see that

P

Ir(6) = Jr(6)(6 - 0), (18)

~ 2 ~
where J(0) = _a%a% o—g and 0 is a convex combination of (v,&,B)T and

(4,4, B)T. Therefore,

I7(6)~21r(6) = Ir(6)~2]7(6)(6 — 6) (19)
= I7(6) "2 (Jr(8) — I7(6) + Ir(6))(6 - §) (20)
= (A+D)Ir(0)2 (0 —0), (21)
where
A = Ir(0)"2(Jr(8) — I7(6)) r(6) 2. (22)
It follows from the central limit theorem for martingales [26] that
I7(6) " 2ir(8) -5 N(0,1), T — oo. (23)

Because I7(6) and J1(6) are asymptotically equivalent and the consistency of 8, A tends to zero
in probability as T — oo. Therefore, we get the asymptotic normality of I (0) 2 6-0). O

Remark 1. I7(0) and J7(0) are well known as the expected information matrix and observed
information matrix, respectively. The concrete forms are displayed in Appendix B. Due to the
asymptotic equivalence of these two information matrices, IT(0) in the theorem can be replaced

by Jr(6).
4.2. Inference of MTBF

The mean time between failures (MTBF) describes the expected time between two
failures for a repairable system, and is a very important indicator in the process of reliability



Mathematics 2021, 9, 905

7 of 15

growth. Under the setting of NHPP, the mean time between failures at time t, MTBE,, is
ﬁ. With the parameters estimated, the estimation of MTBF; can be given by
1

_—— 1
MTBF; = — = - . 24
TR qar1PTX(0) @)

]\mt is a continuous and differentiable function of 6. The distribution of ]\mt can be
given by the delta method as:

MTBE; ~ N(/\gt),gT(G)ITl(G)g(G)>, (25)
where
OMTBF
gT(60) = —5r— (26)
(. 1 T at ogt X(t)eP X(®)
- 2ate—1eB X0 o (apa—1)2eBTX() T yppa—1(eBTX(1))2 |7

Then, the 95% confidence interval estimation of MTBF; can be computed in the form
by plugging in 6,

[f\?t) — q975% \/gT(é)IT_l(é)g(é), < T 4997.5% \/8 é (é)g(é)] , (27)

A(t)
where g7 59, is the 97.5th percentile of the standard normal distribution.

Note that the MTBF; is a transient index computed under the time dimension of the
accelerated reliability growth test, where the accelerated factor is decided by the covariate
effects. In practice, we also want to know what the reliability of the machine would be like
if there have been A(t) faults fixed in normal use; such a reliability can be inferred from
the MTBEF at t(*) in a standard condition test, where the expected cumulative number of
failures at t under covariate effects is equal to the expected cumulative number of failures
at t(©) under the standard conditions.

To distinguish between the two MTBF types, we will use MTBF() to denote the
latter. There exists a measurable map i from the test time ¢ with covariate effects to the
equivalent time t(©) in the standard condition so that the transformed process denoted
by {N(t?),t > 0} is an NHPP with intensity function A0 (t©)) = 4a(+®))«=1 and
expectation function A(%) (1) = ~(¢(0), The aforementioned setup yields:

p(1) = {{O|AD(H0) = ()} = 42 A1) (28)

Subsequently, the estimated MTBF(©) for the testing time ¢t in the test with covariate
effects is

_——(0) 1 _1,..1 Al _q
MTBF () = ————~—— =y a& ' A(0)i " (29)
M qay(0)

The 95% confidence interval is given by

—— (0) A (0)
MTBF 1) — qorsu/ gL (6) I (0)g.(8), MTBEy sy + qo7.59/ 87 (0)I; (8)g.(9) |, (30)

o (0)
A MTBF
where g.(0) = —; ),

Furthermore, we generalize the MTBF to the situation where A(t) faults have been

fixed for the machine under the covariate effects of efYY(!), with parameter By being known.
A new map ¢y (t) for the testing time is constructed in a similar manner to that of (28),
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Py () = (LA M)) = A1)}, (31)

Y
where AY) (+V)) = fot( ) yau“’leﬁgy(”)du. Note that the map is one-to-one due to the

monotonically increasing property of A(Y)(-). Therefore, the estimation for M TBng H is

——_ (Y) 1
MTBF — ] -
) F&(py (£ 0))i-1PrY(9r(£0)

In addition, the 95% confidence interval can be given by the delta method, as shown
in (27) and (30).

(32)

4.3. Hypothesis Test for Covariate Effects

The inference of the covariate effects can be accomplished by using likelihood ratio
tests. Consider the hypothesis test problem,

H()ZﬁSIO 0.S. Hliﬁs#o,

where S C {1,2,---,d}. The test aims to check whether the covariates in the subset S
influence the reliability growth process significantly. The likelihood ratio test is designed
to achieve this purpose. The likelihood ratio statistic can be given by

LR — Supﬁ,s,le(tlrtZr’ c rtn|N(T) - n;“lﬁ—S/ﬁS = 0)
supﬂlaf(tl,tz, <o | N(T) = n;a, B)

where B_g represents the vector excluding Bs. By Wilks” theorem, under Hy, —2log LR
has an asymptotic distribution of X|25\’ where |S| is the cardinal number of the set S. Then,

(33)

the null hypothesis will be rejected at a significance level of 0.05 if —21og LR is greater than
the 95th percentile of )(‘25‘, indicating that the covariate effects of Xg(t) are significant.

5. Simulation Study

The functionalities of the proposed model and estimation method are validated
in the simulation study. Data of time points when failures happen are simulated by a
non-homogeneous Poisson process whose intensity function is defined as (3). The time-
dependent covariate effect is considered as a step function which occurs when the envi-
ronmental factor (e.g., temperature) is changed as designed at some points during the test.
The values of the step function are defined in Table 1.

Table 1. Step covariate function.

Time [0, 10,000) [10,000, 25,0000  [25,000, 50,0000  [50,000, 100,000]
X(t) 0 0.8 05 0.3

The parameters in the model are set as, ¥ = 1, « = 0.5, and B = 1. The failure points
of the process are generated by the thinning approach [27], which applies thinning to the
points generated from a homogeneous Poisson process with a rate parameter equal to the
maximum of the intensity function. MLE is done for the simulated data and the procedure
is repeated 1000 times. The estimation results are summarized in Table 2.

Table 2. Simulation results.

Parameter Mean Standard Theoretical Mean Square
aramete ¢ Deviation Standard Deviation Error
0% 0.9744 0.3168 0.3285 0.101
o 0.5066 0.0295 0.0295 0.0009

B 0.9966 0.1741 0.1741 0.0303
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From the results, we can conclude that the MLE results are close to the true values,
with relatively small mean square errors (MSEs). The standard deviations of the estimates
almost perfectly match the theoretical standard deviations computed from the square root
of the inverse of the expected information matrix. As a means of comparison, the classical
AMSAA model without considering the covariate effects is fitted as well. This model has
a mean of 0.66 and a standard deviation of 0.1991 for 4; the mean of & is 0.5728 with a
standard deviation of 0.0263. The deviation between the estimation of the classical AMSAA
model and the true parameters (v, «) in the base intensity is perceptibly large. In order to
further compare the performance in fitting the reliability growth trend, the fitted intensity
functions are plotted with the means of MLEs in Figure 1. The curve of the intensity
estimated by the AMSAA model with covariate effects is within the 95% confidence band,
while the curve of the classical AMSAA model deviates considerably large from the true
curve. The comparison result again tellingly emphasizes the indispensability of considering
covariate effects.

0.0100-

0.0075-

model
AMSAA model

Intensity

== Proposed model

= TRUE model

0.0050 -

0.0025 -

25,000 50,000 75,000 100,000
t
Figure 1. Intensity functions on [15,000,100,000] in different models. The grey area is the 95%
confidence band constructed by the true parameters. For the sake of comparison and neatness, the
confidence band is constructed around the true curve rather than the two estimated curves. The
band width is the same as that of the proposed model, which is computed with the delta method by
plugging in the true parameter values.

Another aspect in the simulation study that calls for verification is the normality of the
estimators. The quantile-quantile (Q-Q) plot method is employed to show the distributions
of 4, &, and B, which are presented in Figure 2. As expected, the scattered points are
distributed around the line ¥ = x except for the most extreme values, and this pattern
indicates a good fit. Therefore, it is plausible to conclude that the estimator is approximately
normally distributed in practice.
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Quantile of the standard normal distribution

estimation results.

1 2 -2 -1 0 1 2 -2 -1 0 1 2

Quantile of the empirical distribution of the estimates

Figure 2. Quantile-quantile plot. The quantiles of the the empirical distributions are calculated with the normalized

The relationship between MSE, which is computed by the mean square l, norm of § — 6,
and testing time is studied as well. The maximum testing time is increased from 100, 000 to
600, 000 with a step size of 50, 000. The testing time of each phase is increased proportionally.
For each testing time, the procedure of simulation and estimation is repeated 1000 times.
As seen in Figure 3, MSE decreases with the increase of testing time, which illustrates the
consistency of the estimates.

0.11-

0.10-

0.09-

MSE

0.08-

0.07-

0.06- ; | |
2x10° 4x10° 6x10°
Testing time

Figure 3. The relationship between mean square error (MSE) and testing time. The blue curve is the

trend line fitted by the formula y = \/al+7bx'

6. Case Study

The data used in the case study is obtained from a real dataset collected in a reliability
growth test during the development phase of an engine. In the test, the engine was tested
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in four phases with different operational conditions, and the failure times were recorded.
Some summary statistics are provided in Table 3.

Table 3. Description of the dataset.

Phase 1 Phase 2 Phase 3 Phase 4
Time (hour) [0,230) [230,1687) [1687,3764) [3764,5303]
Number of 17 36 58 16
failures
Covariate 0 1 2 0

In this particular case, it is impossible to monitor all aspects of the environment. So,
the covariate in table is generated from scoring by experts, and is the evaluation for the
stress intensity of the environment. More specially, the testers rate the stress intensity of
the experimental environment as {0, 1,2} based on the sensitive parameters of the engine,
such as gas pressure, temperature, and rotation speed.

We estimate the parameters by maximizing the log-likelihood. The estimation results
are shown in Table 4. The value & is less than 1, which suggests that the reliability of the
machine is improved in the testing procedure. The positive 3 implies that the increase in
the stress intensity of the environment accelerates the process of the fault exposure.

Table 4. Estimation results.

Parameter Estimation Standard Deviation
v 0.3511 0.2041
® 0.647 0.0709
B 0.3121 0.1222

With the estimated parameters, we estimate ]\mt and its 95% confidence interval at
the failure points. The estimation results are plotted in Figure 4. As shown in the figure,
MTBE, grows as testing time increases in each phase, and the growth rate is attenuating.
The MTBFs for other operational conditions at the end of the test are also calculated
through (32). The estimations and their 95% confidence intervals are presented in Table 5.
The first row of the table presents the reliability computed in the experiment condition;
the other three rows are the transformation results estimated for the testing machine put
in each of the remaining operational conditions, respectively. However, due to the short
test duration in the present study, the variance of the estimation is relatively large. This
limitation can be addressed in the future by incorporating a longer testing time so that a
more accurate set of data can be obtained.
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Figure 4. MTBE; and 95% confidence intervals at the failure points. Red lines represent the range of
the 95% confidence intervals.

Table 5. Estimations for MTBF and their 95% confidence intervals.

Type MTBF Lower Bound 95% Upper Bound
X(t) 90.851 66.7379 114.9641
X(t)=0 109.4868 74.4374 144.5362
X(t) =1 67.5841 55.5149 79.6534
X(t)=2 41.7184 33.5359 49.9009

In the model, the stress intensity of the experimental environment is reflected by the
covariate scored by experts. An alternative method is to treat the stress intensity as a latent
variable and incorporate it into . In this case, we can set X (t) as a 2-dimensional dummy
variable, that is,

(1,0)T,t € [230,1687)
X(t) =< (0,1)7T,t € [1687,3764) (34)
(0,0) T others.

With the set of X(t), the values of B1 and B in the coefficient vector represent the
environmental stress intensity of Phases 2 and 3 during the test, respectively. The estimation
results for the alternative model are shown in Table 6. It is shown that the stress intensity
of Phase 3, B, is the highest, which is in line with the expert score. Note that ; is close to
0; we use the likelihood ratio test (33) to check whether B; = 0. The test statistic —2log LR
takes the value 0.0328, which is less than the 95th percentile of x3. So, the null hypothesis
of B1 = 0 cannot be rejected. The hypothesis test result fails to correspond to the actual
setting of the test, where the environmental stress of Phase 2 is significantly stronger than
that of the normal case. The increase in the number of parameters and the absence of
experimental information render the model more susceptible to data fluctuations, which
leads to greater estimation variance and insignificant estimation results. In future tests, this
can be improved by increasing the length of testing time and collecting more monitoring
information on the sensitive parameters of the tested engine.
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Table 6. Estimation results.
Parameter Estimation Standard Deviation
0% 0.4486 0.2595
o 0.6295 0.0681
B1 0.0435 0.2416
B2 0.6042 0.2368

7. Discussion

In this paper, we investigate an extension of the AMSAA model where the influence of
the environment is considered as a time-dependent covariate vector. The covariate effects
are incorporated into the AMSAA model as a proportional factor in the intensity function.
To estimate the parameters in the NHPP-based model, the maximum likelihood estimation
method is adopted. The properties of MLE, including existence, uniqueness, consistency,
and asymptotic normality, are proved with several martingale properties of the designed
counting process. Based on the MLE properties, the confidence interval estimation of the
reliability measurement, mean time between failures, is deduced by the delta method.
Moreover, a likelihood ratio test is designed to test whether any covariates influence the
reliability growth process significantly. We verify the property and the efficiency of the
proposed model in the simulation study, where a comparison is made with the classical
AMSAA model. The results of the simulation demonstrate the necessity of taking covariate
effects into account. A case study is conducted on the data collected from a multi-phase
reliability growth test. We illustrate the practical use of the model by estimating the
parameters and the MTBFs for the testing machine.

The proposed model is formulated based on the AMSAA model, in which failures are
modeled by an NHPP whose intensity function corresponds to the power law. Nevertheless,
the modeling approach and the proofs of its properties can be applied to NHPP models
with an exponential family intensity function, which enables our model to be readily
extended to these models. Furthermore, the covariate effects can be incorporated into the
reliability growth model in more generalized forms in future work. As for application, our
model can play an essential role in the design and planning of future reliability growth
experiments, especially multi-stage reliability experiments.

Author Contributions: Conceptualization, X.-Y.T. and X.-].Y.; methodology, X.-Y.T., X.S., and X.-
J.Y.; software, X.-Y.T., X.S., and C.P;; validation, X.S., C.P, and X.-Y.T.; formal analysis, X.-Y.T,;
investigation, X.-Y.T. and X.-].Y.; resources, X.-].Y.; data curation, X.-].Y. and X.-Y.T.; writing—original
draft preparation, X.-Y.T.; writing—review and editing, X.-Y.T., X.S., and X.-].Y.; visualization, X.-Y.T,;
supervision, X.-J.Y.; project administration, X.-J.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 71801196.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: We would like to thank the editor and reviewers for their constructive comments
and suggestions, which have considerably improved this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AMSAA  Army Materiel Systems Analysis Activity
MLE Maximum likelihood estimation

MTBF Mean time between failures

NHPP Nonhomogeneous Poisson process



Mathematics 2021, 9, 905 14 of 15

Appendix A. Estimation in the Conditional Log-Likelihood

Let the partial derivative with respect to 7y equal to zero, and substitute the solution of
7 into (7) and (8); the equations of « and B can be obtained as:

tafleﬁTX(t)dt

ix fO =0

i—1 f atr—1eB X (D dt A1)
Al

i fo log(t)atv1eP X(1) gt 0

i—1 i ata-1eB X dt o

The first-order partial derivatives of (9) with « and f are the same with the left of
the equations above. Hence, the estimation for « and B in optimization (5) is equal to
maximizing the conditional likelihood (9).

Appendix B. Information Matrix

% Jo (2 +log tyate TP X (gt fOT Jatr1eB X dt
Jr(0) = fo +logt t“*leﬁTX(t)dt Jaa fo +log ) ot~ 187X (0 q (A2)
fo Hate—1eP XD 4y fo 1t logt)yat*—leP X(q fo £)2 1B X (1) gt
T T
Jaa = % +2/ log(t)'yt"‘*leﬁTX(t)dt —i—/ log(t)zfyoct“*leﬁTX(t)dt (A3)
o 0 0
T ate—1e Tx(t)
w [ (L 4 log t)atr—1eP X (g J X(ate1eP X (gt
Ir(0) = fo +logt Jat—1eB XD gy fo —|—logt 2ptr1 ﬂTX(t)dt fOTX(t)(% + log t)yat* 1B X(D gt (A4)
Jo X(Date—1eB X0dr  [TX(1)(L +log )yt 1B Xt i X (6)2yatr 1P XD gt
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